Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη
Άρνηση Σύμβολο άρνησης: Σημασιολογικός κανόνας άρνησης: Μία ερμηνεία ικανοποιεί την πρόταση Α αν και μόνο αν καθιστά την Α ψευδή. Πίνακας αληθείας
Βασικές ισοδυναμίες με άρνηση De Morgan Α Α (απαλοιφή διπλής άρνησης) ( Α Β) Α Β (Νόμος De Morgan) ( Α Β) Α Β (Νόμος De Morgan) Α Β ( Α Β) (Α Β) (αποκλειστική διάζευξη)
Κανονικές μορφές - Συνένωση Δύο ελάχιστοι όροι Μ1, Μ2 συνενώνονται σε έναν ελάχιστο όρο Μ3, αν οι Μ1,Μ2 περιέχουν όλα τα γράμματα του Μ3 και ένα επιπλέον γράμμα το οποίο, στον ένα όρο είναι η άρνηση του επιπλέον γράμματος στον άλλο όρο. Κάθε γράμμα και η άρνηση του συνενώνονται στον όρο Τrue. HY-180 2015-2016
Κανονικές μορφές - Συνένωση Παράδειγμα συνένωσης Μ1: A B C D Μ2: A B C D Μετά από συνένωση έχουμε: Μ3: A B D (βλ. Ενότητα 3.10 από διαλέξεις μαθήματος) HY-180 2015-2016
Κανονικές μορφές - Συνένωση Παράδειγμα συνένωσης (A B C ) ( A B C ) ( A B C ) ( A B C ) (A B C ) ( A B ) ( A B C ) ( B C ) ( A B ) HY-180 2015-2016
Πίνακας αληθείας Για οποιαδήποτε πρόταση του Προτασιακού Λογισμού που χρησιμοποιεί και μπορούμε να κατασκευάσουμε έναν πίνακα αληθείας. Αντίστροφο: Αν μας δίνεται ένας πίνακας αληθείας, μπορούμε να κατασκευάσουμε μία πρόταση που αντιστοιχεί σε αυτόν. HY-180 2015-2016
Παράδειγμα Μας δίνεται ο πίνακας αληθείας Α Β Χ α α ψ α ψ ψ ψ α ψ ψ ψ α Γράψτε μία πρόταση για τη στήλη Χ του πίνακα: Α Β HY-180 2015-2016
Άσκηση Μας δίνεται ο πίνακας αληθείας Α Β C Χ α α α α α α ψ α α ψ α α α ψ ψ ψ ψ α α α ψ α ψ α ψ ψ α ψ ψ ψ ψ ψ Ζητούμενο: Γράψτε μία πρόταση για τη στήλη Χ του πίνακα αληθείας που σας δίνεται HY-180 2015-2016
Λύση άσκησης Μας δίνεται ο πίνακας αληθείας Α Β C Χ α α α α α α ψ α α ψ α α α ψ ψ ψ ψ α α α ψ α ψ α ψ ψ α ψ ψ ψ ψ ψ Δημιουργούμε μια πρόταση με τις τιμές των A, B, C που κάνουν τη Χ να είναι αληθής HY-180 2015-2016
Λύση άσκησης Η Χ είναι αληθής όταν: Α Β C Χ α α α α α α ψ α α ψ α α α ψ ψ ψ ψ α α α ψ α ψ α ψ ψ α ψ ψ ψ ψ ψ (Α Β C) (A B C) (A B C) ( A B C) ( A B C) HY-180 2015-2016
Λύση άσκησης Η Χ είναι αληθής όταν: (Α Β C) V (A B C) V (A B C) V ( A B C) V ( A B C) (Α Β) (A B C) ( Α Β) (από συνένωση) (από συνένωση) B (A B C) (Το Β προκύπτει από συνένωση (Α Β) με ( Α Β) ) HY-180 2013-2014
Ταυτολογία - Αντινομία Με την εισαγωγή του συνδετικού της άρνησης μπορούμε να ορίσουμε τις έννοιες της ταυτολογίας/αντινομίας Ταυτολογία: πρόταση η οποία ικανοποιείται από κάθε ερμηνεία ή αλλιώς είναι λογικά αληθής (Α Α) Αντινομία: πρόταση την οποία κάθε ερμηνεία καθιστά ψευδή ή αλλιώς είναι λογικά ψευδής (Α Α)
