Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Σχετικά έγγραφα
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Γραµµικη Αλγεβρα ΙΙ. Θεωρητικα Θεµατα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μικροβιολογία & Υγιεινή Τροφίμων

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Κβαντική Επεξεργασία Πληροφορίας

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Ιστορία της μετάφρασης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

Εκκλησιαστικό Δίκαιο

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Εκκλησιαστικό Δίκαιο

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

Εφαρμοσμένη Στατιστική

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στους Αλγορίθμους

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά και Φυσική με Υπολογιστές

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Σχεδιασμός & Αξιολόγηση Προγραμμάτων Εκπαίδευσης Ενηλίκων

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Εισαγωγή στους Αλγορίθμους

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Διοικητική Λογιστική

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

Ιστορία της μετάφρασης

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Μοντέρνα Θεωρία Ελέγχου

Ηλεκτρονικοί Υπολογιστές I

Κβαντική Επεξεργασία Πληροφορίας

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Ηλεκτρισμός & Μαγνητισμός

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας

Transcript:

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Χαρακτηριστικό Πολυώνυµο Γινοµένου Πινάκων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών

4 Μέρος 1. Η οµή Ενός Ενδοµορφισµού 1. Χαρακτηριστικό Πολυώνυµο Γινοµένου Πινάκων 1.1. Ιδιοτιµές Σύνθεσης Γραµµικών Απεικονίσεων και Γινοµένου Πινάκων. Εστω E ένας K- διανυσµατικός χώρος πεπερασµένης διάστασης υπεράνω ενός σώµατος K και f, g : E E δύο γραµµικές απεικονίσεις. Θεωρούµε τις γραµµικές απεικονίσεις f g, g f : E E Πρόταση 1.1. Οι γραµµικές απεικονίσεις f g και g f έχουν τις ίδιες ιδιοτιµές. Απόδειξη. 1. είχνουµε ότι κάθε ιδιοτιµή της f g είναι και ιδιοτιµή της g f. Εστω λ µια ιδιοτιµή της f g µε αντίστοιχο ιδιοδιάνυµσα e, δηλαδή : (f g)( e) = λ e, e 0 (α ) Αν λ = 0, τότε σύµφωνα µε όσα γνωρίζουµε από την ϑεωρία, η γραµµική απεικόνιση f g δεν είναι ισοµορφισµός. Τότε όµως και η γραµµική απεικόνιση g f δεν είναι ισοµορφισµός. Πραγµατικά : αν η g f είναι ισοµορφισµός, τότε η f ϑα είναι µονοµορφισµός διότι αν f( x) = 0, τότε g(f( x)) = 0 = x = 0 διότι από την υπόθεση η g f είναι ισοµορφισµός. Γνωρίζουµε όµως ότι ένας µονοµορφισµός f : E E είναι πάντα ισοµορφισµός. Άρα η f είναι ισοµορφισµός και παρόµοια δείχνουµε η g είναι ισοµορφισµός. Επειδή η σύνθεση ισοµορφσιµών είναι ισοµορφισµός έπεται ότι και η f g είναι ισοµορφισµός το οποίο είναι άτοπο. Καταλήγουµε ότι η γραµµική απεικόνιση g f δεν είναι ισοµορφισµός. Αυτό είναι ισοδύναµο µε το ότι η γραµµική απεικόνιση g f έχει το λ = 0 ως ιδιοτιµή. Εποµένως ϑα έχουµε ότι : η γραµµική απεικόνιση f g έχει το λ = 0 ως ιδιοτιµή = η γραµµική απεικόνιση g f έχει το λ = 0 ως ιδιοτιµή. (ϐ ) Υποθέτουµε ότι λ 0. Θεωρούµε το διάνυσµα ε := g( e). Τότε ε 0 διότι διαφορετικά αν ε = g( e) = 0, τότε f(g( e)) = 0. Επειδή (f g)( e) = λ e ϑα έχουµε λ e = 0. Οµως e 0 και εποµένως λ = 0 το οποίο είναι άτοπο. Άρα ϑα έχουµε ε = g( e) 0. Τότε f( ε) = f(g( e)) = (f g)( e) = λ e 0. Επιπρόσθετα : (g f)( ε) = g(f( ε) = g(λ e) = λg( e) = λ ε, ε 0 Η παραπάνω σχέση δείχνει ότι το λ είναι ιδιοτιµή της g f µε αντίστοιχο ιδιοδιάνυσµα ε. 2. Παρόµοια δείχνουµε ότι κάθε ιδιοτιµή της g f είναι και ιδιοτιµή της f g. Πόρισµα 1.2. Αν A, B M n n (K), τότε οι πίνακες AB και BA έχουν τις ίδιες ιδιοτιµές. Απόδειξη. Θεωρούµε τις γραµµικές απεικονίσεις f A : K n K n, f B : K n K n, f A (X) = AX f B (X) = BX Τότε f AB (X) = (AB)X = A(BX) = Af B (X) = f A (f B (X)) = (f A f B )(X), X K n. Αυτό σηµαίνει ότι f AB = f A f B. Παρόµοια f BA = f B f A. Από την Πρόταση 1.1, έπεται ότι οι γραµµικές απεικονίσεις f AB και f BA έχουν τις ίδιες ιδιοτιµές. Αυτό όµως είναι ισοδύναµο µε το ότι οι πίνακες AB και BA έχουν τις ίδιες ιδιοτιµές.

