Agujeros negros de masa intermedia: efectos sobre su entorno y detectabilidad Pepe, Carolina 2013

Σχετικά έγγραφα
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx


m i N 1 F i = j i F ij + F x

m 1, m 2 F 12, F 21 F12 = F 21

Parts Manual. Trio Mobile Surgery Platform. Model 1033

On the Einstein-Euler Equations

Efectos de la cromodinámica cuántica en la física del bosón de Higgs Mazzitelli, Javier

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α


F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2


(... )..!, ".. (! ) # - $ % % $ & % 2007

k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ 2

Gmdm =< u > M a 1 G M2 ( )

Alterazioni del sistema cardiovascolare nel volo spaziale

!"#$ % &# &%#'()(! $ * +

TeSys contactors a.c. coils for 3-pole contactors LC1-D

A 1 A 2 A 3 B 1 B 2 B 3

Geodesic Equations for the Wormhole Metric

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νε. µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις

Περιεχόμενα. A(x 1, x 2 )


ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Α Ρ Ι Θ Μ Ο Σ : 6.913

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Dark matter from Dark Energy-Baryonic Matter Couplings


Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

Transferencia de energía y cantidad de movimiento en magnetósferas inducidas Romanelli, Norberto Julio

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

Déformation et quantification par groupoïde des variétés toriques

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Defects in Hard-Sphere Colloidal Crystals

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33

SPECIAL FUNCTIONS and POLYNOMIALS

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

A Classical Perspective on Non-Diffractive Disorder

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio.

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

Microscopie photothermique et endommagement laser

Lifting Entry (continued)

ΑΣΤΡΟΦΥΣΙΚΗ ΠΛΑΣΜΑΤΟΣ

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)

Fast!Radio!Burst!(FRB)!! !!! ASKAP,!SKA!( )! FRB! NS>NS!merger!( )! WD>WD!merger!( )!

ITU-R P (2012/02) &' (

ITU-R P (2012/02) khz 150

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4&#3 $!&$3% 2!% #!.1 & &!" //! &-!!

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

Homework 8 Model Solution Section

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ


Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα



692.66:

Αστρικές Ατμόσφαιρες Ισορροπίες Βασικοί Ορισμοί

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Cosmological Space-Times

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή

Μαγνητικοί άνεμοι και απώλεια στροφορμής

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger

Mesh Parameterization: Theory and Practice

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

ds ds ds = τ b k t (3)

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Klausur Strömungsmechanik II Dichte des Fluids ρ F. Viskosität des Fluids η F. Sinkgeschwindigkeit v s. Erdbeschleunigung g

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

! " # $ % # "& #! $! !! % " # '! $ % !! # #!!! ) " ***

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης

ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

HONDA. Έτος κατασκευής

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Transcript:

Agujeros negros de masa intermedia: efectos sobre su entorno y detectabilidad Pepe, Carolina 2013 Tesis Doctoral Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires www.digital.bl.fcen.uba.ar Contacto: digital@bl.fcen.uba.ar Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir. It should be used accompanied by the corresponding citation acknowledging the source. Fuente / source: Biblioteca Digital de la Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires

UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Física Agujeros negros de masa intermedia: efectos sobre su entorno y detectabilidad Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias Físicas Carolina Pepe Director de Tesis: Dr. Leonardo J. Pellizza Consejero de estudios: Dra. Cristina Caputo Lugar de Trabajo: Instituto de Astronomía y Física del Espacio (CONICET-UBA) Buenos Aires, 2013

