Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Σχετικά έγγραφα
Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Μικροβιολογία & Υγιεινή Τροφίμων

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστικά & Διακριτά Μαθηματικά

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Υπολογιστική άλγεβρα Ενότητα 6: Ο αλγόριθμος της διαίρεσης

Μαθηματική Ανάλυση Ι

Υπολογιστικά & Διακριτά Μαθηματικά

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ηλεκτρονικοί Υπολογιστές I

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εφαρμοσμένη Στατιστική

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Ιστορία της μετάφρασης

Ιστορία των Μαθηματικών

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Εκκλησιαστικό Δίκαιο

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Σχεδιασμός & Αξιολόγηση Προγραμμάτων Εκπαίδευσης Ενηλίκων

Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Εκκλησιαστικό Δίκαιο

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Εισαγωγή στους Αλγορίθμους

Κβαντική Επεξεργασία Πληροφορίας

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γραμμική Άλγεβρα Ενότητα 4: Ορίζουσες

Παράκτια Τεχνικά Έργα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Υπολογιστικά & Διακριτά Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Εισαγωγή στους Αλγορίθμους

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διοικητική Λογιστική

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ιστορία της μετάφρασης

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Transcript:

Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών

Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Υπενθυμίζουμε ότι ένας δακτύλιος με μοναδιαίο στοιχείο είναι μια τριάδα (R, +, ), όπου το ζεύγος (R, +) είναι μια αβελιανή ομάδα και : R R R, είναι μια προσεταιριστική πράξη που επιμερίζει την «+», δηλαδή a, b, c R, a (b + c) = a b + a c, (b + c) a = b a + c a. Επιπλέον, ο R περιέχει ένα μοναδικό στοιχείο, το 1 R που συμπεριφέρεται ουδέτερα ως προς την, δηλαδή a R είναι a 1 R = a = a 1 R. Η πράξη «+» ονομάζεται η πρόσθεση του R και η ο πολλαπλασιασμός του R. Αν a, b R, ονομάζουμε το αποτέλεσμα a + b, το άθροισμα των a, b και το αποτέλεσμα a b το γινόμενο των a, b. Θα αποκαλούμε τους δακτύλιους με μοναδιαίο στοιχείο μοναδιαίους δακτύλιους. Συχνά, το γινόμενο των a, b R, το συμβολίζουμε απλώς με ab, αντί του a b. Τέλος, υπενθυμίζουμε ότι ένας δακτύλιος (R, +, ) ονομάζεται μεταθετικός αν, a, b R, a b = b a. Θα ονομάζουμε έναν μοναδιαίο δακτύλιο (R, +, ), τετριμμένο αν, 1 R = 0 R. Σε αυτήν την περίπτωση ο R αποτελείται από ακριβώς από ένα στοιχείο, το 0 R, αφού αν, a R, τότε a = 1 R a = 0 R a = 0 R. Στο παρόν μάθημα όλοι οι δακτύλιοι θεωρούνται μεταθετικοί και μοναδιαίοι. Παραδείγματα 1.1.1. (αʹ) Οι τριάδες (Z, +, ), (Q, +, ), (R, +, ), (C, +, ), όπου «+» και είναι οι συνήθεις πράξεις τής πρόσθεσης και τού πολλαπλασιασμού, αποτελούν μεταθετικούς μοναδιαίους δακτυλίους. (βʹ) Η τριάδα (M n (R), +, ), όπου (R, +, ), είναι οποιοσδήποτε μεταθετικός μοναδιαίος δακτύλιος, «+» είναι η πρόσθεση πινάκων και ο πολλαπλασιασμός, (που ορίζονται με τον συνήθη τρόπο) αποτελεί έναν μοναδιαίο δακτύλιο, ο οποίος ωστόσο δεν είναι μεταθετικός, όταν n 2. 3

