FM & PM στενής ζώνης. Narrowband FM & PM

Σχετικά έγγραφα
FM & PM στενής ζώνης. Narrowband FM & PM

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος

Διαμόρφωση FM στενής ζώνης. Διαμορφωτής PM

Διαμόρφωση Γωνίας. Η διαμόρφωση γωνίας (angle modulation) είναι ένας. Έχει καλύτερη συμπεριφορά ως προς το θόρυβο και την

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

Τηλεπικοινωνιακά Συστήματα Ι

Εισαγωγή στις Τηλεπικοινωνίες

Συστήματα Επικοινωνιών

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση

Αποδιαμόρφωση γωνίας με θόρυβο

Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2

Συστήματα Επικοινωνιών

x(t) = m(t) cos(2πf c t)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Διαμόρφωση Συχνότητας. Frequency Modulation (FM)

Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ

Τηλεπικοινωνιακά Συστήματα Ι

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ

Συστήματα Επικοινωνιών Ι

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

HMY 220: Σήματα και Συστήματα Ι

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Τηλεπικοινωνιακά Συστήματα Ι

Εφαρμογή στις ψηφιακές επικοινωνίες

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Θεώρημα δειγματοληψίας

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους

Συστήματα Επικοινωνιών Ι

. Σήματα και Συστήματα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

Αποδιαμόρφωση σημάτων CW με θόρυβο

ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ. Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος

Ορθογωνική διαμόρφωση πλάτους. Quadrature Amplitude Modulation (QAM)

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

Ψηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος

Συστήματα Επικοινωνιών Ι

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Συστήματα Επικοινωνιών Ι

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ

Αρχές Τηλεπικοινωνιών

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation

3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία.

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

HMY 220: Σήματα και Συστήματα Ι

Συστήματα Επικοινωνιών ΙI

Μετάδοση πληροφορίας - Διαμόρφωση

Συστήματα Επικοινωνιών

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Συστήματα Επικοινωνιών ΙI

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Τηλεπικοινωνιακά Συστήματα Ι

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Επανάληψη Μιγαδικών Αριθμών

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Συστήματα Επικοινωνιών ΙI

Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος

Μετάδοση πληροφορίας - Διαμόρφωση

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Ο μετασχηματισμός Fourier

Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t

Ψηφιακή Επεξεργασία Σημάτων

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Γραμμική διαμόρφωση φέροντος κύματος

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Συστήματα Επικοινωνιών

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Τηλεπικοινωνιακά Συστήματα Ι

Transcript:

FM & PM στενής ζώνης Narrowband FM & PM

Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM = t 2 πδf x( ) d FM τ τ Εάν φ() t 1 έχουμε διαμόρφωση στενής ζώνης

Διαμόρφωση γωνίας ως ζωνοπερατό σήμα Αναπαράσταση ως ζωνοπερατό σήμα [ π φ ] st () = Acos2 ft+ () t c = Ac cos(2 π ft c )cos φ( t) sin(2 π ft c )sin φ( t) = m()cos(2 t π ft) m()sin(2 t π ft) όπου οι ορθογώνιες συνιστώσες είναι c ( ) ( ) c c s c 1 ( ) 2 mc() t = Accos φ() t = Ac 1 φ () t + Ac 2! 1 m t = A φ t = A φ t φ t + Aφ t 3! ( ) 3 () sin () () () s c c c ()

Διαμόρφωση γωνίας στενής ζώνης Στην περίπτωση διαμόρφωσης στενής ζώνης mc() t Ac m () t Aφ() t s c οπότε το διαμορφωμένο κατά γωνία σήμα στενής ζώνης είναι [ π φ π ] st () A cos(2 ft) ()sin(2 t ft) c c c

Φάσμα σήματος στενής ζώνης Ο μετασχηματισμός Fourier του σήματος στενής ζώνης είναι Ac ja S( f) = ( f fc) + ( f + fc) + Φ( f fc) Φ ( f + fc) 2 2 όπου c [ δ δ ] [ ] Δφ X() t PM Φ () t = jδf X () t FM f

Διαμόρφωση στενής ζώνης από απλό τόνο Έστω mt () = Acos(2 π f t) FM Asin(2 π f t) PM Διαμόρφωση φάσης s( t) = A cos(2 π f t) Δφsin(2 π f t)sin(2 π f t) [ ] c c m c = Ac cos(2 π fct) βpsin(2 π fmt)sin(2 π fct) Διαμόρφωση συχνότητας Δf s( t) = Ac cos(2 π fct) sin(2 π fmt)sin(2 π fct) f m = Ac cos(2 π fct) β f sin(2 π fmt)sin(2 π fct) m m