M 10 2 10 4 M

10 2 10 4 M

W 0 8 m(r)/r ω ω

E(B V) 5000 K M BH =1000M M BH =3981M E(B V) 9976 K

E(B V) 12559 K ( P/P) ( P/P) int 2511M 3981M 100 M 1000 M

1 γ

M M 10 5 10 9 M

10 2 10 5 M 10 3 10 4 M M 10 9 10 M 10 5 M

jets scattering B 10 13 scattering B 10 12 L>10 40 erg s 1 10 3 10 5 10 6 M

Ṁ 10 4 M /t M t 30 M 100 M 10 2 10 3 M

M 250 M ω [1,3 2,3] 10 4 M 1000 M

ω 5 10 4 M 4,7 10 4 M 500M ω 4 10 4 M

ω 4,7 10 4 M 1,7 10 4 M 10 4 M [1,5 3,9] 10 3 M 3 10 3 M 2 10 3 M 2 10 3 M 8 10 3 M 6 10 3 M 800 M

140 M 2 10 4 M ( ) 0,6 ( L M F 5 =10 3 10 31 1 100 M ) 0,76 ( ) 2 d µ. 10

L M d L M cm 3 Ṁ L X = ǫṁc2 ǫ ω M ω M M

ω M ω M ω M M L X L X M M

M

2

10 5 10 6 M 100 10 8 10 10

f

f( r, v) d 3 rd 3 v d 3 r r d 3 v v Φ 2 Φ =4πG fd 3 v, 1 r d dr ( r 2dΦ ) =4πG dr fd 3 v, r f exp(e/σ 2 ) E σ

Φ 0 Ψ ε Ψ Φ+Φ 0 ε E +Φ 0 = Ψ 1 2 v2, v = v E Φ 0 f>0 ε > 0 f =0 ε 0

ρ 1 (2πσ 2 ) 2(e 3 ε/σ2 1) ε > 0 f K (ε)=. 0 ε < 0 ρ 1 9σ r 0 2, 4πGρ 0 ρ 0 ε > 0 2Ψ [ ( Ψ 1 ) ] 2 exp v2 1 v 2 dv 4π ρ k (Ψ)= (2πσ 2 ) 3 2 0 σ 2 ( ) Ψ 4Ψ = ρ 1 [e Ψ/σ2 erf σ πσ 2 ( 1+ 2Ψ ) ], 3σ 2 erf(x) Φ Ψ 1 r d dr ( r 2dΨ ) [ = 4πGρ 1 r 2 e Ψ/σ2 erf dr ( ) Ψ 4Ψ σ πσ 2 ( 1+ 2Ψ ) ]. 3σ 2 r =0 (dψ/dr)=0

Ψ r =0 Ψ(0) > 0 Ψ(0) Φ(0) (dψ/dr)=0 (d 2 Ψ/dr 2 ) < 0 Ψ 2Ψ r t r t M(r t ) Φ(r t ) Φ(r t )= GM(r t) r t. Φ(0) = Φ(r t ) Ψ(0) Ψ(0) Ψ(0) ρ 0 r 0 σ r 7/4

f ( E) 1/4 x r/r 0 ω v/σ W(x) Ψ(x)/σ 2 E ω 2 /2 W ν(x) ρ(x)/ρ 0 M (x) M(x)/ρ 0 r0 3 µ M/ρ 0 r0 3 r 0 σ ρ 0

c( E) 1/4 E< W f(e)= (2π) 3/2 (e E 1) W <E<0, 0 E 0 c (2π) 3/2 (exp(w ) 1)W 1/4 f W W(x t )=0 x t W W(x ) x M (x )=0,1µ, x GM/σ 2 r 0 M (x ) 10 4 µ x

W( ) d 2 W dx + 2 dw 2 x dx = (4πGρ 0r 2 σ 2 )ν(w), x>0; W 2W ν(w)=4π f(e)ω 2 dω = 0 ν 1, W W, ν 2, W>W ν 1 ν 2 W r 0 = 9σ2 4πGρ 0. d 2 W dx + 2 dw 2 x dx = 9ν(W), x>0, x 0 > 0

dw dx (x 0) = W 0, W(x 0 ) = W 0. x 0 = x W W dψ dr (x )= GM (x BH r 0 ) = Gµ ρ 2 x 2 0 r 0, W x = 9µ. 4πx 2 (µ,w ) 0,1 x x M (x) x x = GM/3σ 2 r 0 M =0,100,1000,4000 M W 0 8

r<r 0 100 sin IMBH M = 100 M # M = 1000 M # M = 4000 M # 1!/" 2 0.01 0.0001 0.001 0.01 0.1 1 10 100 r/r 0 W 0 8

0,8M 0,2M 0,1M α 10 14 10 11 1 10 3

10 100M H 2 M α 0,1 M 0,1M 10 2 10 5 M 5 10 4 M 9 10 4 M

M R m E acc = GMm/R, R 3 M M E acc 5 10 20 E nuc =0,007mc 2, c E nuc =6 10 18

g 1 M/R M/R Ṁ L Edd =4πGMm p c/σ T = 1,3 10 38 (M/M )erg s 1.