Παραδείγματα(1/3) Δείξτε ότι το S: A ( A B) ( A B) είναι ταυτολογία 1 ος τρόπος: Άρα έχουμε: A ( A B) ( A B) (επιμερισμός του πάνω στο ) A ( A (B B) (επιμερισμός του πάνω στο ) (A A ) ( A (B B )) Τ ( A Τ ) Τ Τ T
Παραδείγματα(2/3) Δείξτε ότι το S: A ( A B) ( A B) είναι ταυτολογία 2 ος τρόπος: Mε πίνακα αληθείας:
Παραδείγματα(3/3) Δείξτε ότι το S: A B ( Α Β) είναι αντινομία A B ( Α Β) (από τον νόμο De Morgan έχουμε) (A B) (Α Β) Άρα S είναι αντινομία
Νέοι κανόνες απορρόφησης Οι ταυτολογίες και οι αντινομίες μας επιτρέπουν να ορίσουμε νέους κανόνες απορρόφησης: Τ = ταυτολογία F = αντινομία Αν S οποιαδήποτε πρόταση, ισχύουν οι παρακάτω ισοδυναμίες S Τ S S F F S Τ Τ S F S
Λογική συνεπαγωγή/ισοδυναμία Λογική Συνεπαγωγή (Entailment): = A = B (Έγκυρη εξαγωγή συμπεράσματος του σχήματος Β από το σχήμα Α) Δεν είναι δυνατόν να ισχύει συγχρόνως ότι το Α είναι αληθές και το Β ψευδές. Λογική Ισοδυναμία (Equivalence): Ορισμός: Αν ισχύει ότι A = B και Β = Α τότε τα σχήματα Α και Β είναι λογικά ισοδύναμα. Α Β
Λογική συνεπαγωγή/ισοδυναμία Προσοχή! Οι εκφράσεις A = B και Α Β δεν είναι προτάσεις του Προτασιακού Λογισμού. Είναι προτάσεις για τον Προτασιακό Λογισμό. Αν θέλουμε να εκφράσουμε παρόμοιες συσχετίσεις συνεπαγωγής και ισοδυναμίας μεταξύ προτάσεων (ή συνόλου προτάσεων) του προτασιακού λογισμού και το αποτέλεσμα να είναι πρόταση του προτασιακού λογισμού χρησιμοποιούμε τα παρακάτω: Material Implication (Συνεπαγωγή) : Material Equivalence (Ισοδυναμία) :
Συνεπαγωγή Η πρόταση Α Β του Προτασιακού Λογισμού είναι το ανάλογο της λογικής συνεπαγωγής Α = Β. Η πρόταση αυτή μπορεί να εκφραστεί και με το συνδυασμό των συνδετικών και ως εξής: Α Β Α Β Η συνεπαγωγή έχει τον παρακάτω πίνακα αληθείας:
Ισοδυναμία Η πρόταση Α Β του Προτασιακού Λογισμού είναι το ανάλογο της Λογικής Ισοδυναμίας Α Β. Μπορεί να εκφραστεί και ως: (Α Β ) ( Α Β ) Είναι αληθής όταν τα Α και Β έχουν την ίδια τιμή αληθείας Α Β αν και μόνο αν = (Α Β ) ( Α Β ) H ισοδυναμία έχει τον παρακάτω πίνακα αληθείας:
Άσκηση 1 Εκφώνηση 1: Εξετάστε αν η παρακάτω εξαγωγή συμπεράσματος είναι έγκυρη: (Q R) P / (R Q) P
Λύση άσκησης 1
Λύση άσκησης 1 Παρατηρούμε ότι όταν η πρόταση (Q R) P είναι αληθής, τότε σε καμία περίπτωση η (R Q) P δεν είναι ψευδής. Οπότε η εξαγωγή συμπεράσματος είναι έγκυρη.
Άσκηση 2 Εκφώνηση: 2 Γράψτε μια πρόταση για τη στήλη Χ του πίνακα αληθείας και επαληθεύστε την απάντησή σας.
