Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β

Σχετικά έγγραφα
Λυµένες Ασκήσεις στο Μάθηµα Στατιστικής στο Τµήµα Πολιτικών Μηχανικών

Περιγραφική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων. της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2

Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

Στατιστική για Χημικούς Μηχανικούς Ασκήσεις. Κουγιουμτζής Δημήτριος Τμήμα Χημικών Μηχανικών

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Επιχειρήσεων ΙΙ

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

Στατιστική Επιχειρήσεων Ι

Στατιστική Συμπερασματολογία

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

5. Έλεγχοι Υποθέσεων

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Εφαρμοσμένη Στατιστική

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 9. Έλεγχοι υποθέσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ.

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

Θεωρία Πιθανοτήτων & Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Α

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Εφαρμοσμένη Στατιστική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

Στατιστική. 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Μαθηματικά Και Στατιστική Στη Βιολογία

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

Οικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ

Οικονομετρία. Απλή Παλινδρόμηση. Πληθυσμός και δείγμα. H μέθοδος Ελαχίστων Τετραγώνων. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

9. Παλινδρόμηση και Συσχέτιση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Εφαρμοσμένη Στατιστική

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Αυτοματοποιημένη χαρτογραφία

Χ. Εμμανουηλίδης, 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Στατιστική για Χημικούς Μηχανικούς Συσχέτιση και Γραμμική Παλινδρόμηση. Κουγιουμτζής Δημήτριος Τμήμα Χημικών Μηχανικών

Στατιστική για Πολιτικούς Μηχανικούς

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Επιχειρήσεων ΙΙ

Είδη Μεταβλητών. κλίµακα µέτρησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική για Χημικούς Μηχανικούς Έλεγχος στατιστικών υποθέσεων. Κουγιουμτζής Δημήτριος Τμήμα Χημικών Μηχανικών

Γ. Πειραματισμός Βιομετρία

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Στατιστική Επιχειρήσεων Ι

Διάστημα εμπιστοσύνης της μέσης τιμής

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Εφαρμοσμένη Στατιστική

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εφαρμοσμένη Στατιστική

Εισόδημα Κατανάλωση

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

Transcript:

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Κουγιουμτζής Δημήτρης Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Θεσσαλονίκη, Μάρτιος 4

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Common. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Μέρος B Στατιστική Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] (α) Αν δύο τυχαίες µεταβλητές X και X έχουν κοινή διασπορά είναι οι αµερόληπτες δειγµατικές διασπορές των X και δείγµατα µεγέθους n και n, δείξτε ότι η εκτιµήτρια σ είναι επίσης αµερόληπτη. σ, και, X, αντίστοιχα, από ( n ) + ( n ) = n+ n (β) ύο εργοστάσια Α και Β παραγωγής χάλυβα θέλουν να εκτιµήσουν την περιεκτικότητα του χάλυβα σε ραδιενέργεια και γι αυτό έκαναν τις παρακάτω µετρήσεις ραδιενέργειας (η ραδιενέργεια µετριέται σε Bq/g) σε τυχαία δοκίµια χάλυβα: οκίµια 3 4 5 6 7 8 9 3 4 5 Α.37..54.59.6.86.86.49.6.55 (Bq/g) B.4.5..95.6.33.6.3.7.5.39..5.79.9 (Bq/g) Θεωρούµε ότι η περιεκτικότητα του χάλυβα σε ραδιενέργεια ακολουθεί κανονική κατανοµή και η διασπορά της ραδιενέργειας στο χάλυβα είναι ίδια για τα δύο εργοστάσια ( σ = σ = ) σ () Εκτιµήστε τη µέση ραδιενέργεια στο χάλυβα για το εργοστάσιο Α και Β (σηµειακή εκτίµηση και 95% διάστηµα εµπιστοσύνης). () Το µέσο ανώτατο επιτρεπτό όριο µέσης ραδιενέργειας στο χάλυβα είναι.5bq/g. Με βάση τα παραπάνω δείγµατα και µε εµπιστοσύνη σε επίπεδο 95% θα γινόταν αποδεκτός στην αγορά ο χάλυβας από το εργοστάσιο Α? Από το εργοστάσιο Β? () Ελέγξτε σε επίπεδο εµπιστοσύνης 95% αν η µέση ραδιενέργεια στο χάλυβα των δύο εργοστασίων είναι ίδια. [Για την απάντηση σας στα ερωτήµατα () και () µπορείτε να χρησιµοποιήσετε διάστηµα εµπιστοσύνης ή στατιστικό έλεγχο] Λύση (α) Για να είναι η εκτιµήτρια Έχουµε της κοινής διασποράς σ θα πρέπει της E( ) = σ. E( ) ( n ) E + ( n ) ( n )E( ) + ( n )E( ) ( n ) σ + ( n ) σ ( n ) σ + ( n ) σ = = σ. n + n = = = n+ n n+ n n+ n (β) Η ραδιενέργεια του χάλυβα στα δύο εργοστάσια είναι οι δύο τ.µ. X και X που ακολουθούν κανονική κατανοµή και έχουν κοινή αλλά άγνωστη διασπορά ( σ = σ = ). Έχουµε n =, n = 5. σ 6

