ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2011-12, c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 21-24/2/12



Σχετικά έγγραφα
Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Στοχαστικά Σήµατα και Εφαρµογές

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το

Εφαρμοσμένα Μαθηματικά ΙΙ

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Κεφάλαιο M3. Διανύσµατα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κλασικη ιαφορικη Γεωµετρια

1.1 Η Έννοια του Διανύσματος

x 2 = x x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

Συστήματα συντεταγμένων

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΙΑΛΕΞΕΙΣ ΜΗΧΑΝΙΚΗΣ. Την Κινηµατική (µελετάει την κίνηση των σωµάτων χωρίς να ενδιαφέρεται για τις δυνάµεις που ενεργούν στα σώµατα)

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

( AB) + ( BC) = ( AC).

1.1.3 t. t = t2 - t x2 - x1. x = x2 x

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

Κεφάλαιο 4 ιανυσµατικοί Χώροι

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

Κίνηση στερεών σωμάτων - περιστροφική

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Εφαρμοσμένα Μαθηματικά ΙΙ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

1.2 Συντεταγμένες στο Επίπεδο

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο

Εφαρμοσμένα Μαθηματικά ΙΙ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΑΝΥΣΜΑΤΑ. 1.1 Γενικά

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

Ερωτήσεις αντιστοίχισης

Διανύσµατα στο επίπεδο

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Ο Ευκλείδειος Χώρος. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών

n, C n, διανύσματα στο χώρο Εισαγωγή

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

Μετασχηµατισµοί 2 &3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

2.5 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μαθηματικά. Β'Λυκείου. Προσανατολισµού Θετικών Σπουδών. Μαρίνος Παπαδόπουλος

Transcript:

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος ΤΜΗΥΠ Πανεπιστήµιο Πατρών ιαφάνειες διαλέξεων 21-24/2/12

Το µάθηµα στο Web Στο http://scgroup.hpclab.ceid.upatras.gr/class/laa.html ϑα ϐρείτε (µερικές ϕορές µε κωδικό): Πληροφορίες Ωρες γραφείου, προγραµµατισµό µαθήµατος, ανακοινώσεις. Πηγές Συγγράµµατα (µε κωδικό). Ηµερολόγιο µαθήµατος εκ των υστέρων παράθεση στοιχείων που συζητήσαµε στο µάθηµα και σύνδεση µε τις διαφάνειες. Κανόνες σχετικά µε την αξιολόγηση - είναι σηµαντικό να γνωρίζετε από την αρχή τους κανόνες που διέπουν το µάθηµα.

Εικόνα ηµερολογίου (2008!)

Σύνοψη κανόνων Η αξιολόγηση επίδοσης στο µάθηµα ϑα προκύψει από τα εξής: α) Την τελική εξέταση, ϐ) την ενεργή συµµετοχή σας στο µάθηµα. Οι ερωτήσεις στην εξέταση έχουν για στόχο να αναδειχτεί ο ϐαθµός κατανόησης των ϐασικών εννοιών του µαθήµατος. ϐ) Να σας δοθεί η ευκαιρία να δείτε το σύνολο της ύλης µε επακόλουθο το καλύτερο δέσιµο των εννοιών και την αναγνώριση όποιων αδυναµιών τους. Σε κάθε περίπτωση, η επιτυχής εκπλήρωση της εξέτασης πρέπει να είναι ϕυσικό επακόλουθο της συστηµατικής παρακολούθησης του µαθήµατος και όχι αυτοσκοπός.

Να Ϲητήσω εξωπανεπιστηµιακή ϐοήθεια; Πεταµένα λεφτά (απολύτως µη πιστοποιηµένα κέντρα... ) Για περισσότερες πληροφορίες σχετικά µε τους κανονισµούς, δείτε στις σχετικές ιστοσελίδες του µαθήµατος.

