ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα Ιονίου Πανεπιστημίου» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
Εισαγωγή Θα μελετήσουμε τις αλγεβρικές πράξεις σε πίνακες (matrices). ς πίνακας μπορεί να θεωρηθεί κάθε ορθογώνια παράταξη στοιχείων, π. χ.
Εισαγωγή Με τη βοήθεια πινάκων θα δούμε σε παρακάτω κεφάλαια: Επίλυση γραμμικών εξισώσεων Αλλαγή βάσης Γραμμικοί μετασχηματισμοί Ενώ ταυτόχρονα στοιχεία από αυτά τα πεδία θα προσθέσουν γνώσεις για τους πίνακες Οι καταχωρίσεις στους πίνακες προέρχονται από οποιοδήποτε σύνολο μπορείτε να φανταστείτε. Στην πράξη θεωρούμε ένα τυχαίο σύνολο K.
Γενικά Ένας πίνακας περιγραφεί τα εξής στοιχεία: a11 a12... a1n a A mn = A=[ 21 a 22... a 2n............ a m1 a m2... a mn ] Γραμμές είναι τα ( α 11, α 12,...,α 1n ), (α 21, α 22,...,α 2n ), (α m1, α m2,...,α mn ) [ οριζόντιες λίστες αριθμών a11 Στήλες είναι οι n κατακόρυφες λίστες: a 21... a m1] [ a12 a, 22... a m2] [ a1n a, 2n... a mn] δλδ οι m
Γενικά Έναν τέτοιο πίνακα μπορούμε να τον γράψουμε ως A=[a ij ]. Ένας πίνακας με m γραμμές και n στήλες ονομάζεται πίνακας m καλείται μέγεθος του πίνακα. x n, αυτό το ζεύγος Δύο πίνακες είναι ίσοι, Α= Β, όταν έχουν το ίδιο μέγεθος και τα αντίστοιχα στοιχεία τους είναι ίσα. Δλδ η ισότητα δύο πινάκων m x n, αντιστοιχεί σε ένα σύστημα mn ισοτητων, μία για κάθε ζεύγος στοιχείων. Πίνακας γραμμή και πίνακας στήλη είναι έννοιες γνωστές από το προηγούμενο κεφάλαιο. Ένας πίνακας με όλα τα στοιχεία μηδενικά καλείται συμβολίζεται Ο. μηδενικός πίνακας και
Γενικά Παράδειγμα: Να βρείτε τα x, y, z, w ώστε οι δύο πίνακες να είναι ίσοι: [ x y 2z w x y z w ] = [ 3 7 1 5] Για τον ίδιο πίνακα να βρείτε τις τιμές των x, y, z, w ώστε να είναι ο μηδενικός.
Πράξεις Πινάκων Και για την πρόσθεση και τον πολ/ μο πινάκων έχετε δει τις αντίστοιχες πράξεις στα διανύσματα. Για να δείξουμε την γενικότητα θεωρούμε δύο =[ a11 A ij πίνακες Α=[a ] και B=[b ] με ίδιες διαστάσεις και θα δείξουμε την : ij ij a12... a1j a 21 a 22... a 2j............ a i1 a i2... a ij b11 b12... b1j b Bij=[ ], 21 b 22... b 2j............ b i1 b i2... b ij πρόσθεση Α+ Β ], a11 b11 a12 b12... a1j b1j a Aij Bij=C=[ 21 a 21 a 22 b 22... a 2j b 2j............ a i1 b i1 a i2 b i2... a ij b ij ]
ΠΙΝΑΚΕΣ m x n ΕΙΝΑΙ ΠΙΝΑΚΑΣ m x n!!!!! Άλγεβρα των Πινάκων Πράξεις Πινάκων πολλαπλασιασμό αριθμού ka ij =[ Ορίζουμε τον - Α ως (-1) Α, δλδ: Και ταυτόχρονα ορίζουμε την αφαίρεση Α- Β= Α+(-1) Β (k) ka11 ka12... ka1j ka 21 ka 22... ka 2j............ ka i1 ka i2... ka ij ] με πίνακα Α, ka a12... a1j 1A 21 a 22... a 2j =[ a11 ij............ a i1 a i2... a ij ] ΣΕ ΟΛΑ ΤΑ ΠΡΟΗΓΟΥΜΕΝΑ ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΩΝ ΠΡΑΞΕΩΝ ΓΙΑ
