Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================



Σχετικά έγγραφα
ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3



2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

δημιουργία: επεξεργασία: Ν.Τσάντας

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Β. Βασιλειάδης Αν. Καθηγητής. Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

( ) ΘΕΜΑ 1 κανονική κατανομή

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

Υπολογίζουµε την πρώτη παράγωγο: f ' ( x ) = 3 x 2 6 x. Βρίσκουµε τα διαστήµατα µονοτονίας: Στο τριώνυµο είναι: = β 2 4 aγ. άρα οι ρίζες είναι: x 1,2

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΔΡΟΜΙΑ 2017 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Παρασκευή 27 Ιανουαρίου 2017 ΛΕΥΚΩΣΙΑ Τάξη: Α Γυμνασίου

ΤΕΙ υτικής Μακεδονίας -Τµήµα ιοίκησης επιχειρήσεων- Μάθηµα: Ποσοτικές µέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάµηνο

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Κεφ. 9 Ανάλυση αποφάσεων

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Notes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

dz dz dy = = + = + + dx dy dx

Επιχειρησιακή Έρευνα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση:

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

* τη µήτρα. Κεφάλαιο 1o

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά].

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Κεφάλαιο 29 Θεωρία παιγνίων

(ΣΤΑΤΙΣΤΙΚΗ) ΥΠΟ ΕΙΓΜΑΤΙΚΗ ΛΥΣΗ. Οι ποιοτικές µεταβλητές που µπορεί να µας ενδιαφέρουν είναι: Ο συνολικός αριθµός πόντων στην περίοδο που έληξε.

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Λήψη αποφάσεων υπό αβεβαιότητα. Παίγνια Αποφάσεων 9 ο Εξάμηνο

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0

Ομόλογα (bonds) Μετοχές (stocks) Αμοιβαία κεφάλαια (mutual funds)

Πρόγραμμα Προπτυχιακών Σπουδών (ΠΠΣ) Τμήματος «Διοίκησης Επιχειρήσεων» Πάτρας, ΤΕΙ Δυτικής Ελλάδας

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

Κεφάλαιο 5 R (2, 3) R (3, 0)

1 α11,-α11 α12,-α12 α1n,-α1n 2 α21,-α21 α22,-α22 α2n,-α2n. Παίκτης Α. m αm1,-αm1 αm2,-αm2 αmn,-αmn

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3

Λήψη αποφάσεων υπό αβεβαιότητα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Ασκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Λήψη αποφάσεων υπό αβεβαιότητα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

Μοντέλα των Cournotκαι Bertrand

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Μάθηµα 11. Κεφάλαιο: Στατιστική

ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ

Το σύστηµα ορίζεται από δύο στοιχεία (µέρη) Χ Υ (τέλεια συµπληρωµατικά µεταξύ τους)

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α

ΔΕΟ 13 - Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: Συναρτήσεις μιας μεταβλητής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Transcript:

Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ============================================================== Παίγνια Μηδενικού Αθροίσµατος - Μεικτές Στρατηγικές ( παραδείγµατα σελίδες) ============================================================== Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων www.maths.gr www.facebook.com/maths.gr maths@maths.gr Ιδιαίτερα Μαθήµατα τηλ.: 69790 ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία

) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A 6 4 6 A 4 A 8 6 A4-7 Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: www.maths.gr www.facebook.com/maths.gr maths@maths.gr B B B B4 Ελάχιστα Γραµµών Maximin A 6 4 6 * A 4 * A 8 6 * A4-7 - Μέγιστα Στηλών 6 4 8 6 Minimax * * * 4 4 Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A 4 A 6 (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές:

B B4 y -y A x 4 A -x 6 V(AB)=V(AB4) 4 x+ (-x) = x+ 6 (-x) x+ = 4 x+ 6 < = > x= 7 και -x= 7 V(BA)=V(BA) 4 y+ (-y) = y+ 6 (-y) 4 y+ = y+ 6 < = > y= 7 και -y= 7 Τότε η τιµή του παιγνίου είναι: V= 7 Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = 7 0 7 0 B = ( B B B B 4 ) = 0 4 7 0 7 ===www.maths.gr www.facebook.com/maths.gr maths@maths.gr==

Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων www.maths.gr www.facebook.com/maths.gr maths@maths.gr Ιδιαίτερα Μαθήµατα τηλ.: 69790 ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A A - - A 4 6 A4 - - Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: 4

www.maths.gr www.facebook.com/maths.gr maths@maths.gr B B B B4 Ελάχιστα Γραµµών Maximin A * A - - - * A 4 6 * A4 - - - Μέγιστα Στηλών 6 Minimax * * * Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A A (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές: B B4 y -y A x A -x V(AB)=V(AB4) x+ (-x) = x+ (-x) 4 x+ = x+ < = > x= και -x= V(BA)=V(BA) y+ (-y) = y+ (-y)

y+ = 4 y+ < = > y= και -y= Τότε η τιµή του παιγνίου είναι: V= Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: 4 A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = 0 0 ===www.maths.gr www.facebook.com/maths.gr maths@maths.gr== Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων www.maths.gr www.facebook.com/maths.gr maths@maths.gr Ιδιαίτερα Μαθήµατα τηλ.: 69790 ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. 6

Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A 0-4 A - -6 - A 4 0 - A4 4-4 -4 - Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: www.maths.gr www.facebook.com/maths.gr maths@maths.gr B B B B4 Ελάχιστα Γραµµών Maximin A 0-4 -4 * A - -6 - -6 * A 4 0 - - * A4 4-4 -4 - - - Μέγιστα Στηλών 4 Minimax * * * - Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A -4 A - (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές: 7

B B4 y -y A x -4 A -x - V(AB)=V(AB4) -4 x+ (-x) = x+ - (-x) x+ = 4 x < = > x= και -x= V(BA)=V(BA) -4 y+ (-y) = y+ - (-y) 4 6 y+ = y < = > y= 9 και -y= 9 Τότε η τιµή του παιγνίου είναι: V= - Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = 0 4 9 0 9 ===www.maths.gr www.facebook.com/maths.gr maths@maths.gr== 8

Άσκηση Νο 4 Ασκήσεις : Θεωρία Παιγνίων www.maths.gr www.facebook.com/maths.gr maths@maths.gr Ιδιαίτερα Μαθήµατα τηλ.: 69790 ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A 4 4 A - A 9 A4 - - 6 Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: 9

www.maths.gr www.facebook.com/maths.gr maths@maths.gr B B B B4 Ελάχιστα Γραµµών Maximin A 4 4 * A - - * A 9 * A4 - - 6 - Μέγιστα Στηλών 4 4 9 Minimax * * * 4 4 Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A 4 A (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές: B B4 y -y A x 4 A -x V(AB)=V(AB4) 4 x+ (-x) = x+ (-x) x+ = x+ < = > x= και -x= V(BA)=V(BA) 4 y+ (-y) = y+ (-y) 0

y+ = 4 y+ < = > y= και -y= Τότε η τιµή του παιγνίου είναι: V= Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = 0 0 ===www.maths.gr www.facebook.com/maths.gr maths@maths.gr== Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων www.maths.gr www.facebook.com/maths.gr maths@maths.gr Ιδιαίτερα Μαθήµατα τηλ.: 69790 ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α

σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A 7 A 8 4 - A 7 6 A4 - - Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: www.maths.gr www.facebook.com/maths.gr maths@maths.gr B B B B4 Ελάχιστα Γραµµών Maximin A 7 * A 8 4 - - * A 7 6 * A4 - - - Μέγιστα Στηλών 7 7 6 Minimax * * * 6 6 Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A 7 A 6 (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές:

B B4 y -y A x 7 A -x 6 V(AB)=V(AB4) 7 x+ (-x) = x+ 6 (-x) 6 x+ = 4 x+ 6 < = > x= και -x= V(BA)=V(BA) 7 y+ (-y) = y+ 6 (-y) y+ = y+ 6 < = > y= και -y= Τότε η τιµή του παιγνίου είναι: V= 4 Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = 0 0 ===www.maths.gr www.facebook.com/maths.gr maths@maths.gr==