5 Παρατήρηση 1.3. Από την Πόρισµα 1.2, έπεται αν A, B M n n (K), τότε οι πίνακες AB και BA έχουν τις ίδιες ιδιοτιµές. Αυτό δεν σηµαίνει ότι οι πίνακες είναι όµοιοι. Για παράδειγµα οι πίνακες 1 0 0 0 A =, B = 1 0 1 1 έχουν το ίδιο χαρακτηριστικό πολυώνυµο και άρα τις ίδιες ιδιοτιµές. Οµως A B = O B A και άρα οι πίνακες A B και B A δεν µπορεί να είναι όµοιοι. 1.2. Χαρακτηριστικό Πολυώνυµο Γινοµένου Πινάκων. Ισχύει κάτι ισχυρότερο από το συµπέρασµα της Πρότασης 1.1, ή ισοδύναµα του Πορίσµατος 1.2: Θεώρηµα 1.4. Αν A, B M n n (K). Τότε οι πίνακες AB και BA έχουν το ίδιο χαρακτηρισικό πολυώνυ- µο : P AB (t) = P BA (t) Απόδειξη. Πρώτη Περίπτωση: Ενας εκ των πινάκων A, B είναι αντστρέψιµος. Εστω ότι ο A είναι αντιστρέψιµος. Τότε : BA = A 1 ABA = A 1 (AB)A και εποµένως οι πίνακες AB και BA είναι όµοιοι. Επειδή όµοιοι πίνακες έχουν το ίδιο χαρακτηρσιτικό πολυώνυµο, έπεται ότι : P AB (t) = P BA (t). Παρόµοια αν ο B είναι αντιστρέψιµος, τότε AB = B 1 BAB = B 1 (BA)B, δηλαδή οι πίνακες AB και BA είναι όµοιοι και άρα P AB (t) = P BA (t). εύτερη Περίπτωση: Υποθέτουµε ότι ο A δεν είναι αντιστρέψιµος. Τότε η ϐαθµίδα του είναι r(a) := r < n. Από την Γραµµική Αλγεβρα Ι γνωρίζουµε ότι ο A είναι ισοδύναµος µε τον πίνακα Ir O Ĩ r := r n r O n r r O n r n r ηλαδή υπάρχουν αντιστρέψιµοι πίνακες Q 1, P 1 M n n (K) έτσι ώστε : Θέτοντας Q = Q 1 1 και P := P 1 1 ϑα έχουµε τότε : Q 1 AP 1 = Ĩr A = QĨrP (1.1) Θεωρούµε τον πίνακα C := P BQ τον οποίο τον χωρίζουµε σε υποπίνακες : C = P BQ = όπου και τότε Εποµένως : C 11 M r r (K), C M r n r (K), C 21 M n r r (K), C 22 M n r n r (K) AB = AP 1 Εύκολα ϐλέπουµε ότι : και εποµένως ϑα έχουµε : B = P 1 CQ 1 = P 1 Q 1 = QĨrP P 1 Q C 21 C 1 22 Q 1 Ĩ r = O r r O n r n r AB = Q O r r O n r n r Q 1 = QĨr Q 1

6 ηλαδή ο πίνακας AB είναι όµοιος µε τον πίνακα O r r O n r n r Επίσης : BA = P 1 CQ 1 A = P 1 Εύκολα ϐλέπουµε ότι : C11 O Ĩ C 21 C r = r n r 22 C 21 O n r n r Άρα ϑα έχουµε BA = P 1 C11 O r n r P C 21 O n r n r ηλαδή ο πίνακας BA είναι όµοιος µε τον πίνακα C11 O r n r C 21 O n r n r Q 1 QĨrP = P 1 Ĩ C 21 C r P 22 Επειδή όµοιοι πίνακες έχουν το ίδιο χαρακτηριστικό πολυώνυµο ϑα έχουµε P AB (t) = P M (t), όπου M := O r r O n r n r C11 O P BA (t) = P N (t), όπου N := r n r C 21 O n r n r Οµως : P M (t) = C 11 ti r C O r r O n r n r ti n r n r = ( 1)n r P C11 (t) P N (t) = C 11 ti r O r n r C 21 O n r n r ti n r n r = ( 1)n r P C11 (t) Άρα P M (t) = P N (t) και εποµένως P AB (t) = P BA (t) Θεώρηµα 1.5. Εστω E ένας K-διανυσµατικός χώρος πεπερασµένης διάστασης, και έστω f, g : E E δύο γραµµικές απεικονίσεις. Τότε οι f g και g f έχουν το ίδιο χαρακτηριστικό πολυώνυµο : P f g (t) = P g f (t) Απόδειξη. Εστω B µια ϐάση του E και A = MB B(f) και B = M B B (g). Τότε από το Θεώρηµα 1.4 έχουµε : P AB (t) = P BA (t). Επειδή το χαρακτηριστικό πολυώνυµο µιας γραµµικής απεικόνισης συµπίπτει µε το χαρακτηριστικό πολυώνυµο του πίνακά της σε τυχούσα ϐάση, έπεται ότι : P f (t) = P A (t) και P g (t) = P B (t) Επειδή ο πίνακας της f g στην ϐάση B είναι ο AB και ο πίνακας της g f στην ϐάση B είναι ο BA, ϑα έχουµε : P f g (t) = P AB (t) = P BA (t) = P g f (t)

Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης «Γραμμική Άλγεβρα ΙΙ». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?id=49. Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/.