T =(L acc /4πR 2 σ) 1/4, σ R Sch =2GM/c 2 M 10 4 M ( ) 1/4 L Edd T = 3,8 10 6 K, 16πσG 2 M 2 kt 3 λ

v v T L λ v T ρ ρ t + (ρ v)=0 ρ v t +ρ( v ) v = P + f t (1 2 ρv2 +ρǫ)+ ( 1 2 ρv2 +ρǫ+p) v = f v F rad q P f q ǫ F rad ρ v T

r θ φ v T ρ θ φ v r = v 1 d r 2 dr (r2 ρv)=0. r 2 ρv ρ( v) Ṁ 4πr 2 ρ( v)=ṁ. f f r = GMρ/r 2 v dv dr + 1 dp ρ dr + GM =0. r 2 P = Kρ γ, K γ

γ γ =5/3 dp dr = dp dρ dρ dr = dρ c2 dr, c s ( ) 1 1 c2 d 2 v 2 dr (v2 )= GM [ ] 1 2c2 r. r 2 GM [ ] 1 2c2 sr GM c 2 s c 2 s(r ) d dr (v2 ) r v 2 <c 2 v 2 >c 2.

r s = GM/2c 2 s(r s ) v 2 = c 2 s d dr (v2 )=0 r s v 2 (r) v 2 (r )=c 2 s(r s ) v 2 r v 2 <c 2 s r>r s v 2 >c 2 s r<r s v 2 (r s )=c 2 s(r s ) v 2 r v 2 >c 2 s r>r s v 2 <c 2 s r<r s v 2 <c 2 s r v 2 >c 2 s r d dr (v2 )=0 r = r s d dr (v2 )=0 r = r s d dr (v2 )= v 2 = c 2 s(r s ) r>r s

d dr (v2 )= v 2 = c 2 s(r s ) r<r s r s r r r v 2 v>0 v<0

Ṁ v 2 2 + c2 s γ 1 GM r =. c 2 s(r )/(γ 1) c s (r ) c s (r s ) ( )1 2 2 c (r )=c ( ) 5 3γ Ṁ =4πr 2 ρ( v)=4πr 2 ρ(r )c (r ) c 2 s ρ γ 1 ρ(r s )=ρ(r ) [ ] 2/(γ 1) cs (r s ). c s ( ) [ ] (5 3γ)/2(γ 1) Ṁ = πg 2 2 ρ(r ) 2 M. c 2 (r ) 5 3γ

γ =1 γ 1 γ [ (5 3γ)/2(γ 1) 2 5 3γ] γ =5/3 e 3/2 γ =1 p ρ r c

ds 2 = ( 1 2M r ) ( dt 2 1 2M r ) 1 dr 2 r 2( dθ 2 +sen 2 θdφ 2). r,θ,φ M ds J µ ;µ =0, T µν ;µ =0, T µν =(ρ+p)u µ u ν pg µν, p = p(ρ) J µ = ρu µ

u µ ρur 2 = C 1 ( ) 2 P +µ (1 2mr ) ρ +u2 = C 2, µ = ρ + ǫ ǫ dρ du u [ 2V 2 ] m r ( 1 2m +u 2) + dr [ ] V 2 u 2 r 1 2m =0, +u r r 2 V 2 = dln(p +µ) dlnρ 1. r u u 2 = M/2r

V 2 = u 2 /(1 3u 2 ). V 2 u 2 > 1/3 r < 6M u µ T µν ;ν = u µ ρ,µ +(ρ+p)u µ ;µ =0. [ ρ ] ux 2 dρ exp = A, ρ ρ +p(ρ ) u<0 x = r/m ( (ρ+p) 1 2 ) 1/2 x +u2 x 2 u = C 1, r =2M

C 1 ( (ρ+p) 1 2 ) 1/2 [ ρ ] dρ x +u2 exp = C ρ ρ +p(ρ 2, ) C 2 = C 1 /A = ρ + p(ρ ) u = u(2m) ρ = ρ(2m) A 4 ρ +p(ρ ) ρ +p(ρ ) = A 2 [ 16u 2 (2M) =exp 2 ] dρ. ρ ρ +p(ρ ) ρ ρ ρ +p(ρ ) [ 1+3c 2 ρ +p(ρ ) (ρ ) ] [ ρ ] 1/2 dρ =exp. ρ ρ +p(ρ ) ρ r u Ṁ = 4πr 2 T0 r Ṁ =4πAM 2 [ρ +p(ρ )].

