Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Σχετικά έγγραφα
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί

Έλεγχος «Ελάχιστης Ενέργειας»

Το Πρόβλημα Ελευθέρων Αρχικών & Τελικών: Χρόνου & Οριακών Συνθηκών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Έλεγχος «Ελάχιστης Ενέργειας»

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

Βέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου

Μοντελοποίηση προβληµάτων

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0

Simplex µε πίνακες Simplex µε πίνακες

Εφαρμοσμένη Βελτιστοποίηση

Σηµειώσεις στις σειρές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

3.7 Παραδείγματα Μεθόδου Simplex

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

(S k R n ) (C k R m )

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης

Ακέραιος Γραµµικός Προγραµµατισµός

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

Θεωρία Μεθόδου Simplex

ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

ΗΥ 111, Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο Διδάσκων: Κώστας Παναγιωτάκης

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Προβλήµατα Μεταφορών (Transportation)

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων


Διάλεξη 5- Σημειώσεις

Ακέραιος Γραµµικός Προγραµµατισµός

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΗΣ ΕΝΤΑΞΗΣ ΜΟΝΑ ΩΝ ΠΑΡΑΓΩΓΗΣ

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.

Θεωρία Βέλτιστου Ελέγχου Ασκήσεις

A = x x 1 + 2x 2 + 4

1 Ορισµός ακολουθίας πραγµατικών αριθµών

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα

HMY 220: Σήματα και Συστήματα Ι

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)

Αστικά υδραυλικά έργα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Διαχείριση Ταμιευτήρα

min f(x) x R n (1) x g (2)

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

καθ. Βασίλης Μάγκλαρης

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

Transcript:

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

Δομή της Ύλης του Μαθήματος Θεωρία (7) Βέλτιστος Έλεγχος (6) Εκτίμηση Κατάστασης το Φίλτρο KALMAN (1) Εισαγωγή στην Υλοποίηση Συστημάτων Ελέγχου (7) Ενσωματωμένα Συστήματα (2) Γλώσσα C (4) Προγραμματισμός Ενσωματωμένων Συστημάτων & Εργαστήριο (1) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2

Βέλτιστος Έλεγχος Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3

Εισαγωγή στο Βέλτιστο Έλεγχο Παρουσίαση της δοµής ενός γενικευµένου προβλήµατος βελτίστου ελέγχου Εξειδίκευση στο πρόβληµα τετραγωνικού ρυθµιστή για ΓΧΑΣ Εισαγωγή στο Λογισµό των µεταβολών Η στατική βελτιστοποίηση ως πρόβληµα βελτιστοποπίηση πεπερασµένης διάστασης Λογισµός των µεταβολών Το πρόβληµα ελάχιστης ενέργειας. Ο Γραµµικός Τετραγωνικός Ρυθµιστής. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 4

Παράδειγμα Βελτίστου Ελέγχου Οριζόντια Κίνηση «Πυραύλου» Thrust: u mass: x 3 velocity: x 2 posi)on: x 1 Ανισοτικός Περιορισμός: H ώθηση είναι φραγμένη Ισοτικός Περιορισμός: Το μοντέλλο κίνησης του!x πυραύλου 1 x 2!x 2!x 3 = Αρχικές Τελικές Συνθήκες:!s!υ!m = 1 u 1 x 3 2 Aρc x 2 w 2 α u [ ] u Ω = 0,F max = s a υ a m a x 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 5 x t f T = s b υ b free T

Παράδειγμα Βελτίστου Ελέγχου Οριζόντια Κίνηση «Πυραύλου» Thrust: u mass: x 3 velocity: x 2 posi)on: x 1 Το πρόβλημα του Βελτίστου Ελέγχου: Να ευρεθεί η (κατά τμήματα συνεχής) συνάρτηση της ώθησης u : 0,t f [ 0,F max ] που ικανοποιεί όλους τους περιορισμούς, ισοτικούς- ανισοτικούς- αρχικούς- τελικούς, και ελαχιστοποιεί την κατανάλωση t f καυσίμου: J ( u) = u( t) t 0 Εναλλακτικά, αλλά ισοδύναμα, θα μπορούσε να χρησιμοποιηθεί το κριτήριο J ( u) = x 3 t f x = s υ m T Γιατί το J εξαρτάται μόνο το απο το u ενώ εμπεριέχει μόνο το x 3 (t f )? Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 6

