Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Σχετικά έγγραφα
07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

3. Κατανομές πιθανότητας

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Θεωρία Πιθανοτήτων & Στατιστική

, όπου x = 0,1,..., Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! !

Θεωρητικές Κατανομές Πιθανότητας

Τυχαία μεταβλητή (τ.μ.)

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

II. Τυχαίες Μεταβλητές

ιωνυµική Κατανοµή(Binomial)

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Πανεπιστήμιο Πελοποννήσου

Θεωρία Πιθανοτήτων & Στατιστική

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).

Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

Τυχαίες Μεταβλητές. Ορισμός

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

Βιομαθηματικά BIO-156

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Θέμα: ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 KELLER

P(200 X 232) = =

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

3. Κατανομές πιθανότητας

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

6. Βασικές Διακριτές Κατανομές

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή

Ασκήσεις στην διωνυμική κατανομή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Υπολογιστικά & Διακριτά Μαθηματικά

Τυχαίες Μεταβλητές (τ.µ.)

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ρ. Ευστρατία Μούρτου

Μέρος ΙΙ. Τυχαίες Μεταβλητές

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

Π.χ. πρωτεύουσες, Εκ περιτροπής από δευτερεύουσες σε τριτεύουσες

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

21/11/2016. Στατιστική Ι. 8 η Διάλεξη (Κεντρικό Οριακό Θεώρημα)

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

Στατιστική Συμπερασματολογία

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

P (X = x) = (0.001) x (0.999) 1000 x

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.

Στοχαστικές Στρατηγικές

p B p I = = = 5

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

HMY 795: Αναγνώριση Προτύπων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Transcript:

Στατιστική Επιχειρήσεων Ι Βασικές διακριτές κατανομές

2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα Το ένα ονομάζεται επιτυχία (1) και το άλλο αποτυχία (0)

3 Η κατανομή Bernoulli με παράμετρο p (1) Είναι η κατανομή της δίτιμης τ.μ., έστω Χ, που εκφράζει τον αριθμό των επιτυχιών σε μια δοκιμή Bernoulli Συμβολίζεται με b(p)

4 Η κατανομή Bernoulli με παράμετρο p (2) Ισχύουν τα εξής: f x = P X = x = p x 1 p 1 x = p x q x 1, x 0,1 μ = Ε Χ = p σ 2 = Var X = p 1 p = pq

5 Διωνυμική κατανομή με παραμέτρους n και p (1) Είναι η κατανομή της τ.μ., έστω Χ, που εκφράζει τον αριθμό των επιτυχιών σε n ανεξάρτητες δοκιμές Bernoulli με ίδια πιθανότητα επιτυχίας p Συμβολίζεται με B(n, p)

6 Διωνυμική κατανομή με παραμέτρους n και p (2) Ισχύουν τα εξής: f x = P X = x = n x px 1 p n x = n! x! n x! px 1 p n x, x 0,1,, n μ = Ε Χ = np σ 2 = Var X = np 1 p = npq

7 Διωνυμική κατανομή με παραμέτρους n και p (3) Ισχύουν τα εξής: Πιο πιθανή τιμή x 0 = n + 1 p, όταν το n + 1 p δεν είναι ακέραιος x 0 = n + 1 p και x 0 ƴ = n + 1 p 1 όταν το n + 1 p είναι ακέραιος (υπάρχουν 2 πιο πιθανές τιμές)

8 Παράδειγμα 1 ο Μια βιομηχανία κατασκευάζει μεταλλικά ελάσματα για να αντέχουν σε συγκεκριμένη καταπόνηση Σύμφωνα με τις προδιαγραφές παραγωγής κάθε τέτοιο έλασμα αντέχει στη συγκεκριμένη καταπόνηση με πιθανότητα 0.8 Επιλέγουμε τυχαία 9 τέτοια ελάσματα και το ένα μετά το άλλο τα υποβάλλουμε στη συγκεκριμένη καταπόνηση Ποια είναι η πιθανότητα να αντέξουν 1. Το πολύ 2 ελάσματα 2. Περισσότερα από 7 ελάσματα 3. Τουλάχιστον 2 ελάσματα 4. Λιγότερα από 6 και τουλάχιστον 4 ελάσματα

9 Κατανομή Poisson με παράμετρο λ (1) Συμβολίζεται με P(λ) και είναι γνωστή ως κατανομή των σπάνιων ενδεχομένων Χρησιμοποιείται για την μοντελοποίηση «διωνυμικών καταστάσεων» όπου ενδιαφέρει ο αριθμός εμφανίσεων σπάνιων ενδεχομένων σε μεγάλους πληθυσμούς (όταν δηλαδή σε κάθε επανάληψη, η πιθανότητα επιτυχίας p είναι πολύ μικρή και ο αριθμός των επαναλήψεων πολύ μεγάλος)

