Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet.



Σχετικά έγγραφα
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

Θεωρία Γραφημάτων 6η Διάλεξη

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

Κρυπτογραφία και Πολυπλοκότητα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Οι 7 Γέφυρες του Königsberg

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4

Πρόβληµα 2 (15 µονάδες)

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

α) f(x(t), y(t)) = 0,

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

... a b c d. b d a c

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

Αριθμοθεωρητικοί Αλγόριθμοι

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Mathematics and its Applications, 5th

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Θεωρία Υπολογισµού Theory of Computation

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

Πρόταση. Αληθείς Προτάσεις

Εισαγωγή στην Τοπολογία

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1)

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

Αρχή Εγκλεισµού-Αποκλεισµού

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Στοιχεία Θεωρίας Γραφηµάτων (3)

Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

1 Οι πραγµατικοί αριθµοί

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Μαθηµατικά για Πληροφορική

βασικές έννοιες (τόμος Β)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

ΓΥΜΝΑΣΜΑΤΑ ΑΡΙΘΜΟΘΕΩΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Αναπαράσταση πρώτων αριθμών ως άθροισμα δυο τετραγώνων. p 1.

Μαθηματική Λογική και Απόδειξη

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστικά & Διακριτά Μαθηματικά

Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία

Transcript:

Λέσχη Ανάγνωσης Γενικού Λυκείου Σαντορίνης Σχολικό έτος 2011-2012 Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Γιάννης Παπόγλου

Το σμαραγδένιο στέμμα Σύµφωνα µε ένα παλιό µου ρητό, οτιδήποτε αποµένει, οσοδήποτε απίθανο, πρέπει να είναι η αλήθεια. Reductio ad absurdum

1 ο Πρόβληµα

Ένας απλός, αλλά αργός αλγόριθµος εύρεσης πρώτων αριθµών Κόσκινο του Ερατοσθένη Μέχρι τον Μάιο του 2009, ο µεγαλύτερος γνωστός πρώτος αριθµός είναι ο:

Διάγραµµα πιθανότητας εύρεσης πρώτων αριθµών 3/10 1/4 Πιθανότητα Διαστήµατα εύρεσης πρώτων 0-100 1/4 0-1000 1/6 0-10000 1/8 0-100000 1/10 0-1000000 1/12 1/5 3/20 1/10 1/20 0 100 1000 10000 100000 1000000 Μήπως είναι πεπερασµένοι;

Υπάρχουν άπειροι πρώτοι αριθµοί ΕΥΚΛΕΙΔΗΣ 325 π.χ. - 265 π.χ.

<<Θέλεις απόδειξη; Πάρε την απόδειξη!>>

ΑΠΟΔΕΙΞΗ Έστω ότι οι ΠΡΩΤΟΙ αριθµοί είναι πεπερασµένοι, τότε θεωρούµε p τον µεγαλύτερο πρώτο. 2,3,5,7,11,,p

ΑΠΟΔΕΙΞΗ

Το Ν> p και αφού ο p ο µεγαλύτερος πρώτος. Ο Ν ΔΕΝ µπορεί να είναι πρώτος Άρα θα µπορεί να γραφεί ως γινόµενο πρώτων. Όµως δεν διαιρείτε διότι κάθε φορά η διαίρεση δίνει υπόλοιπο 1.

Α Τ Ο Π Ο

2 ο Πρόβληµα

Το Κένιγκσμπεργκ την εποχή του Leonard Euler Το Κένιγκσμπεργκ (Καλίνινγκραντ) σήμερα

Μπορεί κανείς να περπατήσει στο Κένιγκσµπεργκ µε τέτοιον τρόπο, ώστε να διασχίσει και τις επτά γέφυρες µία και µόνο µια φορά;

Απόδειξη Υποθέτουµε ότι είναι δυνατόν να διασχίσουµε και τις επτά γέφυρες µόνο µια φορά. Leonard Euler Ξεκινάµε από µια από τις περιοχές Α, Β, Γ, Δ και καταλήγουµε σε µια από αυτές (πιθανότατα και στην ίδια από την οποία ξεκινήσαµε), έχοντας διασχίσει κάθε µια από τις επτά γέφυρες ακριβώς µια φορά.