1. Π Έ Ορισμός 1.1.1. Σε έναν μεταθετικό δακτύλιο (R, +, ) ένα στοιχείο a 0 R ονομάζεται διαιρέτης τού μηδενός αν, υπάρχει κάποιο b R, b 0 R με ab = 0 R.. Ορισμός 1.1.2. Ένας μη τετριμμένος μεταθετικός μοναδιαίος δακτύλιος (D, +, ) ονομάζεται ακέραια περιοχή αν, δεν διαθέτει διαιρέτες του μηδενός. Παραδείγματα 1.1.2. (αʹ) Οι δακτύλιοι (Z, +, ), (Q, +, ), (R, +, ), (C, +, ) είναι ακέραιες περιοχές. (βʹ) Το ευθύ γινόμενο R S δύο μη τετριμμένων μοναδιαίων δακτυλίων (R, + R, R) και (S, + S, S) δεν αποτελεί ποτέ ακέραια περιοχή, αφού (1 R, 0 S )(0 R, 1 S ) = (1 R R 0 R, 0 S S 1 S ) = (0 R, 0 S ). Ορισμός 1.1.3. Σε έναν μεταθετικό μοναδιαίο δακτύλιο (R, +, ), το στοιχείο a R ονομάζεται αντιστρέψιμο αν, υπάρχει b R με ab = 1 R. Ορισμός 1.1.4. Ένας μη τετριμμένος μεταθετικός μοναδιαίος δακτύλιος ονομάζεται σώμα αν, κάθε μη μηδενικό στοιχείο του είναι αντιστρέψιμο.. Υπενθυμίζουμε ότι ένα στοιχείο a ενός μεταθετικού μοναδιαίου δακτύλιου (R, +, ) είναι αντιστρέψιμο αν, υπάρχει b R με ab = 1 R. Στην περίπτωση αυτή το στοιχείο b είναι μοναδικό, ονομάζεται το αντίστροφο τού a και συμβολίζεται με a 1. Παραδείγματα 1.1.3. (αʹ) Οι δακτύλιοι (Q, +, ), (R, +, ), (C, +, ) είναι σώματα. (βʹ) Ο δακτύλιος (Z, +, ) δεν είναι σώμα. Πράγματι, αν a Z είναι αντιστρέψιμο στοιχείο, τότε υπάρχει b Z με ab = 1 Z. Οι μόνοι ακέραιοι αριθμοί a με την ιδιότητα αυτή είναι οι a = 1 και a = 1. Συνεπώς, μια ακέραια περιοχή δεν είναι απαραιτήτως σώμα. Ωστόσο κάθε σώμα είναι ακέραια περιοχή.. Πρόταση 1.1.1. Κάθε σώμα (K, +, ) είναι ακέραια περιοχή. Απόδειξη. Θα δείξουμε ότι το K δεν διαθέτει διαιρέτες τού μηδενός. Αν το a 0 K είναι διαιρέτης τού μηδενός, τότε υπάρχει b 0 K με ab = 0 K (*). Αφού όμως a 0 K, έπεται ότι υπάρχει το a 1 και από την (*) έχουμε: a 1 (ab) = a 1 0 K (a 1 a)b = 0 K b = 0 K, πράγμα άτοπο. Συμπληρώνουμε την παρούσα ενότητα υπενθυμίζοντας ότι υποδακτύλιος R ενός δοθέντος μοναδιαίου δακτύλιου (R, +, ) είναι ένα υποσύνολο τού R που αποτελεί Ν. Μ 4

1.2. Ο Δ Π Μ δακτύλιο με τις πράξεις τού R και όπου το μοναδιαίο στοιχείο τού R συμπίπτει με το μοναδιαίο στοιχείο τού R. Είναι δυνατόν ένας δακτύλιος (R, +, ) να μην είναι σώμα, αλλά ωστόσο να περιέχει έναν υποδακτύλιο ο οποίος να είναι σώμα. Παραδείγματα 1.1.4. Θεωρούμε το ευθύ γινόμενο Q Q τού σώματος των ρητών αριθμών (Q, +, ) με τον εαυτό του. Το υποσύνολο = {(q, q) q Q} Q Q είναι ένας υποδακτύλιος τού Q Q, που αποτελεί ένα σώμα. 1.2 Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Ένα πολυώνυμο μιας μεταβλητής με συντελεστές από έναν μεταθετικό μοναδιαίο δακτύλιο (R, +, ) ορίζεται ως μια απεικόνιση f : N {0} R, όπου το σύνολο {n N {0} f(n) 0 R } είναι πεπερασμένο. Το σύνολο των πολυωνύμων μιας μεταβλητής με συντελεστές από έναν μεταθετικό μοναδιαίο δακτύλιο (R, +, ) συμβολίζεται με R[x]. Στο σύνολο R[x] ορίζουμε την πράξη τής πρόσθεσης + : R[x] R[x] R[x], (f, g) f + g, όπου(f + g)(n) := f(n) + g(n), n N {0} και την πράξη τού πολλαπλασιασμού : R[x] R[x] R[x], (f, g) f g, όπου(f g)(n) := Κάθε στοιχείο a R, το ταυτίζουμε με το πολυώνυμο a : N {0} R, i+j=n f(i)g(j), n N {0}. (*) που απεικονίζει το 0 N {0} στο a R και όλα τα υπόλοιπα στοιχεία τού N {0} στο 0 R. Κάθε τέτοιου είδους πολυώνυμο ονομάζεται σταθερό πολυώνυμο (η απλώς σταθερά). Ειδικότερα το πολυώνυμο 0 : N {0} R, δηλαδή το πολυώνυμο που απεικονίζει κάθε στοιχείο τού N {0} στο 0 R, το ονομάζουμε μηδενικό πολυώνυμο. Συμβολίζοντας με x : N {0} R 5 Ν. Μ

Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος. «Αλγεβρικές Δομές ΙΙ. Δακτύλιοι, Ακέραιες Περιοχές, Σώματα». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?id=1299. Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/.