Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης

Σχετικά έγγραφα
Στοιχεία Θεωρίας Γραφηµάτων (3)

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Στοιχεία Θεωρίας Γραφηµάτων (2)

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Βασικές Προτάσεις. έντρα. υαδικά έντρα Αναζήτησης ( Α) Ισοζυγισµένα έντρα και Υψος. Κάθε δέντρο µε n κόµβους έχει n 1 ακµές.

Αναζήτηση Κατά Πλάτος

Αλγόριθµοι Γραφηµάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα.

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Θεωρία Γραφημάτων 4η Διάλεξη

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Αλγόριθµοι και Πολυπλοκότητα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Θεωρία Γραφημάτων 6η Διάλεξη

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Αναζήτηση Κατά Πλάτος

d(v) = 3 S. q(g \ S) S

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

q(g \ S ) = q(g \ S) S + d = S.

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:

Αναζήτηση Κατά Πλάτος

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 9 - Δημοσθένης Σταμάτης Τμήμα Πληροφορικής

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

HY118- ιακριτά Μαθηµατικά

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ελάχιστα Γεννητορικά ένδρα

Σχέσεις, Ιδιότητες, Κλειστότητες

Αναζήτηση Κατά Πλάτος

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1.

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ισοδυναµίες, Μερικές ιατάξεις

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

... a b c d. b d a c

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Παραδείγµατα. Τάξη των Συναρτήσεων (1) Παράδειγµα (2) Να δειχθεί ότι 7n 2 = O(n 3 ). Ορέστης Τελέλης

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Σειρά Προβλημάτων 1 Λύσεις

Επίπεδα Γραφήματα (planar graphs)

Θεωρία Γραφημάτων 1η Διάλεξη

HY118-Διακριτά Μαθηματικά

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;

Αλγόριθµοι και Πολυπλοκότητα

Θεωρία Γραφημάτων 1η Διάλεξη

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Αλγόριθµοι και Πολυπλοκότητα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

βασικές έννοιες (τόμος Β)

Μαθηματικά Πληροφορικής

Συντομότερες Διαδρομές

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

(elementary graph algorithms)

Θεωρία Γραφημάτων 9η Διάλεξη

Transcript:

Απαρίθµηση Μονοπατιών Εστω γράφηµα G(V, E) µε πίνακα γειτνίασης A Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ως προς µια διάταξη των κόµβων του, v 1,..., v n. Μπορεί το G να είναι κατευθυνόµενο η µη. Μπορεί να είναι πολυγράφηµα ή να έχει ϐρόχους. Το πλήθος διαφορετικών µονοπατιών µήκους r Z + από τον v i στον v j δίνεται από το στοιχείο (i, j) του πίνακα A r. Παράδειγµα: A = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 A4 = 8 0 0 8 0 8 8 0 0 8 8 0 8 0 0 8 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 1 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 2 / 23 Απαρίθµηση Μονοπατιών Μονοπάτια και Κυκλώµατα Eulr Παράδειγµα: A = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 A4 = 8 0 0 8 0 8 8 0 0 8 8 0 8 0 0 8 Σε γράφηµα G(V, E): Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που διασχίζει κάθε ακµή του G. «Οι γέφυρες του Konigsrg» Παρατηρήσεις: Το κάθε στοιχείο του A 4 µετράει όλα τα µονοπάτια µήκους 4, όχι µόνο τα απλά. Υπάρχουν 8 µονοπάτια µήκους 4 από τον στον :,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Lonhr Eulr, 1707-1783 Κύκλωµα Eulr; Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 3 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 4 / 23

Παραδείγµατα Κριτήρια Υπαρξης Συνδεδεµένο πολυγράφηµα µε δύο τουλάχιστον κόµβους έχει κύκλωµα Eulr αν και µόνο αν κάθε κόµβος έχει άρτιο βαθµό. G 1 G 2 Το G 1 έχει κύκλο Eulr,,,,. Το G 2 δεν έχει κύκλο, ούτε µονοπάτι Eulr. G 3 Συνδεδεµένο πολυγράφηµα έχει µονοπάτι Eulr αλλά όχι κύκλώµα Eulr αν και µόνο αν έχει ακριβώς δύο κόµβους περιττού βαθµού. Το G 3 έχει µονοπάτι Eulr,,,,,, αλλά όχι κύκλο. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 5 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 6 / 23 Παραδείγµατα (Κατευθυνόµενα Γραφήµατα) Αλγόριθµος Εύρεσης Κύκλου Eulr Ξεκινάµε από αυθαίρετα επιλεγµένο κόµβο και επιλέγουµε συνεχόµενες ακµές... G 1 g G 2 G 3 1 4 2 3 Το G 1 δεν έχει κύκλο, ούτε µονοπάτι Eulr. Το G 2 έχει κύκλο Eulr:, g,,, g,,,, Το G 3 δεν έχει κύκλο, αλλά έχει µονοπάτι Eulr:,,,,,. Ενα κατευθυνόµενο γράφηµα έχει κύκλωµα Eulr αν και µόνο αν κάθε κόµβος έχει εισερχόµενο βαθµό ίσο µε τον εξερχόµενο βαθµό του.... µέχρι να κλείσει ένας κύκλος (να επιστρέψουµε εκεί από όπου ξεκινήσαµε) Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 7 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 8 / 23