Απόδειξη Υποθέτουµε ότι είναι δυνατόν να διασχίσουµε και τις επτά γέφυρες µόνο µια φορά. Leonard Euler Έπεται αµέσως πως θα υπάρχουν τουλάχιστον δυο περιοχές οι οποίες δεν θα είναι ούτε η αφετηρία ούτε ο τερµατισµός του περιπάτου.

Απόδειξη Υποθέτουµε ότι είναι δυνατόν να διασχίσουµε και τις επτά γέφυρες µόνο µια φορά. Leonard Euler Εξετάστε µια από τις δύο περιοχές: όσες φορές την επισκεπτόµαστε τόσες φορές την αφήνουµε πίσω µας και,

Απόδειξη Υποθέτουµε ότι είναι δυνατόν να διασχίσουµε και τις επτά γέφυρες µόνο µια φορά. Leonard Euler καθώς διασχίζουµε κάθε γέφυρα ακριβώς µια φορά, προκύπτει ότι ο αριθµός γεφυρών που καταλήγουν στην εν λόγω περιοχή θα πρέπει να είναι ζυγός.

Απόδειξη Υποθέτουµε ότι είναι δυνατόν να διασχίσουµε και τις επτά γέφυρες µόνο µια φορά. Leonard Euler Όµως, όπως βλέπουµε και στο σχήµα, καµία περιοχή του Κενιγκσµπεργκ δεν έχει αυτή την ιδιότητα

Απόδειξη Υποθέτουµε ότι είναι δυνατόν να διασχίσουµε και τις επτά γέφυρες µόνο µια φορά. Leonard Euler Το νησί Α έχει πέντε γέφυρες ενώ οι περιοχές Β, Γ και Δ έχουν από τρεις γέφυρες η κάθε µία.

Από το σχολικό παιχνίδι στην παρατήρηση και στην δηµιουργία κανόνα.

Το γράφημα μπορεί να γραφεί «μονοκονδυλιά» αν και μόνο αν έχει κανέναν ή δύο κόμβους περιττού βαθμού. Leonard Euler 1707-1783 Σωστές απαντήσεις σύµφωνα µε τον κανόνα

Το γράφημα μπορεί να γραφεί «μονοκονδυλιά» αν και μόνο αν έχει κανέναν ή δύο κόμβους περιττού βαθμού. Leonard Euler 1707-1783 Και το πρόβλημα των Γεφυρών του Κένιγκσμπεργκ Γ A Δ Β

Σχεδιάγραµµα Δικτύων Διάγραµµα δικτύου internet Διάγραµµα δικτύου του OTE

3 ο Πρόβληµα

Το τελευταίο θεώρηµα του Fermat Είναι αδύνατο να βρεθούν ακέραιοι, x, y, z, τέτοιοι ώστε Για n ακέραιο, µεγαλύτερο του 2. Pierre de Fermat 1601-1665

Andrew Wiles Καθηγητής στο Princeton Πρώτη είδηση στους GUARDIAN τον Ιούνιο του 1993

Εποµένως η ιδέα της απόδειξης µε την εις άτοπο απαγωγή είναι ζωντανή και ακµαιότατη ακόµα και σήµερα, περίπου δυο χιλιάδες χρόνια µετά τον Ευκλείδη, που τόσο αποτελεσµατικά τη χρησιµοποίησε στους πρώτους αριθµούς.

1.089 ένα µαγικό ταξίδι στον κόσµο των µαθηµατικών David Acheson Εκδ: Οκτώ. Σηµειώσεις για το βιβλίο Πυθαγόρεια εγκλήµατα της ΠΑΤΣΙΑ ΜΑΡΙΑ Λέσχη βιβλίου Νάουσας. Η εικόνα του Σέρλοκ Χόλµς είναι από το κόµικ «Το σκυλί των Μπάσκερβιλ>> Εκδ: Μεταίχµιο.