Μαθηματικϊ. Β' Ενιαύου Λυκεύου. (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού



Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1

Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ)

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1

Μαθηματικά. Β' Ενιαίου Λυκείου (μάθημα κατεύθυνςησ)

ΚΟΙΛΑ-ΚΤΡΣΑ-ΗΜΕΙΑ ΚΑΜΠΗ

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ

Εγχειρίδιο Χρήσης των Εργαλείων Αναγνώρισης Χαρισματικών Μαθητών στα Μαθηματικά

Σ.Ε.Ι. ΑΘΗΝΩΝ - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΦΑΝΙΚΩΝ Σ.Ε. ΑΝΣΟΦΗ ΤΛΙΚΩΝ Ι

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

Μαθηματικϊ για Οικονομολόγουσ Ι-Μϊθημα 4ο Παρϊγωγοσ Συναρτόςεων μιασ Μεταβλητόσ.

Η Διαύρεςη 134:5. Η Διαύρεςη 134:5. Διδακτική Μαθηματικών ΙΙ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

Αρχϋσ του NCTM. Αρχϋσ του NCTM. Αρχϋσ του NCTM. Διδακτικό Μαθηματικών ΙΙ. Μϊθημα 9 ο Αξιολόγηςη

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.

ΠΡΩΣΟ ΕΣ ΑΚΗΕΩΝ ΓΙΑ ΣΟ ΜΑΘΗΜΑ ΠΟΟΣΙΚΗ ΑΝΑΛΤΗ ΔΙΟΙΚΗΣΙΚΩΝ ΑΠΟΥΑΕΩΝ

Τεχνικόσ Μαγειρικόσ Τϋχνησ Αρχιμϊγειρασ (Chef) Β Εξϊμηνο

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ

Αναλυτικό Πρόγραμμα για την Εκπαίδευςη Χαριςματικών Μαθητών Δ -Στ τάξεων Δημοτικού Σχολείου

ERIC DE CORTE & LIEVEN VERSCHAFFEL Katholieke Universiteit Leuven - Belgium

Πίνακασ τεχνικών και λειτουργικών προδιαγραφών. Πλόρεσ ελληνικό περιβϊλλον (interface) για Διαχειριςτϋσ, Εκπαιδευτϋσ, Εκπαιδευόμενουσ

Επικοινωνύα (1) Επικοινωνύα (2) Επικοινωνύα (3) Ανακοινώςεισ μαθήματοσ: κλειδύ: math2009.

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

E.M.Π. - ΣΜΗΜΑ ΝΑΤΠΗΓΩΝ ΜΗΦΑΝΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ

Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΠΟΛΤΩΝΤΜΑ. ΠΑΡΑΜΕΣΡΟ λϋγεται το ςύμβολο, ςυνόθωσ γρϊμμα, του οπούου το πεδύο οριςμού ορύζεται ϋτςι ώςτε να ιςχύει κϊποια προώπόθεςη.

Άδειες Χρήσης. Ειδικά Θέματα Μαθηματικών. Περί δημιουργικότητας (συνέχεια) Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης

ΤΕΙ ΑΜΘ-Σχολό Διούκηςησ και Οικονομύασ-Τμόμα Λογιςτικόσ και Χρηματοοικονομικόσ

Σ. Ασημέλλης. Μαθημαγικά

Η ΦΡΗΗ ΣΗ ΣΕΦΝΟΛΟΓΙΑ ΣΟ ΝΕΟ ΑΝΑΛΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΨΝ ΜΑΘΗΜΑΣΙΚΨΝ

ΣΤΟΧΟΙ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ

Επικοινωνύα. twitter: tatsis_kostas Τηλϋφωνο: Ώρεσ ςυνεργαςύασ: κλειδύ: did2009

Βαγγϋλησ Οικονόμου Διϊλεξη 5 ΠΙΝΑΚΕΣ. Δομ. Προγραμ. - Διϊλεξη 5 1

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β

ΔΟΚΙΜΑΙΑ-1 (ΜΟΝΑΔΕ 60) εύναι αντύςτροφοι. (Μονϊδεσ 5)