Πηγές

Τοπογραφία της περιοχής ιανύσµατα και διανυσµατικοί χώροι υπόχωροι, γραµµική ανεξαρτησία, ϐάσεις, διάσταση Μητρώα (ή πίνακες) αλγεβρικές πράξεις, «ειδικός» πολλαπλασιασµός Γεωµετρία αντιστοιχίσεις στο χώρο, αναλυτική γεωµετρία Λογισµός µητρώων Πράξεις, συναρτήσεις, διαφορικός λογισµός

Γραµµική άλγεβρα και ϑεωρία µητρώων Linear algebra, linear analysis Matrix theory, matrix analysis Συγγενείς περιοχές Μαθηµατικά και Φυσική Συναρτησιακή ανάλυση, ϑεωρία τελεστών (οπερατορ τηεορψ), ϑεωρία διαταραχών. Επιστήµη Υπολογιστών Υπολογιστική γραµµική άλγεβρα, υπολογιστική µητρώων, αριθµητική ανάλυση, επιστηµονικός υπολογισµός, επαναληπτικές µέθοδοι επίλυσης γραµµικών συστηµάτων, αλγόριθµοι προσεγγίσης και παραµβολής, ϑεωρία και ανάλυση γράφων. Στατιστική Γραµµική παλινδρόµηση, ανάλυση κυρίαρχων κατευθύνσεων Μηχανική ελέγχου και επεξεργασίας σηµάτων Θεωρία ευστάθειας, ϕίλτρα,...

«Απρόσµενες» εφαρµογές

«Απρόσµενες» εφαρµογές

ιανύσµατα ως γεωµετρικά αντικείµενα Σηµεία στο «χώρο» Κατευθυνόµενα ευθύγραµµα τµήµατα Ενδεχοµένως δείχνουν από συγκεκριµένη «αρχή» σε ένα άκρο ιανυσµατικός λογισµός

Leibnitz (1679)... εν είµαι ακόµα ικανοποιηµένος µε την άλγεβρα γιατί δεν οδηγεί στις ϐραχύτερες µεθόδους και στις πιο όµορφες κατασκευές στη γεωµετρία.... Πιστεύω ότι όσον αφορά στη γεωµετρία, χρειάζεται ακόµα µια ανάλυση που είναι γεωµετρική ή γραµµική και που εκφράζει άµεσα τη ϑέση (σιτυς) όπως η άλγεβρα εκφράζει άµεσα το µέγεθος.

Γεωµετρική ερµηνεία µιγαδικών Caspar Wessel (1745-1818) On the Analytic Representation of Direction, 1799 Η παρούσα προσπάθεια αναφέρεται στο ερώτηµα, πώς να αναπαραστήσουµε την κατεύθυνση (direction) αναλυτικά...... ύο ευθύγραµµα τµήµατα προστίθενται αν τις ενώσουµε έτσι ώστε η δεύτερη γραµµή να αρχίζει εκεί που τελειώνει η πρώτη και µετά σχηµατίσουµε το ευθύγραµµο τµήµα που συνδέει την αρχή της πρώτης γραµµής µε το τέλος της δεύτερης. Argand (1806): Essai sur une maniere de representer les quantites imaginaires dans les constructions geometriques γεωµετρία µιγαδικών και πράξεών τους.

Αριθµοί σε 4 διαστάσεις Τα τετραδόνια quaternions του Hamilton In the THEORY OF SINGLE NUMBERS, the symbol 1 is absurd, and denotes an IMPOSSIBLE EXTRACTION, or a merely IMAGINARY NUMBER; but in the THEORY OF COUPLES, the same symbol 1 is significant, and denotes a POSSIBLE EXTRACTION, or a REAL COUPLE, namely... the principal square root of the couple ( 1,0). In the latter theory, therefore, though not in the former, this sign may be properly employed; and we may write, if we choose, for any couple (a 1,a 2 ) whatever (a 1,a 2 ) = a 1 + a 2 1... Theory of conjugate functions, or algebraic couples (1837)

As to Triplets, I must acknowledge that though I fancied myself at one time to be in a possession of something worth publishing about them, I never could resolve the problem ˆ to assign two symbols Ω and ω such that the one symbolical equation a + bω + cω = a 1 + b 1 Ω + c 1 ω shall give the three equations a = a 1,b = b 1,c = c 1. But if my view of Algebra is just, it must be possible, in some way or other, to introduce not only triplets but polyplets, so as in some sense to satisfy the symbolical equation a = (a 1,a 2,,a n ); a being here one symbol, as indicative of one (complex) thought; and a 1,a 2,..., an denoting real numbers, positive or negative, in other words, n dates, in the chronological sense of the word,...