Πράξεις Πινάκων Παράδειγμα: Έστω δύο πίνακες Α, Β ως εξής να υπολογίσετε τα α) Α+ Β, β) 2 Α+2 Β, γ) Α- Β, A=[ 1 2 3 4 5 6], Β= [ 9 8 7 6 5 4], δ) 2Α-2 Β. Στους πίνακες, όπως και στα διανύσματα, ισχύουν οι παρακάτω ιδιότητες: u v w= u v w A B C= A B C u 0= u A 0= A u u = 0 A A =0 u v= v u A B=B A k u v =k u k v k A B =k A k B k k ' u=k u k ' u k k ' A=k A k ' A kk ' u=k k' u kk ' A=k k' A 1 u= u 1 A= A
Γενικά Το σύμβολο της άθροισης : k, τότε ορίζεται το εξής: Αν n k=1 f(k) μια αλγεβρική πράξη που εμπλέκει το f k = f 1 f 2... f n δλδ θέτουμε πρώτα k=1 στην f(k)->f(1), για k=2 στην f(k)->f(2) και το προσθέτουμε στο f(1) άρα f(1)+f(2), k=3 στην f(k)->f(3) και το προσθέτουμε στο f(1)+f(2) άρα f(1)+f(2)+f(3), k=n στην f(k)->f(n) και το προσθέτουμε στο f(1) άρα f(1)+f(2)+f(3)+...+f(n) Παραδείγματα: n k=1 5 i =0 x k =x 1 x 2... x n j =1 5 x j =x 1 x 2 x 3 x 4 x 5 a i x i =a 0 x 0 a 1 x 1 a 2 x 2 a 3 x 3 a 4 x 4 a 5 x 5
Πολλαπλασιασμός Πινάκων Θα δείξουμε τον πολ/ μο πινάκων ξεκινώντας από τον πολ/ μο πινακα γραμμής με πίνακα στήλη. Παραδείγματα: [1 2 3] [ AB= [ a 1 a 2... a n ] [ b 4 5 1 b 2... b n]= [ a1 b1 a2 b2... a n n b n ] = k=1 ]=[32]=32, [4 5 6 ] [1 2, 6]=[1 4 2 5 3 6 3]=? a k b k 5 [4 5 6 7 8 ] [4 6 7 8]=?
=[ a11 A mp Πολλαπλασιασμός Πινάκων Και τώρα στη γενική του μορφή για πίνακες Α=[a ], B=[b ] ΘΑ ΠΡΕΠΕΙ ΟΙ ik kj ΣΤΗΛΕΣ ΤΟΥ ΕΝΟΣ ΠΙΝΑΚΑ ΝΑ ΕΙΝΑΙ ΙΣΕΣ ΜΕ ΤΙΣ ΓΡΑΜΜΕΣ ΤΟΥ ΑΛΛΟΥ ΠΙΝΑΚΑ. Αν Α m x p και Β p xn τότε το γινόμενο τους θα είναι ένας πίνακας, έστω C, με διαστάσεις m x n. Το στοιχείο ij του C λαμβάνεται απο πολ/ μο της i- οστης γραμμής του Α με την j- ιοστή στήλη του Β, δλδ: a12... a1p b11... b1j... b1n............ b a i1 a i2... a ], B ip............ pn=[ ] 21... b 2j... b 1n,............... b p1... b pj... b pn a m1 a m2... a mp c ij =a i1 b 1j a i2 b 2j a ip b pj = k =1 c11... c1n......... Amp B mn=[ pn=c c i1. c ij. c i n p a ik b kj......... c m1... c mn]
Πολλαπλασιασμός Πινάκων Παραδείγματα: Να υπολογιστούν τα γινόμενα ΑΒ και BA τις περιπτωσεις: A=[ 1 2 3 6] B=[1 2 3 9] 4 5, 4 5 6, 7 8 A=[ 4 2] 5 [ 1, B= 1 1 2] 1 A=[4 5 6 3] 2 2, 1 2 3, 1 2 A=[ 4 5 6 1 2 3], B= [ 1 1 1 2 2 2], B=[1 1 1 2 2 2 3 3 3] για καθε μια απο
Πολλαπλασιασμός Πινάκων Στον πολ/ μο ισχύουν οι παρακάτω ιδιότητες: u v w= u w v w A B C=A C B C w u v = w u w v OXI C A B =C A C B k u v =k u v k A B = k A B=A k B O A=A O =O
Τέλος Ενότητας