Ṁ ρ +p(ρ ) < 0

3

10

M ds 2 = e ν dt 2 e λ dr 2 r 2 (dθ 2 +sin 2 θdφ 2 ), r,θ,φ t ν λ r m(r) r m(r)=m ν = λ =ln(1 2M/r)

p = ωρ p ρ T µν =(ρ+p)u µ u ν pg µν, g µν u µ = dx µ /ds u µ u µ =1 Ṁ = 4π lím r 2M r2 T r 0, ρ p u =0 (p+ρ) ( e ν +e λ ν u 2) 1/2 ur 2 e 1 2 (λ+3ν) = C 1, e ρ dρ ρ +p e 1 2 (ν+λ) ur 2 = C 2, C 1 C 2 (p+ρ)e ρ dρ ( p+ρ 1+e λ u 2) 1/2 e ν/2 = ρ +p. ρ +p r

Ṁ = 4π(ρ +p )C 2, r 2M λ+ν =0 C 2 C 2 [ (e ν +e λ ν u 2 ) 1 e λ ν u ω ] du+ [ u 1 2 (e ν +e λ ν u 2 ) 1 ( e ν ν +(λ ν )u 2 e λ ν )+ λ 2 + 3ν 2 + 2 ( ν r (1+ω) 2 + λ 2 + 2 )] dr =0, r 1 2 ν (r c )(1 ω) 2ω r c =0, ν λ

u 2 c = ω 1 ω. ω < 0 ω > 0 ν (r)= 2m(r) r[r 2m(r)]. ν r c m(r c ) r c = 2ω 1+3ω. ω C 2 Ṁ = π(1+ω)ρ [ e νc (1+ ω ( )1 ω 1 ω 2 m 2 (r c )( 1+3ω ω ] 1 1 ω ) 2ω ) 2 e 1 2 νc. Ṁ m2 (r c ) M 2 (M gc + M) 2 M gc M gc M

r 0 r t c gc R gc M R gc ρ DM ρ DE 3000M 4,0 10 21 kg m 3 7,7 10 27 kg m 3 ω 10 K

p = ρ/3 ω r 0 =0,35 pc c gc =1,8 M =3000M r 0 M/r r/r 0 10

ω 1 m(r)/r r r 0 r c u c Ṁ M 2 ρ =7,0425 10 31 3 Ω = ρ ρ =5 10 5, ρ crit ρ =1,878 10 29 h 3, h =0,75 H 0 =7,5 10 7 1 1 Ṁ =1,7 10 29 M yr 1 Ṁ M(r)/r 0 r 0

1e-08 9e-09 8e-09 7e-09 0 20 40 60 80 100 120 140 1e-08 9e-09 8e-09 7e-09 m(r)/r 6e-09 5e-09 4e-09 6e-09 5e-09 4e-09 3e-09 2e-09 1e-09 0 0 20 40 60 80 100 120 140 r /r 0 3e-09 2e-09 1e-09 0 m(r)/r 2ω/(1+3ω) 700 1

ρ p = ωρ ω 1 ω ω 1,5 10 9 ω ω 5 10 10 m(r c ) M + M gc 3 10 9

r c ω > ω t =1,5 10 9 ρ = ρ DM c 2 ρ DM r c ω 3 10 10 r c r r

Ṁ(v) v Ṁ0 c 3 s Ṁ(v)=Ṁ0 (v 2 +c 2 3/2, s) c 2 s = c 2 ω ω 0 Ṁ(v) Ṁ0 v =0,100,200 M t 10Gyr ω 10 9 Ṁ m(r c ) r c r 0 M Ṁ t 104 M