ιανύσµατα - ως σηµεία 1 διάσταση Ενας αριθµός µπορεί να αναπαραστήσει ένα σηµείο σε µια ευθεία, εφόσον έχουµε επιλέξει την αρχή (0) και τη µονάδα µήκους. 2δ Ενα Ϲεύγος αριθµών (α, β) µπορεί να αναπαραστήσει ένα σηµείο στο «επίπεδο» εφόσον έχουµε επιλέξει την αρχή και µονάδες µήκους για κάθε «συνιστώσα». 3δ Τρείς αριθµοί (α, β, γ) αναπαριστούν ένα σηµείο στο 3-διάστατο ευκλείδειο χώρο ν-δ n αριθµοί (α 1,α 2,...,α n ) αναπαριστούν ένα σηµείο στο n-διάστατο ευκλείδειο χώρο

Συµβολισµοί αριθµοί (ϐαθµωτοί) Πεζά ελληνικά γράµµατα για ϐαθµωτούς, π.χ. α,β,ξ,ψ, ενδεχοµένως µε δείκτες. διαστάσεις, δείκτες πεζά λατινικά, π.χ. i, j, k, m, n διανύσµατα πεζά λατινικά, π.χ. x, y, a, b µητρώα Κεφαλαία λατινικά για µητρώα π.χ. A,B,X,Y,P Κεφαλαίο λατινικό πεζό λατινικό πεζό ελληνικό

Παραδείγµατα Θέση σηµείου στο χώρο y = [ψ 1,ψ 2,ψ 3 ]... που µπορεί να εξαρτάται από το χρόνο y(t) = [ψ 1 (t),ψ 2 (t),ψ 3 3(t)] Θέση απλού γεωµετρικού αντικειµένου που καθορίζεται από τις ϑέσεις οδηγών στο χώρο, π.χ. 8 = 2 3 κορυφές ορθογωνίου παραλληλεπιπέδου Αν το αντικείµενο ήταν σε περισσότερες διαστάσεις, χρειαζόµαστε περισσότερους οδηγούς και συντεταγµένες για τον κάθε ένα.

Παράδειγµα Στις 3 διαστάσεις, ένα πολύπλοκο αντικείµενο µπορεί να χρειάζεται s σηµεία για να προσεγγιστεί καλά, τότε τα διανύσµατα των οδηγών καθορίζουν έναν πίνακα µε 3 γραµµές και s στήλες. Y = [y 1,y 2,,y s ] = ψ 11 ψ 12 ψ 1s ψ 21 ψ 22 ψ 2s ψ 31 ψ 32 ψ 3s Το Y είναι µητρώο/πίνακας s στηλών και 3 γραµµών (αν είµαστε στις 2 ή 3 διαστάσεις). Λέµε ότι είναι µητρώο 3 s

Παράδειγµα στα χρηµατοοικονοµικά Πίνακας επενδύσεων σε (µετοχές) 5 συγκεκριµένων κατηγοριών σε Κιλοευρώ Κάθε επενδυτής είναι ένα σηµείο στον 5-διαστατο χώρο! Εφόσον έχουµε αποφασίσει για τους άξονες (Κατασκευές, Τράπεζες,...) και για τις µονάδες, το διάνυσµα [4.5, 3.2, 1.7, 3.9, 1.5] είναι αρκετό για να παραστήσει το συγκεκριµένο επενδυτικό χαρτοφυλάκιο. κατασκευές 4.5 τράπεζες 3.2 τρόφιµα 1.7 µέταλλα 3.9 είδη ένδυσης 1.5

Πράξεις µε διανύσµατα Πρόσθεση c = a + b Πολλαπλασιασµός µε αριθµό (ϐαθµωτό) c = ψa Ερµηνείες: αριθµητική: πώς συνδυάζονται οι συνιστώσες γεωµετρική: Τι συµβαίνει στο χώρο

ιάλεξη: 24/2/12 Γραµµικός συνδυασµός και ιάνοιγµα Ορισµός Εστω η συλλογή των διανυσµάτων U = {u 1,u 2,...,u s } και οι (µη µηδενικοί) ϐαθµωτοί α 1,..,α s. Η έκφραση α 1 u 1 + α 2 u 2 + + α s u s αποκαλείται γραµµικός συνδυασµός (των εν λόγω s διανυσµάτων). Το σύνολο Υ όλων των διανυσµάτων u τ.ώ. U := {u = α 1 u 1 + α 2 u 2 + + α s u s α j R } λέγεται διάνοιγµα (span) των διανυσµάτων του U. Παρατήρηση Θεωρούµε τα διανύσµατα δοθέντα και τους συντελεστές α j παραµέτρους που µπορούν να πάρουν οποιαδήποτε τιµή.