() Υπολογίζουµε τις δειγµατικές µέσες τιµές, διασπορές και τυπικές αποκλίσεις για τα n n δύο δείγµατα. (τυπολόγιο: x = x, = n = x nx ) n = x =.5, x =.37, =.7377, =.7 =.6979, =.64. Οι δύο δειγµατικές µέσες τιµές x =.5 και x =.37αποτελούν τις σηµειακές εκτιµήσεις της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια. Το 95% διάστηµα εµπιστοσύνης (δ.ε.) της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια δίνεται από τον τύπο για µικρό δείγµα, και τ.µ. µε άγνωστη διασπορά που ακολουθεί κανονική κατανοµή, κάνοντας χρήση της κρίσιµης τιµής t α /, n της κατανοµής tudent, δηλαδή είναι x ± t a/, n (τυπολόγιο). n Για το πρώτο εργοστάσιο, επίπεδο σηµαντικότητας α =.5, έχουµε από τον στατιστικό πίνακα για την κατανοµή tudent t.975,9 =.6 και το 95% δ.ε. είναι.7.5 ±.6.5 ±.94 [.38,.696]. Αντίστοιχα για το δεύτερο εργοστάσιο έχουµε την κρίσιµη τιµή t.975,4 =.4 και το 95% δ.ε. είναι.64.37±.4 5.37±.46 [.5,.57]. Η µέση ραδιενέργεια του χάλυβα είναι πολύ πιθανό (µε εµπιστοσύνη σε επίπεδο 95%) να βρίσκεται µεταξύ.38 Bq/g και.696 Bq/g για το εργοστάσιο Α και µεταξύ.5 Bq/g και.57 Bq/g για το εργοστάσιο Β. () Χρησιµοποιώντας διάστηµα εµπιστοσύνης.: Με βάση τα παραπάνω αποτελέσµατα, το µέσο ανώτατο επιτρεπτό όριο µέσης ραδιενέργειας στο χάλυβα είναι.5 Bq/g περιέχεται στο 95% δ.ε. της µέσης ραδιενέργειας και για τα δύο εργοστάσια, που σηµαίνει ότι η µέση ραδιενέργεια του χάλυβα µπορεί να ξεπεράσει το µέσο επιτρεπτό όριο. Άρα ο χάλυβας και από τα δύο εργοστάσια δε θα γίνει αποδεκτός. Χρησιµοποιώντας έλεγχο υπόθεσης.: Για να απαντήσουµε στο ερώτηµα, µπορούµε εναλλακτικά να κάνουµε έλεγχο υπόθεσης για το αν η µέση ραδιενέργεια µπορεί να πάρει την τιµή µ =.5. Η : µ = µ Η : µ µ [δίπλευρος έλεγχος] Για µικρό δείγµα και τ.µ. µε άγνωστη διασπορά που ακολουθεί κανονική κατανοµή, η x µ στατιστική για τον έλεγχο αυτό είναι t = ~t n (δεν υπάρχει στο τυπολόγιο, n προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο). Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =.5 σχηµατίζεται από την κρίσιµη τιµή t α /, n R= t t > t α /, n. της κατανοµής tudent : { } Για το εργοστάσιο Α είναι R { t t.6} = >. Η δειγµατική στατιστική είναι 7

