Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Σχετικά έγγραφα
4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. (0.1) όπου z = x + iy. Όταν z = iy τότε ο ανωτέρω τύπος παίρνει την μορφή. e dz = (0.3)

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μαθηματική Ανάλυση Ι

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Μαθηματικά Και Στατιστική Στη Βιολογία

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΑΔΑΧΘΕΙΣΑΣ ΥΛΗΣ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΛΟΓΙΣΜΟΥ

~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Κλασική Ηλεκτροδυναμική Ι

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

Ηλεκτρισμός & Μαγνητισμός

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Ηλεκτρισμός & Μαγνητισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Μικροβιολογία & Υγιεινή Τροφίμων

Κλασική Ηλεκτροδυναμική Ι

Λογισμός 4 Ενότητα 15

Ηλεκτρονικοί Υπολογιστές I

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Μαθηματική Εισαγωγή Συναρτήσεις

ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού

Ηλεκτρισμός & Μαγνητισμός

Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Ηλεκτρισμός & Μαγνητισμός

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματική Εισαγωγή Συναρτήσεις

Λογισμός 3. Ενότητα 4:Συνέχεια διανυσματικών συναρτήσεων-ιδιότητες της συνέχειας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά και Φυσική με Υπολογιστές

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Κλασική Ηλεκτροδυναμική Ι

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία των Μαθηματικών

Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματική Ανάλυση Ι

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

2. Στοιχειώδεις µιγαδικές συναρτήσεις.

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Μαθηματικά και Φυσική με Υπολογιστές

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Κλασσική Θεωρία Ελέγχου

6 ΠΑΡΑΓΩΓΟΙ. 6.1 Ορισµοί. Συναρτήσεις

Κλασσική Θεωρία Ελέγχου

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ιστορία των Μαθηματικών

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές

Λογισμός 4 Ενότητα 18

Θέματα Αρμονικής Ανάλυσης

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

Κλασσική Θεωρία Ελέγχου

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Μαθηματικά και Φυσική με Υπολογιστές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

[8] παρονομαστής αλλά δεν είναι ακέραιες αναλυτικές αφού δεν είναι αναλυτικές στα σημεία που μηδενίζεται ο παρονομαστής. Οι συναρτήσεις e, sin, cos, sinh, cosh είναι ακέραιες αναλυτικές συναρτήσεις. Γενικότερα, το άθροισμα, το γινόμενο, και η σύνθεση αναλυτικών συναρτήσεων είναι αναλυτική συνάρτηση. Επίσης το πηλίκο αναλυτικών συναρτήσεων είναι αναλυτική στα σημεία που δεν μηδενίζεται ο παρονομαστής. Μια έννοια πολύ χρήσιμη στις εφαρμογές στην φυσική είναι η έννοια της αρμονικής συνάρτησης που ορίζεται ως εξής: Μια πραγματική συνάρτηση δύο πραγματικών μεταβλητών θα λέγεται αρμονική σε κάποιο χωρίο του επιπέδου x,y αν σε αυτό το χωρίο έχει συνεχείς δεύτερες μερικές παραγώγους και ικανοποιεί την εξίσωση του Laplace. Έστω f( ) = uxy (, ) + ivxy (, ) μια συνάρτηση αναλυτική σε χωρίο D του μιγαδικού επιπέδου. Τότε το πραγματικό της μέρος uxy (, ) και το φανταστικό της μέρος vxy (, ) είναι αρμονικές συναρτήσεις. Ειδικότερα, η vxy (, ) λέγεται αρμονική συζυγής της uxy. (, ) Αν μια συνάρτηση uxy (, ) είναι αρμονική σε ένα ειδικού τύπου χωρίο που λέγεται απλά συνεκτικό, τότε σε αυτό το χωρίο πάντα υπάρχει η αρμονική συζυγής της vxyη (, ) οποία ορίζεται μονοσήμαντα εκτός από μια αυθαίρετη προσθετική σταθερά. Το μέτρο f( ) μιας αναλυτικής συνάρτησης f( ) ορισμένης σε κλειστή και φραγμένη περιοχή του μιγαδικού επιπέδου δεν μπορεί να λαμβάνει ακρότατο στο εσωτερικό αυτής της περιοχής. 4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Η εκθετική συνάρτηση Η εκθετική συνάρτηση την σχέση e, ή exp( ) όπως εναλλακτικά συμβολίζεται, ορίζεται από x e = e (cos y+ isin y) (4.1) όπου = x + iy. Όταν = iy τότε ο ανωτέρω τύπος παίρνει την μορφή iy e = cos y+ isin y (4.2) και είναι γνωστός ως τύπος του Euler. Οι βασικές της ιδιότητες είναι οι ακόλουθες: x Μέτρο: e = e 0, C. 1 2 1+ 2 Εκθετική ιδιότητα: e e = e,, C. 1 2 e 1 =. e Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 2013-2014