ιάλεξη: 24/2/12 Ενδιαφέροντα ερωτήµατα Εστω πως µας δίνεται ένα σύνολο από διανύσµατα, π.χ. U = {u 1,...,u s } (ϑεωρούµε πάντα ότι εκκινούν από το 0). Ποιό είναι το διάνοιγµα του U; οθέντος ενός διανύσµατος v, µπορούµε να το γράψουµε ως γραµµικό συνδυασµό των διανυσµάτων του U; Παράδειγµα 1 Αν U = {u 1 } το διάνοιγµα είναι όλα τα σηµεία της ευθείας που περιέχει το u 1. Παράδειγµα 2 Αν U = {u 1,u 2 } και δεν είναι συγγραµµικά, το διάνοιγµα είναι όλο το επίπεδο που ορίζεται από τις 2 ευθείες επί των οποίων κείνται τα διανύσµατα. Παράδειγµα 3 είτε την επόµενη σελίδα

ιάλεξη: 24/2/12 Εστω ότι p,q R 2 όπως δείχνουµε στις 3 εικόνες. Προσπαθούµε να γράψουµε το διάνυσµα που αντιστοιχεί στη «ϕατσούλα» ως γραµµικό συνδυασµό των p,q. είτε πώς αλλάζει ο συνδυασµός: αν η γωνία µεταξύ p,q είναι µικρή, γενικά ϕαίνεται να χρειάζεται να µεγάλη αλλαγή (επέκταση ή σµίκρυνση) των p,q (εντέλει, γίνεται αδύνατον όταν τα p,q είναι συγγραµµικά, εκτός αν και η ϕατσούλα είναι επίσης συγγραµµική.

ιάλεξη: 24/2/12 Ορολογία Πραγµατικό διάνυσµα = ιάνυσµα µε στοιχεία που λαµβάνουν πραγµατικές τιµές Μιγαδικό διάνυσµα = ιάνυσµα µε στοιχεία που λαµβάνουν µιγαδικές τιµές R n ο πραγµατικός ευκλείδειος χώρος: Αναφερόµαστε στο χώρο που αποτελείται από το σύνολο των σηµείων (n-tuples) του Καρτεσιανού γινοµένου R n := R R R = {(α 1,α 2,...,α n ) α 1 R,...,α n R} Στη συνέχεια ϑεωρούµε ότι όλα τα διανύσµατα στα οποία αναφερόµαστε έχουν ίδια µορφή οπότε µπορούν να συνδυαστούν γραµµικά.

ιάλεξη: 24/2/12 Εσωτερικό γινόµενο, µήκος, µοναδιαίο διάνυσµα Εσωτερικό (ή ϐαθµωτό) γινόµενο Ορίζεται ως µια ϐαθµωτή συνάρτηση (δηλ. το αποτέλεσµα είναι ϐαθµωτός), ενός διατεταγµένου Ϲεύγους διανυσµάτων (a, b) τέτοια ώστε a, b = b, a ξ 1 a 1 + ξ 2 a 2,b = ξ 1 a 1,b + ξ 2 a 2,b a,a 0 και a,a = 0 a = 0 Μήκος πραγµατικού διανύσµατος, µοναδιαίο διάνυσµα Το µήκος διανύσµατος a (επίσης, ευκλείδια νόρµα ή νόρµα-2 ) ορίζεται ως 1. a := a,a

ιάλεξη: 24/2/12 Παρατηρήσεις Εστω ότι υπάρχει κάποιος χώρος 2 V από τον οποίο αντλούµε διανύσµατα. Επίσης συµβολίζουµε µε R + τους πραγµατικούς µη αρνητικούς αριθµούς. Οταν τα διανύσµατα είναι πραγµατικά, προσέξτε ότι ισχύουν οι παρακάτω ιδιότητες για τη συνάρτηση, : V V R: συµµετρία γραµµικότητα ως προς κάθε µεταβλητή (διγραµµικότητα) αυστηρή ϑετικότητα του a, a για κάθε µη µηδενικό a. Το σύµβολο που ονοµάσαµε νόρµα είναι συνάρτηση : V V R +. 2 Σύντοµα ϑα δούµε τι χώρος είναι αυτός (γραµµικός διανυσµατικός χώρος)

ιάλεξη: 24/2/12 Μοναδιαίο διάνυσµα Μοναδιαίο αποκαλείται κάθε διάνυσµα µήκους 1. Οποιοδήποτε µη µηδενικό διάνυσµα µπορεί να «κανονικοποιηθεί» ώστε να παραχθεί ένα «συγγραµµικό» διάνυσµα µήκους 1: â = 1 a a