.5.5 t = =.3. Ισχύει t R και δεν απορρίπτεται η Η..7 / R = t t >.4. Η δειγµατική στατιστική είναι Για το εργοστάσιο Α είναι { }.37.5 t = =.4. Ισχύει και πάλι t R και δεν απορρίπτεται η Η. Άρα και.64 / 5 για τα δύο εργοστάσια η µέση ραδιενέργεια του χάλυβα µπορεί να είναι.5 Bq/g, δηλαδή να ξεπεράσει το µέσο επιτρεπτό όριο και ο χάλυβας και από τα δύο εργοστάσια δε θα γίνει αποδεκτός. Θα µπορούσαµε να κάνουµε µονόπλευρο έλεγχο, δηλαδή να εξετάσουµε για την εναλλακτική υπόθεση Η : µ < µ, όποτε και θα άλλαζε η απορριπτική περιοχή, δηλαδή θα ήταν R { t t t α, n } = < (θα εξετάζαµε µόνο αν η δειγµατική στατιστική t µπορεί να βρίσκεται στην αριστερή ουρά της κατανοµής tudent). Τα συµπεράσµατα θα ήταν τα ίδια αφού οι δειγµατικές στατιστικές και για τα δύο δείγµατα δεν είναι κοντά στην αριστερή ουρά της κατανοµής tudent. () Υπολογίζουµε πρώτα τη διαφορά των δειγµατικών µέσων τιµών x x =.3 και την εκτίµηση της κοινής διασποράς ( n ) + ( n ) 9.7377 + 4.6979 = = =.735. 3 n+ n (δεν υπάρχει στο τυπολόγιο, προκύπτει ως σταθµισµένος µέσος των δύο δειγµατικών διασπορών σταθµίζοντας µε τους βαθµούς ελευθερίας κάθε δείγµατος (µέγεθος δείγµατος - ) Χρησιµοποιώντας διάστηµα εµπιστοσύνης.: Χρησιµοποιούµε το 95% διάστηµα εµπιστοσύνης (δ.ε.) για τη διαφορά της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια µ µ. Εδώ έχουµε ότι τα δύο δείγµατα είναι µικρά και οι τ.µ. ακολουθούν κανονική κατανοµή αλλά µε άγνωστη και κοινή διασπορά. Γι αυτό κάνουµε χρήση του τύπου που βασίζεται στην κατανοµή tudent και η κρίσιµη τιµή είναι t.975,3 =.7. Το 95% δ.ε. είναι x x ± t a/, n + n + (τυπολόγιο) n n ( ) και έχουµε.3±.6.67 + 5.3±.6 [-.94,.357]. Παρατηρούµε ότι το δ.ε. περιέχει το, έστω και οριακά, δηλαδή η διαφορά µ µ µπορεί να είναι και, άρα οι δύο µέσες ραδιενέργειες σε χάλυβα του εργοστασίου Α και Β δε φαίνεται να διαφέρουν (σε επίπεδο εµπιστοσύνης 95%). Χρησιµοποιώντας έλεγχο υπόθεσης.: Ελέγχουµε την υπόθεσης η µέση ραδιενέργεια να είναι ίδια στους χάλυβες των δύο εργοστασίων. Η : µ = µ ή µ µ = Η : µ µ [δίπλευρος έλεγχος] Η στατιστική για τον έλεγχο αυτόν ακολουθεί κατανοµή tudent και είναι 8