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

ΑΡΧΗ 1Η ΕΛΙΔΑ ΘΕΜΑ A Α. Μονάδεσ 10 Μονάδεσ 5 Μονάδεσ 4 4 Ε. 1 Μονάδεσ 2 Ε. 2 Μονάδεσ 5 ΣΕΛΟ 1Η ΕΛΙΔA

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Πρόσθεση-αφαίρεση. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

Οδηγόσ πουδών

Δείκτες Επιτυχίας και Επάρκειας

Μαθηματικά Α Τάξης Γυμνασίου

α. η ελϊχιςτη μεταβολό μόκουσ που μπορεύ να υποςτεύ ϋνα αρχικό μόκοσ L=10cm επύ τησ επιφϊνειασ του ςώματοσ. ε ε ]=[ 3 ε ε ε

Μαθηματικοπούηςη. Μαθηματικοπούηςη. Μαθηματικϋσ δεξιότητεσ. Κατακόρυφη

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ. Παρϊδειγμα 1. Το κόςτοσ παραγωγόσ Κ(χ) και η τιμό πώληςησ Π(χ), χ μονϊδων ενόσ προώόντοσ δύνεται από τη ςυνϊρτηςη:

1 ΘΕΩΡΙΑΣ...με απάντηση

1. ΕΙΑΓΩΓΗ ~ 1 ~ τυλιανού. 1 Σο ςχϋδιο μαθόματοσ ςυζητόθηκε με το ςύμβουλο του μαθόματοσ τησ Νϋασ Ελληνικόσ Γλώςςασ κ. Μϊριο

NetMasterII ςύςτημα μόνιμησ εγκατϊςταςησ επιτόρηςη και καταγραφό ςημϊτων από αιςθητόρια και μετατροπεύσ κϊθε εύδουσ ςύςτημα ειδοπούηςησ βλϊβη

ΕΡΓΑΣΗΡΙΑΚΑ ΜΑΘΗΜΑΣΑ Γ ΓΤΜΝΑΙΟΤ

Άδειες Χρήσης. Ειδικά Θέματα Μαθηματικών. Μαθηματικά στην εκπαίδευση: Επίλυση προβλήματος - Ρεαλιστικά Μαθηματικά

Θεςμική Αναμόρφωςη τησ Προ-πτωχευτικήσ Διαδικαςίασ Εξυγίανςησ Επιχειρήςεων

ΚΕΥΑΛΑΙΟ 2 Σο εςωτερικό του υπολογιςτό

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Επίλυση προβλήματος (συνέχεια) Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης

Η ςημαςία τησ εννοιολογικήσ κατανόηςησ κατϊ τη μετϊβαςη από το Λύκειο ςτο Πανεπιςτήμιο

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

Βαγγϋλησ Οικονόμου Διϊλεξη 6. Δομ. Προγραμ. - Συναρτόςεισ - Διϊλεξη 6

Θεωρύεσ Μϊθηςησ και ΤΠΕ Εποικοδομιςμόσ

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Διαφοροποιημϋνη διδαςκαλύα

ΔΟΚΙΜΑΙΑ-1 (ΜΟΝΑΔΕ 60) εύναι αντύςτροφοι. (Μονϊδεσ 5)

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

με το ςχόμα ΑΕΖΗΓΔ χρηςιμοποιώντασ αλγεβρικϊ και όχι γεωμετρικϊ εργαλεύα. παρακϊτω ςχόμα, ςαν ςυνϊρτηςη τησ μεταβλητόσ x. (Μονϊδεσ 5) 2χ+1 Ζ 4χ+1

ΠΑΝΕΠΙΣΗΜΙΟ ΠΕΛΟΠΟΝΝΗΟΤ

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Γραμμικότητα Γεωμετρία. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

Ενημερωτικό Σημεύωμα για το Ειδικό Καθεςτώσ τησ Επιχειρηματικότητασ των Νϋων του Επενδυτικού Νόμου 3908/2011, για το ϋτοσ 2011

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

α = 2q + r με 0 r < 2 Πιθανϊ υπόλοιπα: r = ο: α = 2q r = 1: α = 2q + 1 Ευκλεύδεια διαύρεςη Ειςαγωγό ςτισ βαςικϋσ ϋννοιεσ των Μαθηματικών Διαιρετότητα