AYZH AZKHIH' E 3 Enlr$ pltlylol roy V tioa TA., TOAOfr A AYTOflAOCIA V ntn[r H TRvronorlA ga ANO?POqH'H Ananc) v ( -rn n f-ravtb) A frevlr)) LF Arto ppocprtih (Anenc)Y (-rrnf-1 avlc)\ I (Anenc) v (r* n t(anrl) 3 (nnrano) v (rnnrrarcj) f A* (6nc\ = rvonroroe rnoecax
Άσκηση 3 Εκφώνηση 3: Δείξτε την ισοδυναμία των ακόλουθων προτάσεων με χρήση γνωστών ισοδυναμιών του Προτασιακού Λογισμού και χωρίς τη χρήση πινάκων αληθείας. Α) (( ( P Q ) R ) ( R ( Q R ) ) ) R Β) ( R ( R P ))
AYIU ATVH'Hr 3. (((?valnn) Y (n+ (frovr.)l)+r, = AnA^oroH arn^rtr Ap^l{*{s (((Pvo)na) v (*o fova)))+p = ANrrrd,ArArrAru-; annnoreu nnperueerruf( rpvo)nr.) v ( trv(ove)\) * R. = (((pvntnn,) v (-levavr-)) t R = nnerneerrr.r*"r lr:v (((Pvq)nn) v (revayn))+ RTAyronor ra lfrprrnrno\ v (tvo\) -rg l-fr--, Aflo990fR1tl AnoPPoQt{1}.t T+ R. i trv ANrr katatra P- =Q tl{ -') z Z.
Άσκηση 4 Εκφώνηση 4: Δείξτε ότι η ακόλουθη πρόταση είναι ταυτολογία με χρήση γνωστών ισοδυναμιών του Προτασιακού Λογισμού και χωρίς τη χρήση πινάκων αληθείας. (R Q ) (R ( (R Q) P) )
.AYru *rrcartz 4 (Rno) * [ Rv ((nno)* P)) i firvt,r*r*'.'.^rr, * J,,,(lgg)v (Rv ((Rn r c- moac+rv levro v (Rt(fano)*p))r Frr.,o,ou rpp.uo:ur TAY TOf\OTIA T T v f tenor +rp
Κανονικές μορφές CNF DNF(1/3) Επέκταση των προηγούμενων ορισμών έτσι ώστε να συμπεριληφθεί το σύμβολο της άρνησης Γράμμα: μία πρότυπη μεταβλητή ή η άρνηση μίας πρότυπης μεταβλητής. πχ. Α, A, B, B Ελάχιστος/Μέγιστος όρος: γράμμα ή σύζευξη/διάζευξη γραμμάτων από τα οποία κανένα δεν είναι η άρνηση κάποιου άλλου ή ένα από τα σύμβολα F, T. πχ. Ελάχιστοι όροι: Α, A, Α B, F, T όχι όμως Α B B Μέγιστοι όροι: Α, A, Α B, F, T αλλά όχι Α B B
Κανονικές μορφές CNF DNF(2/3) Απορρόφηση: Ένας ελάχιστος/μέγιστος όρος M 1 απορροφά έναν ελάχιστο/μέγιστο όρο Μ 2 αν κάθε γράμμα του M 1 είναι στον Μ 2. Κάθε ελάχιστος όρος απορροφά το F και απορροφάται από το Τ. πχ. Ο κάθε ένας από τους παρακάτω όρους απορροφά όλους τους επόμενους: Τ, Α, A C, A B C, F. Συνένωση: Δύο ελάχιστοι/μέγιστοι όροι M 1, M 2 συνενώνονται σε έναν ελάχιστο/μέγιστο όρο M 3 αν οι M 1, M 2 περιέχουν όλα τα γράμματα του M 3 και ένα επιπλέον γράμμα το οποίο, στον ένα όρο είναι η άρνηση του επιπλέον γράμματος στον άλλο όρο. Κάθε γράμμα και η άρνησή του συνενώνονται στον όρο Τ. πχ. Οι όροι A B C D και A B C D συνενώνονται στον A B D