Το Πρόβλημα του Βελτίστου Ελέγχου Στην πιο γενική περίπτωση, θεωρούµε τη ΔΕ που περιγράφει την δυναµική της εγκατάστασης Εισάγουµε την έννοια του Δείκτη Απόδωσης (performance inex) ή Συνάρτησης Κόστους (cost function) ή Αντικειµενικής Συνάρτησης (objective function) η οποία πρέπει να ελαχιστοποιηθεί: Η «Συνάρτηση Απώλειας» (Loss Function) αντιπροσωπεύει κάποια ποινή που: Εξαρτάται από τη κατάσταση, την είσοδο ή από συνδυασµό τους, και Αναφορικα µε το χρόνο, είναι στατική ή χρονικά εξαρτώµενη. Παραδείγµατα: L x( t),u( t),t = 1 : ελαχιστοποίηση χρόνου, L x( t),u( t),t = u 2 ( t) : ελαχιστοποίηση ενέργειας, L x( t),u( t),t = u( t) : ελαχιστοποίηση καυσίµου Μπορεί να υπάρχουν και περιορισµοί (constraints) που συνδέουν είτε τη κατάσταση, είτε την είσοδο ή και τις 2, συνδυασµένα. Μπορεί να είναι : Ισοτικοί D( x( t), u( t), t) = 0 t t0, t f Ανισοτικοί C x( t) u( t) t t t t 0,, 0, f L x t, u t, t Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 7

Το Πρόβλημα του Βελτίστου Ελέγχου Κατά συνέπεια, το πρόβληµα βελτιστοποιήσεως έγγυται στην ανεύρεση εκείνης της συνάρτησης εισόδου u(t) t [t 0,t f ] η οποία : u * (t) Ελαχιστοποιεί (min) την αντικειµενική συνάρτηση J(u) και Υπόκειται (subject to s.t.) σε περιορισµούς : τόσο κατάστασης-εισόδου (ισοτικοί/ανισοτικοί) όσο και αυτούς που εισάγει η ΔΕ της δυναµικής του συστήµατος Αυτό το πρόβληµα βελτιστοποίησης εφράζεται µαθηµατικά ως min u J u Η προκύπτουσα ελαχιστοποιούσα συνάρτηση συµβολίζεται ως u (t) t [t 0,t f ] Προφανώς αυτή η βέλτιστη συνάρτηση εισόδου u (t) t [t 0,t f ], όταν εισαχθεί στη ΔΕ της δυναµικής του συστήµατος και αυτή συνεπώς επιλυθεί, οδηγεί στη βέλτιστη πορεία x (t) t [t 0,t f ], x (t 0 )=x 0 του συστήµατος! = 0 = 0 x 0 st.. x f x, u, t x t x D x t, u t, t = 0 C x t, u t, t 0 x * (t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 8

Το Πρόβλημα του Βελτίστου Ελέγχου Το προηγούµενο γενικευµένο πρόβληµα µπορεί να αναχθεί σε απλούστερες µορφές όπου π.χ. το σύστηµα είναι γραµµικό ή οι ισοτικοί /ανισοτικοί περιορισµοί είναι απλά φράγµατα της κατάστασης ή της εισόδου κλπ. Σε αυτό το µάθηµα θα δοθεί έµφαση (αλλά όχι αποκλειστικότητα) σε µία από τις απλούστερες δυνατές µορφές, όπου: Το σύστηµα είναι ΓΧΑΣ Δεν υπάρχουν ισοτικοί / ανισοτικοί περιορισµοί εισόδων-καταστάσεων, και Η αντικειµενική συνάρτηση είναι τετραγωνική Ό όρος τεραγωνική πηγάζει από το ότι τόσο η Loss Function όσο και το τελικό κόστος είναι τετραγωνικοί όροι Παρατηρούµε ότι: Η Loss Function επιβαρύνει «µεγάλες καταστάσεις» και µεγάλη «κατανάλωση ενέργειας» Το τελικό κόστος επιβαρύνει την απόκλιση από τη µηδενική κατάσταση Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 9