Διαμόρφωση στενής ζώνης από απλό τόνο που τελικά απλοποιείται στην 1 1 st ( ) = Ac cos(2 π ft c ) + βcos 2 π( fc + fm) t cos π fc fm) 2 2 Όπου β 1 ο εκάστοτε δείκτης διαμόρφωσης Δ φ = kpam PM β = Δf kf Am = FM fm fm [ ] β [ 2 ( t]

Αναπαράσταση με φασιθέτες FM AM

Συμπέρασμα Το διαμορφωμένο κατά γωνία σήμα στενής ζώνης είναι παρόμοιο με το σήμα AM Έχει εύρος ζώνης 2W διπλάσιο του σήματος προς διαμόρφωση

FM & PM ευρείας ζώνης Broadband FM & PM

Φασματική ανάλυση Η μαθηματική αναπαράσταση του φάσματος στη γενική περίπτωση, ακόμη και για απλά σήματα, είναι δυσχερής λόγω των εμπλεκομένων μη γραμμικοτήτων Επίσης, το διαμορφωμένο σήμα FM ή PM ευρείας ζώνης, εν γένει, δεν είναι περιοδικό Εντούτοις είναι δυνατή η ανάλυση σε αρμονικές συνιστώσες όταν το m(t) είναι περιοδική συνάρτηση Η απλούστερη περίπτωση είναι αυτή του ημιτονικού σήματος

Διαμόρφωση από απλό τόνο Όπως πριν για σήματα FM mt () = A cos(2 π ft) m Ενώ για σήματα PM mt () = A sin(2 π ft) m m m Έτσι και στις δύο περιπτώσεις το διαμορφωμένο σήμααπόαπλότόνοθαείναι [ π β π ] st () = Acos2 ft+ sin(2 ft) c c m

Μιγαδική περιβάλλουσα Το διαμορφωμένο κατά FM σήμα που προκύπτει από απλό τόνο σήμα δεν είναι περιοδικό (πλην εξαιρέσεων) [ π β π ] st () = Acos2 ft+ sin(2 ft) c c m = Ac Re exp j2π fct+ jβ sin(2 π fmt) = Re ( )exp( 2 ) ( ) [ st jπ ft] όμως η μιγαδική του περιβάλλουσα είναι περιοδικό σήμα, άραμπορείνααναλυθείσεσειρά Fourier s () t = A exp j sin(2 f t) c [ β π ] c m s() t s () t

Ανάλυση σε σειρά Fourier Ανάπτυξη της μιγαδικής περιβάλλουσας σε σειρά Fourier s () t = cnexp( j2 π nfmt) με συντελεστές 1 1 2 fm 2 fm n = 1 ()exp( 2 π m ) = m c 1 exp βsin(2 π m ) 2π m 2 f 2 f m [ ] [ ] c s t j nf tdt f A j f t j nf tdt A π = = n= c exp j( βsin x nx) dt AcJ n( β) 2π π όπου J η συνάρτηση Bessel πρώτου είδους τάξης n με ( n β ) όρισμα το β m

Φάσμα σήματος FM ευρείας ζώνης Άρα st () = A c Jn( β)exp( j2 πnft m ) n= και επομένως s() t = Ac Re Jn( β)exp j2 ( fc + nfm) t n= [ π ] [ π ] = A J ( β)cos 2 ( f + nf ) t c n c m n= οπότε το φάσμα σήματος FM είναι S( f) = AcRe Jn( β)exp[ j2 π( fc + nfm) t] n= Ac = Jn( β) δ( f fc nfm) + δ( f + fc + nfm) 2 n= [ ]

Ιδιότητες συναρτήσεων Bessel ΗσυνάρτησηBessel πρώτου είδους τάξης n είναι k β n+ 2k ( 1) ( 2 ) J n( β ) = k= 0 k!( k + n)! και για μικρές τιμές του β επίσης J n n= ( β ) J 2 n J = J ( β ) = 1 n n ( β ) n άρτιος ( β ) n περιττός n J n ( β ) β n 2 n!