Εύρεση Κύκλου Eulr Συνένωση επιµέρους κύκλων Αφαιρούµε τις ακµές του κύκλου που ϐρήκαµε. Επιλέγουµε έναν κόµβο που ήταν άκρο µίας από τις ακµές που αφαιρέθηκαν και επαναλαµβάνουµε... 1 4 2 3 1 3 2 1 3 2... µέχρι να έχουµε διατρέξει όλες τις ακµές του γραφήµατος. Στο τέλος: συνενώνουµε τους επιµέρους κύκλους σε έναν, στα κοινά τους σηµεία. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 9 / 23 Ξεκινάµε από τον 1ο κόµβο που είχαµε επιλέξει (αυθαίρετα) στην αρχή. Από κάθε κόµβο ακολουθούµε την ακµή που είναι επισηµειωµένη µε τον ελάχιστο αριθµό (προσέχοντας να µην ακολουθήσουµε δεύτερη ϕορά κάποια ακµή):,,,,,,, Αν σε κάποιον κόµβο πρόσκεινται 2 ακµές επισηµειωµένες µε τον ίδιο ελάχιστο αριθµό, ακολουθούµε οποιαδήποτε. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 10 / 23 Μονοπάτια και Κύκλοι Hmilton Κύκλος/Μονοπάτι Hmilton (Παραδείγµατα) Μονοπάτι Hmilton: απλό µονοπάτι που περνά από κάθε κόµβο του γραφήµατος ακριβώς µία ϕορά. Κύκλος Hmilton: απλός κύκλος που περνά από κάθε κόµβο του γραφήµατος ακριβώς µία ϕορά. εν έχουν κύκλο Hmilton. Το αριστερό έχει κόµβο ϐαθµού 1: πρέπει να τον επισκεφθούµε, αλλά τότε ϑα περάσουµε δύο ϕορές από τον. Κύκλος Hmilton Το δεξιό έχει κόµβο αποκοπής (): αναγκαστικά ϑα τον επισκεφθούµε δύο ϕορές σε οποιονδήποτε κύκλο διέρχεται από όλους τους κόµβους. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 11 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 12 / 23

Κύκλος/Μονοπάτι Hmilton (Παραδείγµατα) ικαιολόγηση g g Αν είχε µονοπάτι Hmilton: ϑα είχε «άκρα» σε δύο από τους τρεις κόµβους ϐαθµού 1. Το πρώτο έχει κύκλο Hmilton:,,,,,. Το δεύτερο δεν έχει κύκλο Hmilton, διότι ένας κόµβος έχει ϐαθµό 1. Εχει µονοπάτι Hmilton:,,,. Το τρίτο δεν έχει κύκλο, ούτε µονοπάτι Hmilton. Εξ ορισµού ϑα περνούσε και από τον τρίτο κόµβο ϐαθµού 1. Τότε όµως, ϑα έπρεπε, µε κατεύθυνση από το ένα άκρο προς το άλλο: να «ϕτάνει» τον τρίτο κόµβο ϐαθµού 1 από τη µοναδική του ακµή, να «επιστρέφει» από την ίδια ακµή. Εποµένως, ϑα περνούσε από τον γείτονά του δύο ϕορές άτοπο. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 13 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 14 / 23 Κύκλος/Μονοπάτι Hmilton (Παραδείγµατα) ικαιολόγηση Το αριστερό δεν έχει κύκλο Hmilton, έχει µονοπάτι:,,,,,. ε µπορεί να υπάρχει κύκλος, λόγω του κόµβου ϐαθµού 1. Το δεξιό δεν έχει κύκλο Hmilton, έχει µονοπάτι:,,,,. Ενας κύκλος ϑα έπρεπε να συνδέει το µε το µε δύο µονοπάτια: τα οποία έχουν κοινούς κόµβους µόνο τους και. Υπάρχουν τρεις δυνατότητες για το ένα από τα δύο αυτά µονοπάτια. Καµία από αυτές δεν επιτρέπει την εύρεση δεύτερου µονοπατιού: που να κλείνει κύκλο που περνά µία ϕορά από όλους τους κόµβους. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 15 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 16 / 23