Ο ΟΓΙΚΟΣ ΦΑΡΤΗΣ ΤΟΥ ΣΑΚΦΑΡΩΓΗ ΓΙΑΒΗΤΗ ΣΤΗΝ ΔΛΛΑΓΑ

ΔΗΜΟΚΡΙΣΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΡΑΚΗ ΠΟΛΤΣΕΧΝΙΚΗ ΧΟΛΗ ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΕΡΕΟΤ ΩΜΑΣΟ ΙΙ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΠΕΡΙΒΑΛΛΟΝΣΙΚΗ ΕΚΠΑΙΔΕΤΗ : ΕΝΕΡΓΕΙΑ

ενθαρρύνοντασ τη ςυνέχιςη των προβλημάτων

Άνοιξε το λογιςμικό «Βιολογία Α & Γ Γυμναςίου» ςτην αρχική οθόνη επέλεξε για να εμφανιςτούν τα περιεχόμενα, και ςτη ςυνέχεια επέλεξε «ΚΤΣΣΑΡΟ».

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Καθηγήτρια : Ιωάννα Ερωτοκρίτου τηλ:

Σχεδιαςμόσ & Εκπόνηςη Εκπαιδευτικήσ Ζρευνασ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΦΡΟΝΣΙΣΗΡΙΟ ΠΟΛΤΣΕΧΝΙΚΩΝ ΧΟΛΩΝ ΣΡΙΑΝΣΑΦΤΛΛΟΤ ΓΡΗΓΟΡΗ ΚΑΣΑΣΑΚΣΗΡΙΕ Δ.Ο.Α.Σ.Α.Π. ΠΟΛΤΣΕΧΝΕΙΟ Α.Σ.Ε.Ι. Ε.Μ.Π. - ΧΟΛΗ ΠΟΛΙΣΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Άλγεβρα Γενικής Παιδείας

Πωσ αλλάζει τη Μεςόγειο το ενεργειακό παζλ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

Δίκτυα Η/Υ ςτην Επιχείρηςη

Η κατανομή των ηπείρων και των θαλασσών Ωκεανοί και θάλασσες

Νέο Πρόγραμμα Σπουδών του Νηπιαγωγείου. Δρ Ζωή Καραμπατζάκη, Σχολική Σύμβουλος 21 ης Περιφέρειας Π.Α.

ΠΡΟΓΡΑΜΜΑ ΠΟΤΔΩΝ ΝΗΠΙΑΓΩΓΕΙΟΤ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

Πανελλήνιεσ Εξετάςεισ 2011 Φυςική Θετικήσ & Τεχνολογικήσ Κατεύθυνςησ. 20 Μαΐου 2011 Πρόχειρεσ Απαντήςεισ

Transcript:

Μαθηματικϊ Β' Ενιαύου Λυκεύου (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού Η διδαςκαλύα των Μαθηματικών Κοινού Κορμού επιδιώκει να δώςει ςτο μαθητό τα εφόδια για την αντιμετώπιςη καθημερινών αναγκών ςε αριθμητικϋσ και γεωμετρικϋσ διαδικαςύεσ καθώσ επύςησ και τη δυνατότητα να κϊνει ςτοιχειώδεισ ςυλλογιςμούσ και να αντιμετωπύζει με ορθολογιςτικό τρόπο καταςτϊςεισ και προβλόματα τησ καθημερινόσ ζωόσ. Ειδικότερα επιδιώκει να αναπτύξουν οι μαθητϋσ τϋτοιεσ δεξιότητεσ ώςτε να μπορούν: 1. Να ερμηνεύουν και να χρηςιμοποιούν τα δεδομϋνα, τα ςύμβολα και την ορολογύα των Μαθηματικών.. Να οργανώνουν τα δεδομϋνα και να χρηςιμοποιούν τισ κατϊλληλεσ προςεγγύςεισ και εκτιμόςεισ. 3. Να κατανοούν τισ αλγεβρικϋσ και γεωμετρικϋσ (ςτο επύπεδο και το χώρο) ϋννοιεσ και ςχϋςεισ. 4. Να γνωρύζουν την κατϊλληλη μαθηματικό διαδικαςύα για τη διαπραγμϊτευςη μιασ κατϊςταςησ. 5. Να μεταφρϊζουν τα προβλόματα ςτη μαθηματικό γλώςςα και να επιλϋγουν - εφαρμόζουν τισ κατϊλληλεσ τεχνικϋσ και αλγορύθμουσ. 6. Να ανακαλούν από τη μνόμη τουσ και να κϊνουν ςωςτό χρόςη των αλγοριθμικών διαδικαςιών. 7. Να αναπτύςςουν επιχειρόματα και να κϊνουν λογικϋσ ςυνεπαγωγϋσ. 8. Να εκφρϊζουν την επύλυςη ενόσ προβλόματοσ με λογικό και ςαφό τρόπο και να ερμηνεύουν τα ςυμπερϊςματα τουσ. 9. Να επιλύουν προβλόματα που απαιτούν εκτεταμϋνη εργαςύα μϋςα ςε ϋνα ςυγκεκριμϋνο χρονικό διϊςτημα. 10. Να διαβϊζουν και να κατανοούν μαθηματικϊ κεύμενα. 11. Να κϊνουν κριτικό ςε μαθηματικϊ επιχειρόματα.

ΕΠΑΝΑΛΗΧΗ ΤΛΗ Α' ΛΤΚΕΙΟΤ 1. 1.1 Γραφικό παρϊςταςη ευθεύασ Καταςκευϊζουν τη γραφικό παρϊςταςη τησ ευθεύασ με εξύςωςη x y 0. Βρύςκουν την κλύςη τησ ευθεύασ με δεδομϋνο τύπο Διατυπώνουν τη ςχϋςη που ϋχουν οι τύποι δύο παραλλόλων ευθειών Διατυπώνουν τη ςχϋςη που ϋχουν οι τύποι δύο κϊθετων ευθειών. Η ύλη να προςφϋρεται μϋςα από προβλόματα που ςχετύζονται με την καθημερινό ζωό και με τα ενδιαφϋροντα των μαθητών. 6 1. Λύςη εξύςωςησ β' βαθμού Λύνουν εξύςωςη β' βαθμού με τον τύπο. Βρύςκουν το ϊθροιςμα και γινόμενο των ριζών εξύςωςησ β' βαθμού χωρύσ να τη λύςουν. Βρύςκουν το εύδοσ των ριζών εξύςωςησ β' βαθμού χωρύσ να τη λύςουν. Καταςκευϊζουν εξύςωςη β' βαθμού που να ϋχει δεδομϋνεσ λύςεισ. Λύνουν προβλόματα με τη χρόςη εξύςωςησ β' βαθμού. Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα

1.3 Γραφικό παρϊςταςη τησ ςυνϊρτηςησ y x x Βρύςκουν τον ϊξονα ςυμμετρύασ τησ γραφικόσ παρϊςταςησ τησ ςυνϊρτηςησ y x x. Διακρύνουν αν η ςυνϊρτηςη γ = αχ + βχ + γ ϋχει μϋγιςτη ό ελϊχιςτη τιμό και να την υπολογύζουν. Καταςκευϊζουν τη γραφικό παρϊςταςη τησ ςυνϊρτηςησ y x x. 1.4 Πυθαγόρειο Θεώρημα διατυπώνουν το πυθαγόρειο θεώρημα εφαρμόζουν το πυθαγόρειο θεώρημα ςτην επύλυςη τριγώνου ΠΡΟΟΔΟΙ 13.1 Αριθμητικό πρόοδοσ (Α.Π.) Δύνουν τον οριςμό τησ Α.Π. Δύνουν τουσ οριςμούσ για αύξουςα και φθύνουςα Α.Π. Δύνουν τη ςχϋςη που πρϋπει να υπϊρχει ανϊμεςα ςε τρεισ αριθμούσ για να εύναι διαδοχικού όροι Α.Π. Τπολογύζουν τον αριθμητικό μϋςο δύο αριθμών. Τπολογύζουν τον νι-οςτό όρο Α.Π. με τον τύπο 1 1. Τπολογύζουν το ϊθροιςμα των ν πρώτων όρων Α.Π. με τουσ τύπουσ 1 και 1 1 Η ειςαγωγό ςτο κεφϊλαιο να γύνει μϋςω προβλημϊτων και να δοθεύ ϋμφαςη ςτισ ςτρατηγικϋσ λύςεισ των προβλημϊτων. Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 3