( x x ) ( µ µ ) ( x x ) t = + + n n n n ~ t n+ n (δεν υπάρχει στο τυπολόγιο, προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο) Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =.5 σχηµατίζεται από την κρίσιµη τιµή.975,3.7 R = t t >.7. Η t = της κατανοµής tudent : { } δειγµατική στατιστική είναι.3 t = =.. Ισχύει t R και δεν απορρίπτεται η Η, οριακά.67 / + /5 όµως καθώς η τιµή της δειγµατικής στατιστικής t είναι πολύ κοντά στην κρίσιµη τιµή για τη δεξιά ουρά. Έτσι παρ όλο που φαίνεται (µε δ.ε. και έλεγχο υπόθεσης) η µέση ραδιενέργεια στο χάλυβα του εργοστασίου Α να είναι µεγαλύτερη από αυτή του εργοστασίου Β, η διαφορά αυτή δε βρέθηκε σηµαντική σε επίπεδο εµπιστοσύνης 95%.. Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] Στον παρακάτω πίνακα δίνεται για σταθµούς ο αριθµός των ηµερών σ ένα χρόνο που η θερµοκρασία έπεσε κάτω από ο C και το υψόµετρο τους. Υψόµετρο (µ) 5 3 38 4 56 67 95 Αριθµός ηµερών 3 9 36 38 43 53 5 63 73 (α) Υποθέτουµε ότι ο αριθµός των ηµερών Υ εξαρτάται γραµµικά από το υψόµετρο Χ ( Ε(Υ X=x) = α+βx ). Σχηµατίστε το κατάλληλο διάγραµµα διασποράς και σχολιάστε αν αυτή η υπόθεση φαίνεται σωστή µε βάση το δείγµα των παρατηρήσεων του πίνακα. (β) Υπολογίστε τις σηµειακές εκτιµήσεις a και b των παραµέτρων α και β της ευθείας παλινδρόµησης (µε τη µέθοδο των ελαχίστων τετραγώνων). (γ) Με βάση το δείγµα, µπορείτε να εκτιµήσετε το µέσο αριθµό ηµερών το χρόνο που η θερµοκρασία πέφτει κάτω από ο C σε υψόµετρο 5µ; Σε υψόµετρο µ; Λύση (α) Η ανεξάρτητη µεταβλητή X είναι το υψόµετρο του σταθµού και η εξαρτηµένη µεταβλητή Y είναι ο αριθµός των ηµερών σ ένα χρόνο που η θερµοκρασία έπεσε κάτω από ο C. Σχηµατίζουµε το διάγραµµα διασποράς. 8 y [n day] 6 4 8 4 6 8 x [n m] 9