1000 100 Solución interna Solución externa 10 r/r 0 1 0,1 0,01 0,001 1e 10 1e 09 1e 08 1e 07 ω ω Tasa de acreción (M sol /yr) 100 1 0,01 0,0001 1e 06 1e 08 1e 10 v = 0 v = 100 km/s v = 200 km/s v = 500 km/s 1e 12 1e 10 1e 09 1e 08 ω ω

v ω 10 9 10 9 ω < 1/3 ω = 1

ω < 0 r c < 2M Ṁ =16π(1+ω)ρ M 2. Ṁ ω < 1

ρ DE c 2 ρ ( ) 2 M Ṁ =9,5 10 34 M yr 1 (1+ω). M 10 2 10 4 M M =6,9 ± 0,9 M M =0,3 ± 0,2 M R =3R

U = 105 ± 16,V = 98 ± 16,W = 21 ± 10 1 v BH 140km/s 10

100 1 velocidad nula v = 145 km/s M acretada 0,01 0,0001 1e 06 1e 12 1e 10 1e 08 1e 06 ω 1 Factor de corrección 0,01 0,0001 1e 06 1e 08 1e 12 1e 10 1e 08 1e 06 ω

4 10 31 32 erg s 1

1arcsec 2 10 4 M

ρ = αρ ρ α 10 14 10 11 yr 1 λ 10 4 10 3 1 d r 2 dr (ρr2 u)=αρ,

r u ρ ρu du dr = k BT dρ µ dr GM(r)ρ αuρ, r 2 G k B µ M(r) r M BH q = q/α q = ρur 2 du dr = u u 2 c 2 s d q dr = ρ r 2, ( 2c 2 s r GM(r) ) (u2 +c 2 s)r 2 ρ, r 2 q c s = k B Tµ 1 α q = r 0 ρ r 2 dr + q 0 = M (r) 4π + q 0, q 0

ξ = rr 1 0 ψ = uσ 1 ψ s = c s σ 1 ω = q(ρ 0 r 3 0) 1 Ω (ξ)=m (r)(4πρ 0 r 3 0) 1 Ω BH = M BH (4πρ 0 r 3 0) 1 Ω(ξ)=Ω (ξ)+ Ω BH r 0 ρ 0 σ 2 =4πGρ 0 r 2 0/9 ω = Ω (ξ)+ω 0, dψ dξ = ψ ψ 2 ψ 2 s ( 2ψ 2 s ξ dω (ψs 2 +ψ 2 ) 9Ω(ξ) ). dξ ω ξ 2

ξ st u =0 Ω (ξ st )= ω 0, ξ st ξ st ξ st ξ s f (ξ)=2ψ 2 s ( 1 ξ 1 ) dω 9Ω(ξ) =0. ω dξ ξ 2

20 10 T = 9976 K T = 12559 K T = 15811 K f s 0-10 -20 0.1 1 10 100 r(r 0 ) T = 9976, 12559 15811 K M f (ξ) M T =9976, 12559 15811 K f s (ξ)=0 du/dr =0 ξ st ξ st T = 3,99, 4,09 4,19

ξ st ξ st ω c GC r 0 r 0 ρ 0 σ M(r) M(r) c s /σ Ω BH

σ r 0 ρ 0 c GC km s 1 pc M pc 3 10 5 10 5 ω 10 3 10 4 M/M L/L 5000 15000 K 10 2 10 4 M ξ st Ω (ξ st ) c s /σ Ω BH Ṁ Ṁ = αω (ξ st )ρ 0 r0 3 α c s /σ r st r 0 c s /σ 1

c s /σ 1 r st r 0 c s /σ < 1 r st r 0 c s /σ Ω BH

100 M 15 Liller 1 " Cen M 28 10 r st (r 0 ) 1 0.1 0 1 2 3 4 5 6 2 2 c s /! 100 10 M 15 Liller 1 $ Cen M 28 "#(r st ) 1 0.1 0 1 2 3 4 5 6 2 2 c s /! ω Ω BH

100 10 r st (r 0 ) 1 M 15 Liller 1 " Cen M 28 0.0001 0.001 0.01 0.1 BH 100 10!"(r st ) 1 0.1 M 15 Liller 1 # Cen M 28 0.01 0.0001 0.001 0.01 0.1! BH ω c 2 s/σ 2 1 3