. Γεωμετρικό Πρόοδοσ (Γ.Π.) Δύνουν τον οριςμό τησ Γ.Π. Δύνουν τουσ οριςμούσ για αύξουςα, απόλυτα αύξουςα, φθύνουςα και απόλυτα φθύνουςα Γ.Π. Δύνουν τη ςχϋςη που πρϋπει να υπϊρχει ανϊμεςα ςε τρεισ αριθμούσ για να εύναι διαδοχικού όροι Γ.Π. Τπολογύζουν το γεωμετρικό μϋςο δύο αριθμών Τπολογύζουν τον νι-οςτό όρο Γ.Π. με τον τύπο 1 1 Τπολογύζουν το ϊθροιςμα των ν πρώτων όρων Γ.Π με τον τύπο 1 1 1 Τπολογύζουν το ϊθροιςμα των ϊπειρων όρων φθύνουςασ Γ.Π. με τον τύπο 1, 1 1.3 Επύλυςη και ςτρατηγικϋσ προβλημϊτων ςτισ προόδουσ Να δοθούν προβλόματα εφαρμογών των προόδων όπωσ η μετατροπό ςε κλαςματικό ενόσ δεκαδικού αριθμού με επαναλαμβανόμενα δεκαδικϊ ψηφύα. Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 4

3. ΛΟΓΑΡΙΘΜΟΙ ΛΟΓΑΡΙΘΜΙΚΕ ΚΑΙ ΕΚΘΕΣΙΚΕ ΕΞΙΨΕΙ 1 3.1 Οριςμόσ λογαρύθμου με βϊςη το α ορύζουν το λογϊριθμο αριθμού με βϊςη το α Να δοθεύ ιδιαύτερη ϋμφαςη ςε λογαρύθμουσ με βϊςη, 10 και e. 3. Ιδιότητεσ λογαρύθμων δύνουν τισ ιδιότητεσ log A B log A log B log A log B A log log A log A log 1 A log 3.3 Λογαριθμικϋσ εξιςώςεισ λύνουν λογαριθμικϋσ εξιςώςεισ A (α) που καταλόγουν ςτη μορφό log f x log g x (β) που λύνονται με την αντικατϊςταςη log x y B Οι μαθητϋσ να εξαςκηθούν ςτην εύρεςη λογαρύθμων με υπολογιςτικό μηχανό Να δοθούν και εξιςώςεισ όπωσ: x log log x8 0, 3 x x x 81, 4 3 0 1 log x x 1000 3.4 Εκθετικϋσ εξιςώςεισ λύνουν εκθετικϋσ εξιςώςεισ (α) τησ μορφόσ fx x (β) τησ μορφόσ f 0. (γ) που λύνονται λογαριθμύζοντασ και τα δύο μϋρη (απλόσ μορφόσ μόνο) Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 5