min X s.t. = 0 0 J X Εισαγωγή στο Λογισμό των Μεταβολών Βελτιστοποίηση Βελτιστοποίηση πεπερασµένης διάστασης άπειρης διάστασης G X (δηλ. Χ R ) (δηλ. u(t) t [t 0,t f ] ) F X Η επίλυση των διατυπωθέντων προβληµάτων βελτίστου ελέγχου απαιτεί τη χρήση εννοιών πέρα της κλασσικής θεωρίας (στατικής) βελτιστοποίησης. Θα εισαχθούν έννοιες από τη περιοχή του Λογισµού των Μεταβολών (Calculus of Variations). Προφανώς, δεδοµένου ότι η εδώ παρουσίαση θα είναι εισαγωγική ( light ) θα την δούµε απλοποιηµένα θεωρώντας τα εξης: Όλες οι συναρτήσεις που ορίζονται εδώ έχουν συνεχείς µερικές παραγώγους, σε όλο το πεδίο ορισµού τους, ως πρός όλες τις µεταβλητές τους (εκτός αν ξεκάθαρα ορίζεται το αντίθετο), και Το πρόβληµα βελτιστοποίσης ορίζεται εδώ στην συνολική (global) µορφή του και δεν υπάρχουν ανισοτικοί περιορισµοί που το περιορίζουν. min u J u st.. x! = f x, u, t x t = x D x t, u t, t = 0 C x t, u t, t 0 0 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 10

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Θεωρούµε τη συνάρτηση f :!! την οποία θέλουµε να ελαχιστοποιήσουµε σε όλο το πεδίο ορισµού της z!, δηλαδή ψάχνουµε : Την ελάχιστη τιµή της συνάρτησης : min f ( z), και z! Το σηµείο του πεδίου ορισµού που επιτυγχάνεται η ελαχιστοποίηση: z = arg min f ( z) z! Αναζητούµε τις αναγκαίες συνθήκες ώστε το z* να ελαχιστοπoιεί την f (z). Προφανώς: ( ) f ( z ) υ!, υ 0 f z + υ > Δηλαδή η κατευθυνόµενη πάραγωγος (irectional erivative) της f (z) στο z*, ώς προς την κατεύθυνση του υ, είναι µηδενική που σηµαίνει ότι... f(z * +υ) f(z * f(z ) * +υ) f(z * ) z * +υ z * +υ z Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ * z * 11 11

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις ( + ε υ) f z f z f ( z ) υ = lim 0 + ε f ( z ± ε υ) > f ( z ) ε > 0 f ( z f ( z ε υ) f ( z ) f ( z ) ( υ) = f ( z ) υ = lim 0 + ε 0 ε Τ f ( z + ε υ) f ( z ) f ( z ) υ = lim 0 + ε 0 ε 0 f ( z ) υ = 0 Τ Τ f ( z ε υ) f ( z ) f ( z ) ( υ) = f ( z ) υ = lim 0 + ε 0 ε ε 0 ( z + ε υ) f ( z ) 0 ε Τ f ( z ) υ = 0 f ( z ε υ) f ( z ) = lim 0 + ε 0 ε f(z * +υ) f(z * ) z * +υ z * 0 Επειδή αυτό ισχύει για κάθε υ, τότε f z = Όλα τα σηµεία z* που ικανοποιούν αυτή τη σχέση λέγοντα «κρίσιµα σηµεία». Αν ένα σηµείο z* ελαχιστοπoιεί την f (z) τότε είναι και κρίσιµο σηµείο της. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 12