ιάλεξη: 24/2/12 Στον Ευκλείδειο χώρο Για πραγµατικά διανύσµατα a,b := a = n j=1 ( n α 2 j j=1 α j β j ) 1/2 Για µιγαδικά διανύσµατα (δείτε και παρακάτω) a,b := a = n j=1 α j β j ( n j=1 α j 2 ) 1/2

ιάλεξη: 24/2/12 Καθετότητα / ορθογωνιότητα - γωνίες Ορθογωνιότητα Λέµε ότι δύο διανύσµατα a,b είναι κάθετα ή ορθογώνια µεταξύ τους αν a,b = 0. Γωνία µεταξύ διανυσµάτων Το συνηµίτονο της γωνίας µεταξύ διανυσµάτων a, b ορίζεται ως η τιµή cosφ := 1 a b a,b Απόσταση (ευκλείδεια) µεταξύ διανυσµάτων Ορίζεται ως a b. Παρατηρήστε ότι µε τον ορισµό αυτό, το µήκος ενός διανύσµατος a είναι η απόστασή του από το 0.

ιάλεξη: 24/2/12 Παράδειγµα στα χρηµατοοικονοµικά Πίνακας επενδύσεων σε (µετοχές) 5 συγκεκριµένων κατηγοριών σε Κιλοευρώ Κάθε επενδυτής είναι ένα σηµείο στον 5-διαστατο χώρο! Εφόσον έχουµε αποφασίσει για τους άξονες (Κατασκευές, Τράπεζες,...) και για τις µονάδες, το διάνυσµα [4.5, 3.2, 1.7, 3.9, 1.5] είναι αρκετό για να παραστήσει το συγκεκριµένο επενδυτικό χαρτοφυλάκιο. κατασκευές 4.5 τράπεζες 3.2 τρόφιµα 1.7 µέταλλα 3.9 είδη ένδυσης 1.5 Ενδιαφέρον: Το µέγεθος της επένδυση µπορεί να εκφραστεί ως < v,e > όπου e := [1,1,1,1,1].

ιάλεξη: 24/2/12 Στον µιγαδικό ευκλείδιο χώρο C n Αναφερόµαστε στο χώρο που αποτελείται από το σύνολο των σηµείων (n-tuples) του Καρτεσιανού γινοµένου C n := C C C = {(α 1,α 2,...,α n ) α 1 C,...,α n C} Τότε a,b := n j=1 α j β j Προσέξτε ότι η παραπάνω τροποποίηση είναι απαραίτητη, ειδάλλως µπορεί να ισχύει ότι a,a < 0, κάτι που δεν ϑέλουµε. Για παράδειγµα, αν χρησιµοποιούσαµε τον ορισµό για τα πραγµατικά διανύσµατα για το διάνυσµα a = [ι,0], τότε ϑα είχαµε για µήκος τη τετραγωνική ϱίζα του ι ι + 0 = 1. Με τον τροποποιηµένο ορισµό, a,a = ( ι)ι + 0 = 1 εποµένως δεν υπάρχει πρόβληµα (προκύπτει ότι a = 1.)

ιάλεξη: 24/2/12 Ενδιαφέροντα διανύσµατα e τα διανύσµατα µε 1 σε όλες τις ϑέσεις. e j Παράδειγµα στον R 3, e = 1 1 1 τα διανύσµατα µε µοναδικό µη µηδενικό στοιχείο στη ϑέση j,, e 1 = 1 0 0, e 2 = 0 1 0, e 3 = 0 0 1.

ιάλεξη: 24/2/12 Ιδέα εφαρµογής Εχουµε ένα «µαύρο κουτί» που υπολογίζει το εσωτερικό γινόµενο ρ = a,x ενός a (για το οποίο αποφασίζουµε εµείς) και ενός «κρυµµένου» x, που γνωρίζουµε πως έχει διάσταση n. Αθροιση στοιχείων Επιλέγουµε x = e διάστασης n (δηλ. x R n ), επιστρέφεται n j=1 ξ j = e,x. Ανάκτηση στοιχείου j Επιλέγουµε x = e j διάστασης, επιστρέφεται ξ j = e j,x Ανάκτηση όλου Χρησιµοποιούµε το κουτί n ϕορές µε είσοδο τα διανύσµατα e 1,e 2,...,e n.