Από το διάγραµµα διασποράς φαίνεται να υπάρχει γραµµική θετική εξάρτηση γιατί όταν µεγαλώνει το υψόµετρο πληθαίνουν αναλογικά οι µέρες που η θερµοκρασία πέφτει κάτω από ο C. Φαίνεται επίσης η εξάρτηση αυτή να είναι ισχυρή γιατί µπορούµε να καθορίσουµε µε αρκετή ακρίβεια των αριθµό των ηµερών ανά έτος που η θερµοκρασία πέφτει κάτω από ο C όταν γνωρίζουµε το υψόµετρο (τα σηµεία βρίσκονται πολύ κοντά σε µια νοητή ευθεία). (β) Έχουµε δείγµα µεγέθους n =. Υπολογίζουµε τα παρακάτω: x = 368 y = 5.9 = x = 95 = x y = 7677 και βρίσκουµε τη δειγµατική διασπορά της X καθώς και τη δειγµατική συνδιασπορά των X και Y : n X = x nx ( 95 368 ) 8855. n = = (τυπολόγιο) = 9 n XY = x y nx y ( 7677 368 5.9 ) 64 n = =. (τυπολόγιο) = 9 Στη συνέχεια εκτιµούµε τις παραµέτρους της ευθείας ελαχίστων τετραγώνων, δηλαδή του µοντέλου γραµµικής παλινδρόµησης: 64 b = = =.74 (τυπολόγιο) 8855. XY X a= y b x = 5.9.74 368 = 47.6 (τυπολόγιο) και η ευθεία ελαχίστων τετραγώνων είναι y = 47.6 +.74 x. (γ) Κάνουµε προβλέψεις χρησιµοποιώντας την ευθεία ελαχίστων τετραγώνων για υψόµετρα µέσα στο εύρος του δείγµατος από µ µέχρι 95µ. Για υψόµετρο x = 5, έχουµε y = 47.6 +.74 5 = 6.46 και άρα περιµένουµε 6 µέρες το χρόνο να πέφτει η θερµοκρασία κάτω από ο C. Για υψόµετρο x = δε µπορούµε να κάνουµε πρόβλεψη γιατί δεν είναι µέσα στο εύρος γνωστών υψοµέτρων για τα οποία ισχύει το γραµµικό µοντέλο. Άσκηση 3 [Θέµα στις εξετάσεις Φεβρουαρίου 4] ίνονται οι παρακάτω µετρήσεις 5 8 3 4 7 3 9 7 (α) Σχεδιάστε το θηκόγραµµα αφού εξηγήσετε πως προέκυψαν οι 5 αριθµοί που χρησιµοποιήσατε για να το σχεδιάσετε. (β) Σχολιάστε αν η κατανοµή της µεταβλητής στην οποία αναφέρονται οι µετρήσεις φαίνεται να είναι κανονική. Λύση (α) Παραθέτουµε τις παρατηρήσεις σε αύξουσα σειρά 3 4 5 7 7 8 9 3 βρίσκουµε: x mn = 3 Q = 5 x = 7.5 Q 3 = x max = 3

και σχηµατίζουµε το θηκόγραµµα, όπως στο παρακάτω σχήµα (σε κατακόρυφη θέση). Column Number 5 5 5 3 Value (β) Το δείγµα περιέχει µια απόµακρη τιµή, την τιµή 3. Η ύπαρξη µιας τόσης ακραίας τιµής σε ένα µικρό δείγµα παρατηρήσεων δηµιουργεί κάποια ανησυχία για το αν η κατανοµή της τυχαίας µεταβλητής είναι κανονική. Άσκηση 4 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Ένας δείκτης της κυκλοφορίας οχηµάτων είναι ο αριθµός χιλιοµέτρων που κάνει ένα όχηµα το χρόνο. Για µια περιοχή Α συλλέξαµε ένα τυχαίο δείγµα αυτοκινήτων και καταγράψαµε για κάθε αυτοκίνητο τον αριθµό χιλιοµέτρων που διένυσε τον τελευταίο χρόνο. ίνονται τα παρακάτω αποτελέσµατα για το δείγµα: µέση τιµή x = 45 km, τυπική απόκλιση = 4 km (α) Υπολογίστε το 95% διάστηµα εµπιστοσύνης για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α. Κάνετε το ίδιο για 99% επίπεδο εµπιστοσύνης και συγκρίνετε τα δύο διαστήµατα εµπιστοσύνης. (β) Σε ίδια µελέτη που έγινε πριν χρόνια είχε βρεθεί πως η τυπική απόκλιση ήταν 3 km. Εξετάστε µε βάση το νέο δείγµα και σε επίπεδο εµπιστοσύνης 9% αν µπορούµε να δεχτούµε ότι η τυπική απόκλιση δεν άλλαξε σηµαντικά [µπορείτε να χρησιµοποιήσετε διάστηµα εµπιστοσύνης ή έλεγχο υπόθεσης]. Λύση (α) Έχουµε n =, x = 45 km και = 4 km. Άρα το (-α)% διάστηµα εµπιστοσύνης (δ.ε.) για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α θα δίνεται από τον τύπο για µεγάλο δείγµα και άγνωστη διασπορά, κάνοντας χρήση της κρίσιµης τιµής z α / της τυπικής κανονικής κατανοµής, δηλαδή είναι x ± za / (τυπολόγιο). n Για α =.5 έχουµε από τον στατιστικό πίνακα για την τυπική κανονική κατανοµή z.975 =.96 και το 95% δ.ε. είναι 4 45 ±.96 45 ± 554.36 [3945.69, 554.36]. Για α =. έχουµε από τον στατιστικό πίνακα για την τυπική κανονική κατανοµή z.995 =.58 και το 99% δ.ε. είναι 4 45 ±.58 45 ± 78.55 [377.45, 58.55].

