ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

Σχετικά έγγραφα
ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)

Γεωδαιτική Αστρονομία

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια)

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις

Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα

Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης

Σφαιρικό σύστημα αναφοράς

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης

15/4/2013. Αυτό το περιβάλλον είναι. Ο χάρτης

Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους

ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Τεύχος B - Διδακτικών Σημειώσεων

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Π. ΣΑΒΒΑΪΔΗΣ, ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΩ Α.Π.Θ

Γενικά Μαθηματικά ΙΙ

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

4/11/2018 ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ. ΘΕΜΑ 1 ο

Βαρύτητα Βαρύτητα Κεφ. 12

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Προβολές Συστήματα Συντεταγμένων

Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης

Τηλεπισκόπηση - Φωτοερμηνεία

ηλιακού μας συστήματος και ο πέμπτος σε μέγεθος. Ηρακλή, καθώς και στην κίνηση του γαλαξία

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ

Μαθηματικά Προσανατολισμού Β Λυκείου

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

Τοπογραφικά Δίκτυα & Υπολογισμοί

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ

Γήινο πεδίο βαρύτητας Φυσική Γεωδαισία. Η Φυσική Γεωδαισία

1.2 Συντεταγμένες στο Επίπεδο

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

Φυσική Γεωδαισία. Γεωδαισία

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

10. Παραγώγιση διανυσµάτων

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΡΓΑΣΙΑ 4 ης ΕΝΟΤΗΤΑΣ : Εισαγωγή στο γήινο πεδίο βαρύτητας

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

Περιεχόµενα. Περιεχόµενα Ευρετήριο Γραφηµάτων Ευρετήριο Εικόνων Κεφάλαιο 1

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :

Μάθηµα 4 ο : ορυφορικές τροχιές

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

x P x P x P x P P + P + P + P

Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΕΞΑΜΗΝΟ ΑΣΚΗΣΗ 2

ΓΕΩΔΑΙΣΙΑ 6η παρουσίαση

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

Το βαρυτικό πεδίο της Γης.

Τηλεπισκόπηση - Φωτοερμηνεία

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

Πώς μια μάζα αντιλαμβάνεται ότι κάπου υπάρχει μια άλλη και αλληλεπιδρά με αυτή ; Η αλληλεπίδραση μεταξύ μαζών περιγράφεται με την έννοια του πεδίου.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Transcript:

ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου που επιλέγουν το ομώνυμο μάθημα. Ο σκοπός του είναι να χρησιμεύσει ως διδακτικό βοήθημα, χωρίς φυσικά να εξαντλεί το αντικείμενο. Είναι επίσης φανερό πως δεν μπορεί να αντικαταστήσει την συμμετοχή των φοιτητών στην εκπαιδευτική διαδικασία, που περιλαμβάνει επιπλέον θεωρητικά και υπολογιστικά θέματα, υπολογιστικές ασκήσεις γραφείου και πρακτικές ασκήσεις πεδίου (παρατηρήσεις). Το περιεχόμενο του τεύχους αποκρυσταλλώνει τα βασικά στοιχεία του μαθήματος, όπως αυτά έχουν διαμορφωθεί στις σημερινές συνθήκες της Γεωδαιτικής Επιστήμης και των σπουδών στο Ε.Μ.Π., φυσικά μέσα από το προσωπικό πρίσμα του συγγραφέα. Η παρούσα μορφή του προέρχεται από αναθεωρήσεις και συμπληρώσεις παλαιοτέρων εκδόσεων, στις οποίες συνέβαλαν οι συνάδελφοι και συνεργάτες, Τοπογράφοι Μηχανικοί Ε.Μ.Π: κ. Ευαγγελία Λάμπρου (Λέκτορας της Σχολής ΑΤΜ) κ. Γεώργιος Πανταζής (Λέκτορας της Σχολής ΑΤΜ) κ. Βασίλειος Μασσίνας (Υ. Δ. της Σχολής ΑΤΜ) κ. Φωτεινή Καλλιανού (Υ. Δ. της Σχολής ΑΤΜ) Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. Αθήνα, Μάρτιος 2008 Ρ. Κορακίτης Αστροφυσικός Καθηγητής Ε.Μ.Π.

ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1 1. Συστήματα αναφοράς στην ουράνια σφαίρα 3 2. Φαινόμενη περιστροφή της ουράνιας σφαίρας 15 3. Το τρίγωνο θέσης 21 4. Συστήματα Χρόνου 25 5. Διαταραχές των κινήσεων της Γης 37 6. Αναγωγές των συντεταγμένων 45 7. Προσδιορισμός αζιμουθίου 61 8. Προσδιορισμός πλάτους 69 9. Προσδιορισμός μήκους 73 10. Γεωδαιτικές εφαρμογές 77 Παράρτημα: Σφαιρική Τριγωνομετρία 81 Βιβλιογραφία 87