[9] Παράγωγος: n n ( e ) = e, όπου n= 0, ± 1, ± 2,... de e d = (4.3) + 2πi 2πi Περιοδικότητα: e = ee = e, δηλαδή φανταστική περίοδος 2π i. Η e ως απεικόνιση: Η λουρίδα y0 y< y0 + 2π i στο -επίπεδο απεικονίζεται αμφιμονοσήμαντα στο w-επίπεδο από το οποίο έχει αφαιρεθεί το σημείο w = 0. y v x Σχήμα 3.1 u Οι τριγωνομετρικές συναρτήσεις. Οι τριγωνομετρικές συναρτήσεις μιας μιγαδικής μεταβλητής, οι cos, sin, tan, cot, ορίζονται μέσω της εκθετικής συνάρτησης από τους ακόλουθους τύπους i i e + e cos = 2 (4.4) i i e e sin = 2i (4.5) sin 1 tan = = i 2i cos 1+ 2i e (4.6) cos 1 cot = = i+ 2i (4.7) 2i sin e 1 Δυνάμει του τύπου του Euler όταν η μεταβλητή παίρνει πραγματικές τιμές οι ανωτέρω συναρτήσεις ταυτίζονται με τις γνωστές μας τριγωνομετρικές συναρτήσεις μιας πραγματικής μεταβλητής και ως εκ τούτου αποτελούν την γενίκευσή τους στο σύνολο C. Όταν η μεταβλητή παίρνει καθαρά φανταστικές τιμές είναι σαφές από τους ανωτέρω ορισμούς ότι οι sin, cos (και επομένως και οι tan, cot ) εκφράζονται άμεσα από τις αντίστοιχες πραγματικές υπερβολικές συναρτήσεις sin( iy) = i sinh y, cos( iy) = cosh y. (4.8) Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 2013-2014

[10] Περιοδικότητα: Οι sin και cos έχουν περίοδο 2π. Οι tan και cot έχουν περίοδο π. Συμμετρίες: Οι sin, tan, cot είναι περιττές. Η cos είναι άρτια. Ρίζες: π π sin( kπ) = tan( kπ) = cos kπ + = cot kπ + = 0, όπου k Z. (4.9) 2 2 Ταυτότητες: Όλες οι γνωστές μας τριγωνομετρικές ταυτότητες στο R συνεχίζουν να ισχύουν με την ίδια μορφή και για τις τριγωνομετρικές συναρτήσεις με μιγαδική μεταβλητή. Έτσι π.χ. ισχύουν οι τύποι sin( + ) = sin cos + cos sin, (4.10) 1 2 1 2 1 2 cos( + ) = cos cos sin sin, (4.11) 1 2 1 2 1 2 2 2 sin cos 1 + =. (4.12) Το πραγματικό και το φανταστικό μέρος της sin μπορεί να βρεθεί αμέσως αν στην (4.10) θέσουμε 1 = x, 2 = iy και χρησιμοποιήσουμε τις σχέσεις (4.8). Έτσι βρίσκουμε ότι sin = sin xcosh y+ icos xsinh y, (4.13) όπου = x + iy. Εντελώς ανάλογα προκύπτει και η αντίστοιχη σχέση για το cos cos = cos xcosh y isin xsinh y. (4.14) Βασιζόμενοι στις (4.13) και (4.14) μπορούμε εύκολα να υπολογίσουμε το μέτρο των sin και cos. Βρίσκουμε τις σχέσεις 2 2 2 sin = sin x+ sinh y (4.15) 2 2 2 cos = cos x+ sinh y. (4.16) Εδώ βλέπουμε μια σημαντική διαφορά ανάμεσα στις συναρτήσεις sin και cos ορισμένες στο R και στην γενίκευσή τους στο C. Δηλαδή ότι οι συναρτήσεις sin και cos δεν είναι φραγμένες (διότι δεν είναι φραγμένη η sinh y ), σε αντίθεση με τις sin x και cos x που είναι φραγμένες αφού παίρνουν τιμές μόνο στο διάστημα [-1,1]. Όσον αφορά την παραγωγισιμότητά τους οι συναρτήσεις sin και cos είναι ακέραιες αναλυτικές αφού είναι γραμμικοί συνδυασμοί της εκθετικής συνάρτησης. Οι παράγωγοί τους προκύπτουν άμεσα από τους τύπους ορισμού, (4.4), (4.5) και την (4.3) και έχουν την ίδια μορφή με αυτή των αντίστοιχων συναρτήσεων μιας πραγματικής μεταβλητής, δηλαδή d d (sin ) = cos, (cos ) = sin. (4.17) d d Η συνάρτηση tan είναι αναλυτική σε όλα τα σημεία του μιγαδικού επιπέδου εκτός από τα σημεία που μηδενίζουν το cos. Παρόμοια, η cot δεν είναι αναλυτική μόνο στα σημεία που μηδενίζουν το sin. Εύκολα βρίσκουμε ότι οι παράγωγοι αυτών των συναρτήσεων είναι Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 2013-2014