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Ένα κρίσιµο σηµείο µίας συνάρτησης ΔΕΝ την ελαχιστοποιεί όµως αναγκαστικά π.χ.: [ ] T [ ] 2 2 f. z = z1 + z2 2 f z = z1 z2 z = 0 0 το µοναδικό κρίσιµο σηµείο ΔΕΝ ελαχιστοποιεί τη συνάρτηση ΑΛΛΑ... την µεγιστοποιεί. T z * [ ] [ ] 2 2 f. z = z1 z2 2 f z = z1 z T 2 z = 0 0 το µοναδικό κρίσιµο σηµείο ΔΕΝ ελαχιστοποιεί τη συνάρτηση ΑΛΛΑ είναι «σηµείο σάγµατος». T Η εξαγωγή συµπερασµάτων για το είδος του κρίσιµου σηµείου απαιτεί την θεώριση της 2 ης παραγώγου (Hessian). z * Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 13

Παράδειγμα Έστω η συνάρτηση f ( z) = 1 όπου,, 2 zt Qz + S T z z R 2 Q = Q T = T q 12 q 22 και S = s 1 s 2. Για τα κρίσιμα σημεία f ( z) = 0 Qz + S = 0 z = Q 1 S H Hessian είναι 2 f z = Q. Άρα για τα κρίσιμα σημεία z * έχουμε: Αντιστοιχούν σε ελάχιστα αν: 2 f(z) > 0 Q > 0 (o πίνακας Q είναι θετικά ορισμένος (Posi ve Definite - p) Αντιστοιχούν σε μεγιστα άν: 2 f(z) < 0 Q < 0 (o πίνακας Q είναι αρνητικά ορισμένος (Nega ve Definite - n) q 11 q 12 Αντιστοιχούν σε σημεία σάγματος αν: 2 f(z) (δηλ. ο πίνακας Q) είναι ακαθόριστος (Inefinite i). Αντιστοιχούν σε ιδιόμορφα σημεία αν: 2 f(z) =0 (δηλ. Q = 0) χρειζει περαιτέρω ανάλυσης για να καθορισθεί η «φύση» του κρίσιμου σημείου). Αν δέν έχουμε περίπτωση ιδιομορφίας τότε μπορούμε να έχουμε = 1 2 zt Qz + S T z f z z = Q 1 S T Q( Q 1 S) + S T ( Q 1 S) = 1 2 ST QS Γιατί? = 1 2 Q 1 S Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 14

Παράδειγμα Έστω η περίπτωση όπου Q = Q T = 1 2 Τότε επειδή Q > 0 (γιατί?) το ακρότατο z = Q 1 S = 1 1 1 2 αντιστοιχεί σε ελάχιστο, = 1 2 και f z Οι ισοϋψείς της f(z) έχουν τη 1 1 μορφή ελλείψεων. Τα «βέλη» δείχνουν την κατεύθυνση 1 της κλισης f ( z) = Qz + S στο αντιστοιχο σημείο και είναι κάθετα στις ισοϋψείς. 0 1 = 0 1 S = 0 1 T Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 15

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Όπως είδαµε από τα προηγούµενα παραδείγµατα, η εξαγωγή συµπεράσµατος για το είδος του κρίσιµου σηµείου έγινε µέσω της 2 ης παραγώγου (Hessian). Εναλλακτικά: Μιά συνάρτηση f :!! λέµε ότι είναι : κυρτή (convex) άν f ( z+ υ) f ( z) f ( z) υ z, υ! αυστηρά κυρτή (strictly convex) άν είναι κυρτή και ισχύει f ( z υ) f ( z) f ( z) υ υ 0 + = =! f(z)+ f(z) υ f(z+υ) f(z) z+υ υ z f(z ) υ z z +υ f(z +υ )=f(z )+ f(z ) υ f(z ) 0 Έστω z* κρίσιµο σηµείο της αυστηρά κυρτής f (z) δηλαδή f z =. Εποµένως f z υ f z f z υ υ f z υ f z υ + > = 0 0! + > 0! Συµπέρασµα: Ένα κρίσιµο σηµείο z* µιάς αυστηρά κυρτής συνάρτησης f (z) την ελαχιστοποιεί, δηλαδή z = arg min f ( z) z! 16