Ισχύς σήματος FM ευρείας ζώνης Αφού επομένως 2 c 2 c 2 n [ π ] s() t = A J ( β)cos2 ( f + nf ) t P = = A 2 A 2 c n c m n= n= J ( β )

Τιμές συναρτήσεων Bessel

Τιμές συναρτήσεων Bessel

Φάσμα σήματος FM ευρείας ζώνης Οι περιττές συνιστώσες είναι ορθογώνιες προς το φέρον και προκαλούν την επιθυμητή διαμόρφωση συχνότητας και κάποια ανεπιθύμητη παραμόρφωση πλάτους Οι άρτιες συνιστώσες είναι συμφασικές με το φέρον και διορθώνουν την παραμόρφωση πλάτους

Διαμόρφωση από πολλούς τόνους Έστω ότι mt ( ) = Acos(2 π ft) + Acos(2 π ft) 1 1 2 2 και οι συχνότητες f 1 και f 2 δεν σχετίζονται αρμονικά (πολλαπλάσιο η μία της άλλης), τότε s( t) = Accos [ 2π fct + β1sin(2 π f1t) + β2sin(2 π f2t) ] όπου kf A1 Δf k 1 f A2 Δf2 β1 = =, β2 = = f f f f 1 1 1 2

Διαμόρφωση από πολλούς τόνους Μετά από πολλές (προφανείς) πράξεις [ ] st () = A J ( β ) J( β )cos2 π( f + mf + nf) t c m 1 n 2 c 1 2 m= n=

Φάσμα σήματος FM από πολλούς τόνους Το φάσμα του διαμορφωμένου σήματος FM από πολλούς τόνους περιλαμβάνει όλες τις πλευρικές συχνότητες που προκύπτουν από την f 1, δηλαδή, f c ±mf 1 όλες τις πλευρικές συχνότητες που προκύπτουν από την f 2, δηλαδή, f c ±nf 2 όλες τις συχνότητες ενδοδιαμόρφωσης, δηλαδή, f c ±mf 1 ±nf 2

Φάσμα σήματος FM από πολλούς τόνους Έστω f 1 <f 2 και β 1 >β 2

Διαμόρφωση από περιοδικό σήμα Έστω ότι m(t) είναι περιοδικό σήμα, τότε η μιγαδική περιβάλλουσα του s(t) θα είναι και αυτή περιοδικό σήμα s () t = A exp j m() t οπότε μπορεί να αναλυθεί σε σειρά Fourier με συντελεστές c [ β ] s ( t) = cnexp( j2 π nfmt) n= T m 1 2π x cn = exp [ jβm( fm) j2πnfmt] = exp j βm nx) dx 0 2π 0 2π fm

Φάσμα σήματος FM από περιοδικό σήμα Άρα st () = Ac Re cnexp j2 ( fc + nfm) t n= [ π ] [ π ] = A c cos 2 ( f + nf ) t+ c c n c m n n= οπότε το φάσμα σήματος FM που προκύπτει από διαμόρφωση με περιοδικό σήμα περιέχει μόνο τις αρμονικές f c ±nf m που προκαλούνται από την f m Ac S( f ) = cn ( f fc nfm)exp( j cn) + ( f + fc + nfm)exp( j cn) 2 n= [ δ δ ]

Φάσμα σήματος FM από περιοδικό σήμα

Εύρος ζώνης για μετάδοση FM Εύρος ζώνης σήματος FM

Εύρος ζώνης σήματος FM στενής ζώνης Για μικρές τιμές του δείκτη διαμόρφωσης β J ( β ) 1 0 β β J1( β), J 1( β) 2 2 J ( ) 0, 1 n β n> και επομένως μόνο η πρώτη πλευρική του διαμορφωμένου σήματος FM έχει σημασία (FM στενής ζώνης) οπότε B = 2f = 2W T m

Φάσμα σήματος FM ευρείας ζώνης

Φάσμα σήματος FM ευρείας ζώνης Έστω ότι διατηρούμε το W σταθερό Μεταβάλλουμε το β αυξάνοντας την απόκλιση συχνότητας Δf Ηαπόστασητων γραμμών σταθερή στο f m Το εύρος ζώνης μεγαλώνει

Φάσμα σήματος FM ευρείας ζώνης Έστω ότι διατηρούμε την Δf σταθερή Αυξάνουμε το β Μειώνεται η απόσταση των γραμμών (f m ) Μειώνεται το W Το εύρος ζώνης παραμένει περίπου σταθερό 2Δf

Εύρος ζώνης σήματος FM ευρείας ζώνης Το φάσμα του σήματος FM ευρείας ζώνης περιέχει άπειρες συνιστώσες Το πλάτος των υψηλής τάξης συνιστωσών είναι αμελητέο Πρακτικά το φάσμα είναι πεπερασμένο!