[11] d 1 d 1 (tan ) =, (cot ) =. (4.18) 2 2 d cos d sin Οι υπερβολικές συναρτήσεις Οι υπερβολικές συναρτήσεις ορίζονται μέσω των τύπων e + e cosh =, 2 (4.19) e e sinh =, 2 (4.20) sinh 2 tanh 1 2 cosh 1 e, (4.21) cosh 2 coth = = 1+ 2 sinh e 1 (4.22) Οι βασικές ιδιότητες των υπερβολικών συναρτήσεων μπορούν να εξαχθούν από αντίστοιχες ιδιότητες των τριγωνομετρικών συναρτήσεων αν παρατηρήσουμε ότι οι πρώτες συνδέονται με τις δεύτερες μέσω των σχέσεων cosh = cos( i), sinh = i sin( i). (4.23) Περιοδικότητα: Οι sinh και cosh έχουν φανταστική περίοδο 2πi. Οι tanh και coth έχουν περίοδο πi. Συμμετρίες: Οι sinh, tanh, coth είναι περιττές. Η cosh είναι άρτια. Ρίζες: Οι ρίζες των υπερβολικών συναρτήσεων είναι καθαρά φανταστικές και δίνονται από τις σχέσεις sinh( kπi) = tanh( kπi) = 0, k Z, (4.24) 1 1 cosh k πi coth + = k+ πi = 0, k 2 2 Z. (4.25) Ταυτότητες: Έχουν την ίδια μορφή με τις αντίστοιχες ταυτότητες στο R, έτσι π.χ. sinh( 1+ 2) = sinh 1cosh 2 + cosh 1sinh 2 (4.26) cosh( 1+ 2) = cosh 1cosh 2 sinh 1sinh 2 (4.27) 2 2 cosh sinh = 1. (4.28) Οι υπερβολικές συναρτήσεις δεν είναι φραγμένες. Τα μέτρα των sinh και cosh δίνονται από τους τύπους όπου = x + iy. 2 2 2 sinh = sinh x+ sin y (4.29) 2 2 2 cosh = sinh x+ cos y (4.30) Οι συναρτήσεις sinh και cosh είναι ακέραιες αναλυτικές με παραγώγους d d (sinh ) = cosh, (cosh ) = sinh. (4.31) d d Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 2013-2014