10 Κατανομή Poisson με παράμετρο λ (2) Έστω Χ τ.μ. με X P(λ) Ισχύουν τα εξής: λ λx f x = P X = x = e x! μ = Ε Χ = λ σ 2 = Var X = λ, x 0,1,, n

11 Κατανομή Poisson με παράμετρο λ (3) Ισχύουν τα εξής: Πιο πιθανή τιμή x 0 = λ, όταν το λ δεν είναι ακέραιος x 0 = λ και x 0 ƴ = λ 1 όταν το λ είναι ακέραιος (υπάρχουν δύο πιο πιθανές τιμές)

12 Χαρακτηριστικά παραδείγματα τ.μ. που ακολουθούν την κατανομή Poisson Ο αριθμός των βλαβών μιας μηχανής σε μια ημέρα, εβδομάδα, κλπ Ο αριθμός των ατόμων ενός πληθυσμού που ζουν πάνω από 100 έτη Ο αριθμός των παιδιών ενός πληθυσμού που θα γίνουν ψηλότερα από 1.95 μέτρα Ο αριθμός των ελαττωματικών προϊόντων που παράγονται από μια γραμμή παραγωγής σε ορισμένο χρονικό διάστημα Ο αριθμός των πελατών που φτάνουν σε ένα κέντρο εξυπηρέτησης (τράπεζα, κατάστημα, κλπ.) σε μια ώρα, ημέρα, εβδομάδα, κλπ Ο αριθμός των ελαττωματικών σημείων που υπάρχουν σε συγκεκριμένο μήκος καλωδίου κλπ.

13 Προσέγγιση της διωνυμικής κατανομής από την κατανομή Poisson Αν n + και p 0 έτσι ώστε np λ τότε n x px 1 p n x λx λ e, x = 0,1,2, x! Άρα: η προσέγγιση της διωνυμικής B(n, p) από την P(np) είναι ικανοποιητική αν n 10 και p 10, ώστε η μέση τιμή λ = np να n παίρνει μέτριες τιμές (μικρότερες του10)

14 Διαδικασία Poisson με ρυθμό λ Αν X t είναι ο αριθμός των εμφανίσεων ενός ενδεχομένου σε χρόνο t (ή σε μήκος t ή σε επιφάνεια t ή σε όγκο t) τότε κάτω από ορισμένες προϋποθέσεις η συνάρτηση πιθανότητας της X t δίνεται από τον τύπο: P X t = x = e λt x λt x!, x = 1,2, H Χ τ ακολουθεί κατανομή Poisson με μέση τιμή λt Το λ εκφράζει το μέσο αριθμό των εμφανίσεων του αντικειμένου στη μονάδα του χρόνου (ρυθμός εμφάνισης αντικειμένου)

15 Παράδειγμα 2 ο Στο help desk ενός μεγάλου internet provider φτάνουν αιτήματα πελατών με ρυθμό 3 αιτήματα ανά λεπτό Ποια είναι η πιθανότητα 1. σε ένα λεπτό να φτάσουν το πολύ 2 αιτήματα 2. σε μισό λεπτό να φτάσουν το πολύ 2 αιτήματα 3. σε 2 λεπτά να φτάσουν το πολύ 4 αιτήματα 4. σε 3 διαφορετικά χρονικά διαστήματα του ενός λεπτού να βρεθούν τουλάχιστον δύο τέτοια διαστήματα σε καθένα από τα οποία να έχουν φτάσει το πολύ 2 αιτήματα

16 Πολυωνυμική δοκιμή Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από k 2 αμοιβαία αποκλειόμενα δυνατά αποτελέσματα r i, i = 1, 2,, k

Πολυωνυμική κατανομή με παραμέτρους n, p 1, p 2,, p k Αν X i ο αριθμός εμφανίσεων του αποτελέσματος r i, i = 1, 2,, k σε n ανεξάρτητες επαναλήψεις μιας πολυωνυμικής δοκιμής, όπου η πιθανότητα p i εμφάνισης του αποτελέσματος r i παραμένει σε κάθε επανάληψη σταθερή για όλα τα i = 1, 2,, k, τότε P X 1 = n 1, X 2 = n 2,, X k = n k = 17 n! p n 1 n n 1! n 2! n k! 1 p 2 n 2 p k k E X i = np i, Var X i = np i 1 p i

18 Παράδειγμα 3 ο Σύμφωνα με ένα μοντέλο κληρονομικότητας, οι τρεις τύποι απογόνων Α, Β και Γ που προκύπτουν από μια ορισμένη διασταύρωση πειραματόζωων, βρίσκονται σε αναλογία 9:3:4, αντίστοιχα Αν στο πλαίσιο ενός πειράματος προέκυψαν από μια τέτοια διασταύρωση 64 απόγονοι, πόσοι αναμένεται να είναι τύπου Α, πόσοι τύπου Β και πόσοι τύπου Γ;