Κριτήρια Υπαρξης Επίπεδα Γραφήµατα Θεώρηµα (Gril A. Dir) Απλό γράφηµα n 3 κόµβων, καθένας ϐαθµού τουλάχιστον n/2, έχει κύκλο Hmilton. Θεώρηµα (Øystin Or) Απλό γράφηµα n 3 κόµβων, όπου (u) + (v) n για κάθε Ϲεύγος µη γειτονικών u,v, έχει κύκλο Hmilton. Ενα γράφηµα είναι επίπεδο (plnr) αν µπορεί να απεικονιστεί στο επίπεδο χωρίς τεµνόµενες ακµές. = Παρατηρήσεις: Παρέχουν ικανές αλλά όχι αναγκαίες συνθήκες (π.χ. ο C 5 είναι κύκλος Hmilton και δεν ικανοποιεί κανένα κριτήριο). ε γνωρίζουµε «καλό» αλγόριθµο για την απόφαση του αν ένα γράφηµα έχει κύκλο/µονοπάτι Hmilton. = Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 17 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 18 / 23 Ο τύπος του Eulr Ο Βαθµός των Περιοχών του Επιπέδου Η επίπεδη αναπαράσταση ενός γραφήµατος χωρίζει το επίπεδο σε περιοχές: R 2 R 4 R 3 R 1 R 5 R 6 Θεώρηµα Εστω G(V, E) είναι επίπεδο απλό συνδεδεµένο γράφηµα: µε m = E ακµές, µε n = V κόµβους, του οποίου η επίπεδη αναπαράσταση χωρίζει το επίπεδο σε r περιοχές. Τότε r = m n + 2 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 19 / 23 R 1 R 2 R 3 R 4 R 5 R 6 Βαθµός περιοχής είναι το πλήθος των ακµών που συναντάµε όταν διατρέχουµε το σύνορό της, ξεκινώντας από κάποιον κόµβο και καταλήγοντας στον ίδιο. Οι περιοχές R 1, R 2,..., R 5 έχουν ϐαθµό 3. Η περιοχή R 6 έχει ϐαθµό 7. Τι ϐαθµό έχει η µοναδική περιοχή που ορίζει το ακόλουθο γράφηµα; Εχει ϐαθµό 6: διατρέχουµε όλο το σύνορο ξεκινώντας από έναν κόµβο και επιστρέφοντας σε αυτόν. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 20 / 23

Χρήσιµα Πορίσµατα Απόδειξη Πορίσµατος 1 κυρίως για την αναγνώριση µη επίπεδων γραφηµάτων: Αν G απλό, συνδεδεµένο, επίπεδο γράφηµα µε n 3 κόµβους: 1. Τότε έχει m 3n 6 ακµές. 2. Τότε έχει κόµβο ϐαθµού το πολύ 5. 3. Αν δεν έχει κύκλο µήκους 3, τότε έχει m 2n 4 ακµές. Αρα: Αν δεν ισχύουν τα συµπεράσµατα 1,2,3, αντιφάσκεται κάποια υπόθεση Εύκολα ϐεβαιωνόµαστε ότι ισχύουν όλες οι υποθέσεις,... Επειδή n 3 και G συνδεδεµένος, ϑα είναι ϐαθµός(r) 3 για κάθε περιοχή R. Κάθε ακµή συναντάται: είτε από µία ϕορά στο σύνορο 2 περιοχών, είτε 2 ϕορές στο σύνορο µίας περιοχής Αρα: 2m = R ϐαθµός(r) 3r = 2 3 m r. Από τον τύπο του Eulr έχουµε m n + 2 = r, εποµένως: m n + 2 2 m = m 3n 6. 3..., εκτός της «επιπεδότητας», που δε ϑα ισχύει, αν ισχύουν όλες οι άλλες. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 21 / 23 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 22 / 23 Εφαρµογή Πορίσµατος 1 Το γράφηµα K 5 δεν είναι επίπεδο. Αν ήταν, ϑα έπρεπε m 3n 6. Αλλά: m = 10 και n = 5, οπότε m > 3n 6. Αρα, κάθε γράφηµα που «περιέχει» το K 5 ως υπογράφηµα δεν είναι επίπεδο. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 23 / 23