[12] Η tanh είναι αναλυτική παντού όπου cosh 0, ενώ η coth είναι αναλυτική παντού όπου sinh 0. Εύκολα βρίσκουμε ότι οι παράγωγοί τους είναι οι d 1 d 1 (tanh ) =, (coth ) =. (4.32) cosh sinh 2 2 d d Η συνάρτηση λογάριθμος Η συνάρτηση λογάριθμος, που συμβολίζουμε με το log, ορίζεται ως η αντίστροφη συνάρτηση της e μέσω της σχέσης: log e = με 0. (4.33) i Αν εισάγουμε πολικές συντεταγμένες θέτοντας = re θ και π <Θ π όπου Θ η κύρια τιμή του arg, τότε από την (4.33) προκύπτει αμέσως ότι log = ln r+ i( Θ+ 2 nπ ), με 0 και n= 0, ± 1, ± 2, (4.34) Η συνάρτηση αυτή είναι πλειότιμη λόγω του πλειότιμου χαρακτήρα του ορίσματος. Μπορεί να γίνει μονότιμη και αναλυτική αν περιορίσουμε το όρισμα της μεταβλητής έτσι ώστε α < arg < α + 2π. Αυτό σημαίνει ότι το πεδίο ορισμού της συνάρτησης είναι ένα χωρίο Π(α) που περιλαμβάνει όλα τα σημεία του μιγαδικού επιπέδου εκτός από τα σημεία της ακτίνας θ = α που ξεκινά από την αρχή Ο και σχηματίζει γωνία α με τον πραγματικό άξονα 1. Η ευθεία αυτή λέγεται εγκοπή κλάδου για την συνάρτηση ενώ η έτσι ορισμένη συνάρτηση λέμε ότι αποτελεί ένα κλάδο της συνάρτησης λογάριθμος. Η παράγωγος της log στο χωρίο Π(α) είναι d 1 (log ) =. (4.35) d Η κύρια τιμή Log της συνάρτησης λογάριθμος ορίζεται με τον τύπο Log = ln r+ iθ, όπου π <Θ π και 0. (4.36) Η συνάρτηση Log είναι μονότιμη. Αν θέσουμε π <Θ< π, (εδώ α = Θ ) τότε λαμβάνουμε τον κύριο κλάδο της συνάρτησης λογάριθμος. Η αντίστοιχη εγκοπή κλάδου συνίσταται από τα σημεία του αρνητικού πραγματικού άξονα. Οι βασικές σχέσεις που ικανοποιεί η συνάρτηση λογάριθμος στο R δηλαδή log( 1 2) = log 1+ log 2 (4.37) 1 log = log 1 log 2 (4.38) 2 συνεχίζουν να ισχύουν και στο C αλλά δεν πρέπει να ξεχνάμε ότι η συνάρτηση log είναι πλειότιμη. Έτσι η ισότητα στις (4.37), (4.38) πρέπει να εννοείται ως εξής: Αν σε κάθε μια από τις (4.37), (4.38) έχουμε καθορίσει την τιμή στους δύο από τους τρείς όρους που εμπλέκονται σε αυτή τότε υπάρχει τιμή για τον τρίτο όρο τέτοια ώστε να ικανοποιείται η ισότητα. Προσοχή όμως! Οι (4.37), (4.38) δεν ικανοποιούνται από 1 Είναι σαν να κάναμε μια τομή στο μιγαδικό επίπεδο κατά μήκος αυτής της ακτίνας. Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 2013-2014

[13] την μονότιμη συνάρτηση Log. Επίσης λόγω του πλειότιμου χαρακτήρα της log θα έχουμε ενώ log e = + 2 nπ i, όπου n= 0, ± 1, ± 2,... (4.39) Loge =. (4.40) c Η συνάρτηση f( ) =. Ορισμός: c clog = e αν 0 (4.41) όπου c είναι ένας οποιοσδήποτε μιγαδικός αριθμός. Αν στον ανωτέρω ορισμό n θέσουμε c = 1 n όπου n N τότε λαμβάνουμε άμεσα τις ρίζες της εξίσωσης = 1: 1/ n n Θ k Θ k = r cos( + 2 π) + isin( + 2 π) n n n n, (4.42) όπου π <Θ π και k = 0,1, 2,, n 1. Είναι σαφές από τον ορισμό (4.41) ότι η c συνάρτηση είναι πλειότιμη. Αν καθορίσουμε ένα συγκεκριμένο κλάδο για την c log ώστε αυτή να γίνει μονότιμη τότε γίνεται μονότιμη και η. Στο πλαίσιο ενός τέτοιου κλάδου μπορούμε να γράψουμε c1+ c2 c1 c2 c = (σε καθορισμένο κλάδο της ) (4.43) cc 1 2 c1 c2 c = ( ) (σε καθορισμένο κλάδο της ) Η συνάρτηση «τετραγωνική ρίζα του» λαμβάνεται από την (4.42) για n = 2 και γράφεται Θ i 2 1/2 re για k = 0 = (4.44) Θ i 2 re για k = 1 (1 2)Log Η τιμή στον ανωτέρω τύπο αποτελεί τον κύριο κλάδο e της συνάρτησης 12 που είναι δίτιμη. 5. ΤΟ ΔΡΟΜΙΚΟ ΟΛΟΚΛΗΡΩΜΑ Η έννοια του δρόμου Η συνάρτηση = () t = x() t + iy(), t με t [ a, b] R (5.1) όπου οι συναρτήσεις x () t και y () t είναι συνεχείς στο διάστημα [ ab, ] λέμε ότι παριστάνει στο μιγαδικό επίπεδο μια ομαλή (ή λεία) καμπύλη. Η καμπύλη αυτή είναι προσανατολισμένη. Δηλαδή καθώς η πραγματική παράμετρος t διατρέχει το διάστημα [ ab, ] κινούμενη από το a προς το b το σημείο t () διατρέχει την καμπύλη Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 2013-2014

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ. http://ecourse.uoi.gr/course/view.php? id=1348.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος. «Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?i d=1348.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/ by-sa/4.0/.