Παρατηρούµε ότι το 99% δ.ε. για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α είναι µεγαλύτερο από αυτό για 95% επίπεδο εµπιστοσύνης, όπως αναµένεται αφού αυξάνουµε την εµπιστοσύνη (πιθανότητα) το διάστηµα αυτό να περιέχει το πραγµατικό µέσο αριθµό χιλιοµέτρων. (β) Χρησιµοποιώντας διάστηµα εµπιστοσύνης: Βρίσκουµε πρώτα το 9% δ.ε. για τη διασπορά του αριθµού χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α. Αυτό δίνεται κάνοντας χρήση της X κατανοµής και είναι ( n ) ( n ), (τυπολόγιο). χn, a / χ n, a / Για α =. έχουµε από τον στατιστικό πίνακα για την X κατανοµή ότι η αριστερή κρίσιµη τιµή είναι χ = και η δεξιά χ = (οι τιµές.5,99 67.36.95,99 3.9 αυτές δεν συµπεριλαµβάνονται στον πίνακα που έχει ως βαθµούς ελευθερίας). Το 9% δ.ε. για τη διασπορά είναι 99 4 99 4, [36749.6, 94743.5]. 3.9 67.36 Το αντίστοιχο δ.ε. για την τυπική απόκλιση προκύπτει παίρνοντας τη τετραγωνική ρίζα των ορίων του παραπάνω διαστήµατος και άρα το 9% δ.ε. για την τυπική απόκλιση του αριθµού χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α είναι [3697.4, 436.7]. Το διάστηµα αυτό δεν περιέχει την εµπειρική τιµή 3 km και άρα η τυπική απόκλιση άλλαξε σηµαντικά από αυτήν που είχαµε εκτιµήσει πριν χρόνια. Χρησιµοποιώντας έλεγχο υπόθεσης.: Κάνουµε έλεγχο υπόθεσης για το αν η 6 διασπορά µπορεί να πάρει την τιµή σ = 3 = 9. Η : σ = σ Η : σ σ [δίπλευρος έλεγχος] Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =. σχηµατίζεται από τις δύο κρίσιµες τιµές της R = χ χ < 67.36 χ > 3.9. Η δειγµατική στατιστική είναι ( n ) 99 4 χ = = = 354. σ 3 X κατανοµής : { } (δεν υπάρχει στο τυπολόγιο, προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο) Ισχύει χ R και άρα απορρίπτεται η Η και συµπεραίνουµε ότι µε 9% εµπιστοσύνη (πιθανότητα) δε δεχόµαστε ότι η εµπειρική τιµή 3 km που είχαµε εκτιµήσει πριν χρόνια για την τυπική απόκλιση του αριθµού χιλιοµέτρων µπορεί να ισχύει και τώρα. Άσκηση 5 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Σε µια έρευνα στις Η.Π.Α. για την επίδραση του πληθυσµού της πόλης στη συγκέντρωση του όζοντος συγκεντρώθηκαν τα παρακάτω στοιχεία. Ο πληθυσµός των πόλεων δίνεται σε εκατοµµύρια και η συγκέντρωση του όζοντος που µετρήθηκε σε κάθε πόλη δίνεται σε b [art er bllon] ανά ώρα.