3.5 Γραφικό παρϊςταςη λογαριθμικόσ και εκθετικόσ ςυνϊρτηςησ Κϊνουν, με τη χρόςη πύνακα τιμών, τισ γραφικϋσ παραςτϊςεισ των ςυναρτόςεων 10 y log x και y 10 x 4 ΠΡΟΒΛΗΜΑΣΑ ΚΑΣΑΝΑΛΨΣΗ 4.1 Επανϊληψη ιδιοτότων των αναλογιών και προβλημϊτων ποςοςτών, μεριςμού, απλού τόκου 9 4. Προβλόματα φόρου ειςοδόματοσ Υ.Π.Α. 4.3 Προβλόματα ςύνθετου τόκου 5 ΣΡΙΓΨΝΟΜΕΣΡΙΑ 14 5.1 Επανϊληψη τησ ύλησ τησ τριγωνομετρύασ τησ Α' Λυκεύου Δύνουν τον οριςμό των ςυναρτόςεων y x y x, y x., Βρύςκουν τουσ τριγωνομετρικούσ αριθμούσ οξεύασ γωνύασ με τη βοόθεια πινϊκων ό υπολογιςτό Διατυπώνουν τισ ςχϋςεισ μεταξύ των τριγωνομετρικών αριθμών οξεύασ γωνύασ και τισ εφαρμόζουν ςτην απόδειξη απλών τριγωνομετρικών ταυτοτότων 5. Σριγωνομετρικού αριθμού οποιαςδόποτε γωνύασ 5.3 Νόμοσ ημύτονων, Νόμοσ ςυνημύτονων, Εμβαδόν τριγώνου Βρύςκουν τουσ τριγωνομετρικούσ αριθμούσ οποιαςδόποτε γωνύασ με αναγωγό ςτο α' τεταρτημόριο Διατυπώνουν τουσ τύπουσ για τον νόμο των ημύτονων, τον νόμο των ςυνημύτονων και τον τύπο εμβαδόν τριγώνου E 1 A για το Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 6

5.4 Επύλυςη τριγώνου εφαρμόζουν τριγωνομετρικούσ τύπουσ για την επύλυςη τριγώνου 6 ΓΕΨΜΕΣΡΙΑ 1 6.1 Επανϊληψη εμβαδών λύνουν προβλόματα εμβαδών ευθύγραμμων ςχημϊτων ςτην περύπτωςη που εμπλϋκονται τρύγωνα, παραλληλόγραμμα, ειδικϊ παραλληλόγραμμα, τραπϋζια 6. Όμοια χόματα δύνουν τον οριςμό των όμοιων ςχημϊτων δύνουν τη ςχϋςη των εμβαδών ομούων πολυγώνων λύνουν προβλόματα που αναφϋρονται ςε κλύμακα ςχεδύου και χϊρτη 6.3 Κανονικϊ Πολύγωνα δύνουν τον οριςμό κανονικού πολυγώνου και των όρων γωνύα, κεντρικό γωνύα, ακτύνα, πλευρϊ και απόςτημα κανονικού πολυγώνου υπολογύζουν τη γωνύα και την κεντρικό γωνύα κανονικού πολυγώνου υπολογύζουν την πλευρϊ, το απόςτημα και το εμβαδόν κανονικού πολυγώνου ςυναρτόςει τησ ακτύνασ του Να δοθεύ ϋμφαςη ςτη διαδικαςύα εύρεςησ των τύπων και να αποφεύγεται η υπερβολικό τυποπούηςη. Οι υπολογιςμού μπορούν να γύνονται με τη χρόςη γεωμετρύασ ό τριγωνομετρύασ Μεταξύ ϊλλων, να καλυφθούν και οι περιπτώςεισ των: (α) τετραγώνου (β) ιςόπλευρου τριγώνου (γ) κανονικού εξαγώνου 6.4 Κύκλοσ υπολογύζουν το μόκοσ τησ περιφϋρειασ και το μόκοσ τόξου κύκλου υπολογύζουν το εμβαδόν κύκλου, κυκλικού τομϋα και κυκλικού τμόματοσ 6.5 Εμβαδόν μεικτόγραμμου ςχόματοσ υπολογύζουν το εμβαδόν μεικτόγραμμου ςχόματοσ Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 7

A/A ΔΙΔΑΚΣΕΑ ΤΛΗ ΣΟΦΟΙ ΔΡΑΣΗΡΙΟΣΗΣΕ ΠΕΡ. ΓΕΝΙΚΗ ΕΠΑΝΑΛΗΧΗ Να γύνει επύλυςη αςκόςεων και προβλημϊτων για εμπϋδωςη και κατανόηςη των εννοιών τησ κϊθε ενότητασ. Να γύνει επύλυςη αςκόςεων και προβλημϊτων που ςυνδϋουν ϋννοιεσ και γνώςεισ από διαφορετικϋσ ενότητεσ και περιοχϋσ. 6 Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 8