ιάλεξη: 24/2/12 Εφαρµογή Εστω συνεχείς πραγµατικές συναρτήσεις f, g στο διάστηµα [ δ, δ] για κάποιο δ, π.χ. δ = 1. Τότε µπορούµε να ορίσουµε: δ f,g := f(t)g(t)dt δ Οι f(t) := cos(mt) και g(t) = sin(nt) είναι ορθογώνιες! Με λίγη Ανάλυση 3 συµµετρία γιατί 1 1 f(t)g(t)dt = 1 1 g(t)f(t)dt διγραµµικότητα γιατί αν f = α 1 f 1 + α 2 f 2 όπου f 1,f 2 είναι συνεχείς συναρτήσεις στο [ 1, 1], τότε από τη γραµµικότητα της ολοκλήρωσης 1 1 f(t)g(t)dt = α 1 1 1 f 1(t)g(t)dt + α 1 2 1 f 2(t)g(t)dt ϑετικότητα γιατί 1 1 f 2 (t)dt 0 µε ισότητα µόνον αν f 0. 3 Ισως χρειάζεται να ϑυµηθείτε ιδιότητες της ολοκλήρωσης!

ιάλεξη: 24/2/12 Ανισότητες Θεωρούµε ότι a,b,a 1,...,a s είναι οµοιόµορφα διανύσµατα. Schwarz a, b a b Bessel Αν γ j = a,a j τότε s j=1 α j 2 a 2. Εποµένως ισχύουν και τα παρακάτω που επιβεβαιώνουν ότι η συνάρτηση δ(a, b) := a b είναι «µαθηµατική απόσταση»: δ(a, b) = δ(b, a) δ(a,b) 0 και ισχύει ισότητα µόνον αν a = b. δ(a, b) δ(a, c) + δ(c, b) τριγωνική ανισότητα δ(a,b) = δ(a + c,b + c)

ιάλεξη: 24/2/12 Μαθηµατική Οµάδα Οµάδα είναι ένα σύνολο F µαζί µε µία πράξη + : F F F έτσι ώστε (Α1) α + (β + γ) = (α + β) + γ για κάθε α, β, γ F. (Α2) υπάρχει ένα στοιχείο 0 F τέτοιο ώστε α + 0 = α για κάθε α F. (Α3) για κάθε α F, υπάρχει ένα στοιχείο ( α) F τέτοιο ώστε α + ( α) = 0. Αν επίσης ισχύει και ότι (Α4) α + β = β + α για κάθε α, β F. τότε είναι Αβελιανή Οµάδα. Είναι εκπληκτικό πόσα πολλά µπορούν να ειπωθούν και τί ϑεωρίες να ϑεµελιωθούν χρησιµοποιώντας µόνον αυτές τις ιδιότητες

ιάλεξη: 24/2/12 Μαθηµατικό Σώµα (ή Πεδίο) Σώµα είναι ένα σύνολο F µαζί µε δυο πράξεις +, : F F F έτσι ώστε (Α1) α + (β + γ) = (α + β) + γ για κάθε α, β, γ F. (Α2) υπάρχει ένα στοιχείο 0 F τέτοιο ώστε α + 0 = α για κάθε α F. (Α3) για κάθε α F, υπάρχει ένα στοιχείο ( α) F τέτοιο ώστε α + ( α) = 0. (Α4) α + β = β + α για κάθε α, β F. (Μ1) α (β γ) = (α β) γ για κάθε α, β, γ F. (Μ2) υπάρχει ένα στοιχείο 1 F τέτοιο ώστε α 1 = α για κάθε α F. (Μ3) για κάθε α F, α 0, υπάρχει ένα στοιχείο α 1 F τέτοιο ώστε α α 1 = 1. (Μ4) α β = β α για κάθε α, β F. ( ) α (β + γ) = α β + α γ για κάθε α, β, γ F.

ιάλεξη: 24/2/12 ιανυσµατικός χώρος Μια πρώτη ϑεώρηση Ονοµάζεται διανυσµατικός χώρος επί του σώµατος F ένα σύνολο V µαζί µε δυο πράξεις + : V V V και : F V V τέτοια ώστε (V1) το (V, +) είναι Αβελιανή οµάδα. (V2) (α β) v = α (β v) για κάθε α, β F και για κάθε v V. (V3) (α + β) v = α v + β v για κάθε α, β F και για κάθε v V. (V4) α (v + w) = α v + α w για κάθε α F και για κάθε v, w V. (V5) 1 v = v για κάθε v V (1 F). Ενας διανυσµατικός χώρος συµβολίζεται µε (V,F) ή απλά V, εφόσον δεν υπάρχει ϑέµα σύγχυσης ως προς το υποκείµενο σώµα.