Πληθυσµός πόλης...5.6.6...3.3 4.9 Συγκέντρωση όζοντος 8 4 8 6 8 6 3 8 9 35 (α) Σχηµατίστε το κατάλληλο διάγραµµα διασποράς. Εκτιµείστε το συντελεστή συσχέτισης µεταξύ της συγκέντρωσης του όζοντος και του πληθυσµού της πόλης. Με βάση αυτά τα αποτελέσµατα σχολιάστε αν φαίνεται να υπάρχει εξάρτηση της συγκέντρωσης του όζοντος από τον πληθυσµό της πόλης. (β) Υπολογίστε τις σηµειακές εκτιµήσεις a και b των παραµέτρων α και β της ευθείας παλινδρόµησης (µε τη µέθοδο των ελαχίστων τετραγώνων) για το πρόβληµα της γραµµικής εξάρτησης της συγκέντρωσης του όζοντος από τον πληθυσµό της πόλης. Σχηµατίστε την ευθεία ελαχίστων τετραγώνων στο διάγραµµα διασποράς που σχηµατίσατε στο (α). Λύση (α) Σχηµατίζουµε το διάγραµµα διασποράς (X: πληθυσµός πόλης, Y: συγκέντρωση όζοντος) 36 34 y [n b] 3 3 8 6 4 3 4 5 x [n mllon] Από το διάγραµµα διασποράς φαίνεται να υπάρχει γραµµική θετική συσχέτιση (η αύξηση του πληθυσµού της πόλης δηµιουργεί αύξηση της συγκέντρωσης όζοντος), χωρίς όµως να φαίνεται πολύ ισχυρή (δεν εξηγείται σε µεγάλο βαθµό η µεταβολή της µιας τ.µ. όταν γνωρίζουµε τη µεταβολή της άλλης, τα σηµεία απλώνονται αρκετά γύρω από µια νοητή ευθεία). Έχουµε δείγµα µεγέθους n =. Υπολογίζουµε τα παρακάτω: x =.37 y = 8. = x = 38.3 = y = 6443 = x y = 788. και βρίσκουµε τις δειγµατικές διασπορές και τυπικές αποκλίσεις των X και Y καθώς και τη δειγµατική συνδιασπορά τους: (οι τύποι δίνονται στο τυπολόγιο) X = ( 38.3.37 ) =.4 X =.4 =.46 9 Y = ( 6443 8. ) = 8.6 Y = 8.6 =.94 9 XY = ( 788..37 8. ) = 3.54. 9 3

Η εκτίµηση του συντελεστή συσχέτισης µεταξύ πληθυσµού πόλης και συγκέντρωση όζοντος είναι 3.54 r = =.8..46.94 Η εκτίµηση του συντελεστή συσχέτισης επιβεβαιώνει ότι η συσχέτιση δεν είναι ισχυρή (r <.9). (β) Η ανεξάρτητη µεταβλητή X είναι ο πληθυσµός πόλης και η εξαρτηµένη µεταβλητή Y είναι η συγκέντρωση όζοντος. Εκτιµούµε τις παραµέτρους του µοντέλου γραµµικής παλινδρόµησης: 3.54 b = = =.654 (τυπολόγιο).4 XY X a= y b x = 8..654.37 = 5.94 (τυπολόγιο) και η ευθεία ελαχίστων τετραγώνων είναι y = 5.94 +.654 x. Για να σχηµατίσουµε την ευθεία υπολογίζουµε δύο σηµεία που ανήκουν σε αυτήν (καλύτερα για τη µικρότερη και µεγαλύτερη τιµή της X στο δείγµα), π.χ. x =. y = 5.94 +.654. = 6. x = 4.9 y = 5.94 +.654 4.9 = 34.4 και χαράζουµε το ευθύγραµµο τµήµα που περνά από αυτά τα δύο σηµεία και προεκτείνεται µόνο για το εύρος των γνωστών τιµών του πληθυσµού πόλης X. 4 35 y [n b] 3 5 3 4 5 6 x [n mllon] 4