Εύρος ζώνης σήματος FM ευρείας ζώνης Μπορεί να ορισθεί ένα ενεργό εύρος ζώνης που να περιλαμβάνει μόνο τις σημαντικές συνιστώσες Για μεγάλες τιμές του β μπορούμε να διατηρήσουμε μόνο τις M πρώτες συνιστώσες που περιλαμβάνουν π.χ. το 99% της ολικής ισχύος M 1 M 2 2 Jn β Jn n= M+ 1 n= M ( ) < 0,99, ( β) 0,99 B = 2 M( β) f = 2 M( β) W T m

Εύρος ζώνης σήματος FM ευρείας ζώνης Μια εναλλακτική προσέγγιση είναι να κρατήσουμε μόνο τους όρους του αναπτύγματος Fourier που θεωρούμε σημαντικούς Π.χ. μόνο αυτούς για τους οποίους (με τιμές του ε στην περιοχή 0,01 με 0,1) J M ( β ) > ε, J ( β) < ε M+ 1 Η πρώτη προσέγγιση ε=0,01 είναι ιδιαίτερα συντηρητική Η δεύτερη ε=0,1 αντιστοιχεί σε μια μικρή παραμόρφωση (και σχεδόν ταυτίζεται με το κριτήριο του 99% της ολικής ισχύος)

Πίνακας τιμών συναρτήσεων Bessel Οτελευταίος σημαντικός όρος Μ(β)=[β+1]

Μια άλλη άποψη των συναρτήσεων Bessel Όπως πριν, ο τελευταίος σημαντικός όρος Μ(β)=[β+1]

Ο αριθμός Μ των σημαντικών όρων ως συνάρτηση του β Η προσέγγιση Μ(β)=β+2 για β>2 είναι μια ικανοποιητική ενδιάμεση λύση Μ J ( β ) > 0,01 M J ( β ) > 0,1 M Μ(β)=β+2 για β>2

Κανόνας Carson Το απαιτούμενο εύρος ζώνης για μετάδοση σήματος FM (που προέρχεται από διαμόρφωση απλού τόνου) είναι Δ f 2 + 1 fm = 2 Δ f + 2fm FM BT = 2( β + 1) fm = fm 2( Δ φ + 1) fm PM με το αντίστοιχο πλήθος αρμονικών που περιέχονται σε αυτό να είναι Κανόνας Carson M c Δ f 2 3 FM 2 β 3 f + = + = m 2 Δ φ + 3 PM

Εύρος ζώνης σήματος FM Στηνπερίπτωσηαυθαίρετουσήματοςm(t) ο λόγος απόκλισης D παίζει τον ρόλο του δείκτη διαμόρφωσης β Ο λόγος απόκλισης ορίζεται ως Η μέγιστη απαίτηση για εύρος ζώνης προκαλείται από το μέγιστο πλάτος της μέγιστης εκ των προς μετάδοση συχνοτήτων Το εύρος ζώνης κατ αναλογία με τη διαμόρφωση απόαπλότόνοείναι BT = 2 M( D) W D = Δf W

Εύρος ζώνης σήματος FM Για διαμόρφωση στενής ζώνης = 2W BT Για διαμόρφωση ευρείας ζώνης B = 2Δ f = 2DW T Κανόνας Carson B = 2( Δ f + W) = 2( D+ 1) W, T Για 2<D<10 καλύτερη προσέγγιση είναι B = 2( Δ f + 2 W) = 2( D+ 2) W, D > 2 T D 1 D 1

Εύρος ζώνης σήματος PM Χρήση κανόνα Carson παρόμοια με το FM Η στιγμιαία συχνότητα είναι k p fi = fc + m () t 2π η μέγιστη απόκλιση συχνότητας είναι Δ f = k p 2 π { mt } max ( )

Εύρος ζώνης σήματος PM Ο λόγος απόκλισης D είναι η μέγιστη απόκλιση φάσης του σήματος FM στην ακραία περίπτωση εύρους ζώνης Άρα η ανάλυση FM ισχύει για διαμόρφωση PM αρκεί να αντικατασταθεί το D με την Δφ Κανόνας Carson B T = 2( Δ φ + W) Όμως, σε αντίθεση με το FM ο όροςδφ δεν εξαρτάται από το W