1 ΕΙΣΑΓΩΓΗ Η Γεωδαιτική Αστρονομία (Geodetic Astronomy) είναι ο κλάδος της Αστρονομίας Θέσης (Positional Astronomy) που ασχολείται με τον προσδιορισμό διευθύνσεων στον χώρο, από σημεία πάνω ή κοντά στην Φυσική Γήινη Επιφάνεια, χρησιμοποιώντας ουράνια σώματα (συνήθως άστρα) ως στόχους. Επομένως, το βασικό θεωρητικό υπόβαθρο προέρχεται από την Αστρονομία, ενώ η μεθοδολογία και πρακτική των παρατηρήσεων είναι γεωδαιτικής προέλευσης. Ο σκοπός της Γεωδαιτικής Αστρονομίας είναι ο προσδιορισμός των αστρονομικών συντεταγμένων ενός τόπου (με στόχο τον προσδιορισμό της απόκλισης της κατακορύφου) και ο αστρονομικός προσανατολισμός μιας διεύθυνσης (π.χ. πλευράς γεωδαιτικού δικτύου). Τα συστήματα αναφοράς της Γεωδαισίας είναι όλα εντοπισμένα στον χώρο και συνδέονται με την θέση και τις διαστάσεις της Γης. Η συνηθισμένη επιφάνεια αναφοράς είναι ένα ελλειψοειδές, με κέντρο που βρίσκεται, συνήθως, στο κέντρο μάζας της Γης και με καθορισμένα μεγέθη αξόνων, που προσδιορίζονται από τις πραγματικές διαστάσεις της Γης. Η θέση ενός σημείου προσδιορίζεται με τρεις συντεταγμένες, είτε ορθογώνιες (καρτεσιανές) (x, y, z), είτε ελλειπτικές (γεωδαιτικές) συντεταγμένες (λ, φ, h). Με άλλα λόγια, η θέση κάθε σημείου ορίζεται από ένα δέσμιο διάνυσμα, με συγκεκριμένη αρχή και μήκος, ή από την θέση ενός σημείου σε μια (ελλειψοειδή) επιφάνεια αναφοράς, που έχει συγκεκριμένο κέντρο και διαστάσεις. Σε αντιδιαστολή με τα παραπάνω, η Γεωδαιτική Αστρονομία ασχολείται αποκλειστικά με διευθύνσεις, δηλαδή ελεύθερα, μοναδιαία διανύσματα. Για την περιγραφή τέτοιων διανυσμάτων μπορούν να χρησιμοποιηθούν ορθογώνιες (καρτεσιανές) συντεταγμένες (X, Y, Z), που έχουν μόνο δύο βαθμούς ελευθερίας. Συνήθως χρησιμοποιούνται σφαιρικές συντεταγμένες (Λ, Φ) σε ένα σύστημα που προσανατολίζεται στον χώρο βάσει του γεωειδούς, βασίζεται επομένως στο Γήινο πεδίο βαρύτητας. Αυτή η δυνατότητα επιλογής τύπου συντεταγμένων βασίζεται στην ισοδυναμία δύο απειροσυνόλων: του συνόλου όλων των μοναδιαίων διανυσμάτων (που εκφράζουν όλες τις δυνατές διευθύνσεις ευθειών στον χώρο) με το σύνολο των σημείων μιας σφαιρικής επιφάνειας. Συνεπώς, η επιφάνεια αναφοράς της Γεωδαιτικής Αστρονομίας είναι μία μοναδιαία σφαίρα που μπορεί να βρίσκεται οπουδήποτε και να έχει οποιαδήποτε ακτίνα, την οποία δεχόμαστε ίση με την μονάδα. Αυτή η σφαίρα ονομάζεται παραδοσιακά ουράνια σφαίρα. Τα συστήματα αναφοράς, που ορίζονται στην ουράνια σφαίρα, προσανατολίζονται με βάση συγκεκριμένα χαρακτηριστικά της Γης και, ειδικότερα, των διαφόρων κινήσεών της. Με την βοήθεια των συστημάτων αυτών περιγράφεται η θέση σημείων (παρατηρητών) στην Γη, η θέση των ουρανίων σωμάτων και η διεύθυνση παρατήρησης προς αυτά. Σε περίπτωση που χρησιμοποιούνται σφαιρικές συντεταγμένες (όπως γίνεται συνήθως στο τεύχος αυτό), για την περιγραφή των σχέσεων μεταξύ των διαφόρων γεωμετρικών στοιχείων ή συντεταγμένων των συστημάτων αναφοράς χρησιμοποιείται η Σφαιρική Τριγωνομετρία. Αντίθετα, όταν χρησιμοποιούνται ορθογώνιες συντεταγμένες, καταλληλότερο μαθηματικό εργαλείο είναι η Γραμμική Άλγεβρα (διανύσματα, πίνακες κλπ).

2 Επειδή η διεύθυνση παρατήρησης (από την Γη) προς ένα ουράνιο σώμα μεταβάλλεται με τον χρόνο, η εξέταση και χρήση διαφόρων κλιμάκων μέτρησης χρόνου είναι σημαντικό στοιχείο της Γεωδαιτικής Αστρονομίας. Επίσης, στο τεύχος αυτό γίνεται αναφορά στις διάφορες μεταβολές των τιμών των συντεταγμένων που οφείλονται σε πραγματικές κινήσεις του παρατηρητή ή του παρατηρούμενου σώματος ή σε μεταβολή του προσανατολισμού του συστήματος αναφοράς. Με βάση τις δυνατότητες του υπάρχοντος εξοπλισμού μετρήσεων και την επιδιωκόμενη ακρίβεια των αποτελεσμάτων, υπάρχουν διάφορες μέθοδοι προσδιορισμού συντεταγμένων και προσανατολισμού, που θα εκτεθούν με συντομία στο τεύχος αυτό. Τέλος, γίνεται μια αναφορά στις βασικές γεωδαιτικές εφαρμογές που απαιτούν την γνώση των συμπερασμάτων της Γεωδαιτικής Αστρονομίας, δηλαδή του αστρονομικού προσανατολισμού μιας διεύθυνσης και της απόκλισης της κατακορύφου.