Κανονικές μορφές CNF DNF(3/2) Νέος Ορισμός DNF/ CNF: Μία πρόταση είναι σε DNF/ CNF αν είναι μία διάζευξη ελαχίστων όρων/ σύζευξη μεγίστων όρων αντίστοιχα, κανένας από τους οποίους δεν απορροφά ή δεν συνενώνεται με κανέναν άλλο. Προτάσεις σε DNF: (A B) (B C D) (A D), T, F Προτάσεις που δεν είναι σε DNF: (A B) (Α Β C) (B C D), A F, B T
Πλήρης αλγόριθμος μετατροπής σε CNF (1/2) Είσοδος: μια πρόταση του προτασιακού λογισμού με οποιαδήποτε λογικά συνδετικά (,,,, ) Έξοδος: μια πρόταση σε CNF, ισοδύναμη με την αρχική Βήμα 1: Αντικαθιστούμε τα συνδετικά,, χρησιμοποιώντας τις ισοδυναμίες: Α Β ( Α Β) και Α Β (Α Β) ( Α Β) Βήμα 2: Ελαχιστοποιούμε το πεδίο των αρνήσεων χρησιμοποιώντας τις ισοδυναμίες: (Α Β) Α Β (Α Β) Α Β Α Α
Πλήρης αλγόριθμος μετατροπής σε CNF (2/2) Βήμα 3: Χρησιμοποιούμε την επιμεριστικότητα της διάζευξης προς τη σύζευξη για να μετατρέψουμε συζεύξεις που βρίσκονται μέσα στο πεδίο μιας διάζευξης σε σύζευξη διαζεύξεων. Βήμα 4: Αφαιρούμε διπλά γράμματα από μέγιστους όρους, διπλούς μέγιστους όρους, αντικαθιστούμε ταυτολογίες με το T και εφαρμόζουμε απορρόφηση και συνένωση όπου είναι δυνατό. Κανόνες απορρόφησης σε ταυτολογίες και αντινομίες: S T S S F F S T T S F S
ΑΣΚΗΣΕΙΣ Μετατρέψτε τις ακόλουθες προτάσεις σε CNF. Δείξτε όλα τα βήµατα της µετατροπής. 1)!!!!! 2)!!!!! 1) Βήµα 1: Αντικαθιστούµε τις συνεπαγωγές και ισοδυναµίες, ξεκινώντας από τις πιο εσωτερικές:!!!!! "!!!!! "!!!!! "!!!!! "!!!!! Βήµα 2: Σπρώχνουµε τις πιο εξωτερικές αρνήσεις εσωτερικά:!!!!! "!!!!!!!!!!!!!!! " Απαλείφουµε τις διπλές αρνήσεις:!!!!! "!!!!! Βήµα 3: Χρησιµοποιούµε την επιµεριστικότητα της διάζευξης:!!!!!!!!!!! "!!!!! "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! " " " " " " " Βήµα 4: Αφαιρούµε τα διπλά γράµµατα:"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! " " " " Αφαιρούµε τους διπλούς µέγιστους όρους: " " "
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Αντικαθιστούµε ταυτολογίες µε το T:!!!!!!!!!!!!!!!!! " Τα T απορροφώνται από τους άλλους µέγιστους όρους:!!!!!!!!!!!! Το!!! απορροφάται από το!! οπότε η τελική πρόταση σε CNF είναι:!!!!! 2) Βήµα 1: Αντικαθιστούµε τη συνεπαγωγή:!!!!!!!!!! Βήµα 2: Σπρώχνουµε τις πιο εξωτερικές αρνήσεις εσωτερικά:!!!!!!!!!!!!!!! " Απαλείφουµε τις διπλές αρνήσεις:!!!!! Βήµα 3: Χρησιµοποιούµε την επιµεριστικότητα της διάζευξης:!!!!!!!!!!!!!!!! " " " " " Βήµα 4: Αντικαθιστούµε ταυτολογίες µε το T:!!!!!!!" " " " " Τα T απορροφώνται από τους άλλους µέγιστους όρους και καταλήγουµε στην τελική πρόταση σε CNF:!!!!!"