10000 1000 M 15 Liller 1! Cen M 28 r st /r acc 100 10 1 100 1000 10000 M BH M M M r acc = GM BH /c 2 s M r st /r acc M BH Ṁ M2 BH

α α =10 11 yr 1 Ṁ r 0 ρ 0 M GC σ Ṁ σ M BH =1000M T =5000, 10000, 12600 K T =5000K M BH =1000, 4000, 10000M T σ c s /σ

σ Ṁ ρ 0r0 3 Ṁ r st M GC M GC Ṁ M GC ρ 0 r 3 0 σ

1e-05 Accretion rate (M Sun yr -1 ) 1e-06 1e-07 Liller 1 M 28 " Cen M 15 NGC 6388 1e-08 T = 5000 K T = 10000 K T = 12600 K!(m/s) 10000 1e-05 Accretion rate (M Sun yr-1) 1e-06 1e-07 1e-08 Liller 1 M 28 " Cen M 15 NGC 6388 M = 1000 M Sun M = 4000 M Sun M = 10000 M Sun! (m/s) 10000 σ M M M Ṁ σ σ

1e-05 T = 5000 K T = 10000 T = 12300 K Accretion rate (M Sun yr -1 ) 1e-06 1e-07 Liller 1 M 28 NGC 6388 M 15! Cen 1e-08 0 5e+05 1e+06 1.5e+06 M GC (M Sun ) 1e-05 M = 1000 M Sun M = 4000 M Sun M = 10000 M Sun Accretion rate (M Sun yr -1 ) 1e-06 1e-07 Liller 1 M 28 NGC 6388 M 15! Cen 1e-08 0 5e+05 1e+06 1.5e+06 M GC (M Sun ) M M M M GC

M GC 398 M 1000 M 3981 M M 9976 K r est

10000 100 M = 0 M = 398 M Sol M = 1000 M Sol M = 3981 M Sol! 1 0.01 0.0001 0.01 1 100 r (r 0 ) 0 u (!) -5 0 50 100 r (r 0 ) M = 0 M = 398 M Sol M = 1000 M Sol M = 3981 M Sol r est

r est f s (ξ)=0 ξ

r est r t P t = ρ(r t )c 2 s. r est R z n (R,z)= [ ( )] ( ) z 2 2,5+1,5exp 10 4 m 3, 70 pc 1+ R R 0 R 0 =8kpc n α

T =100K P = nkt, k r est r est

P ext r est r est P t P marea r est P t α ρ α r est Ṁ T =9976K r est

1e-12 1e-13 T = 5000 K T = 9976 K T = 15811 K P ext P marea (Pa) 1e-14 1e-15 1e-16 1e-17 1 10 100 r est (r 0 ) 1e-14 1e-15 M = 398 M Sol M = 1000 M Sol M = 3981 M Sol P ext P marea (Pa) 1e-16 1e-17 1 10 100 r est (r 0 ) M M M M

u T = 10000 K ṀEdd = L Edd /c 2 c L Edd =1,26 10 38 (M BH /M )ergs 1 Ṁ BH =4πG 2 M 2 BH ρ ac 3 s ρ a ρ a =0,2cm 3

1e+06 10000 M = 398 M Sol M = 1000 M Sol M = 3981 M Sol 100! 1 0.01 0.0001 0.01 1 100 r (r 0 ) 0.5 M = 398 M Sol M = 1000 M Sol M = 3981 M Sol u (c s 2 ) 0-0.5 0 20 40 60 80 100 120 r (r 0 ) r est

α ρ a α 10 14 10 11 yr 1 MBH 2 Ṁ

0.0001 Accretion rate (M Sun yr -1 ) 1e-08 1e-12 M 15 Liller 1! Cen M 28 Eddington limit Bondi-Hoyle 100 10000 M bh (M Sun )

1e-05 Tasa de acrecion (M Sol yr -1 ) 1e-06 1e-07 1e-08 1e-09 M = 398 M Sol M = 1000 M Sol M = 3981 M Sol 1e-10 0.01 1 100 r(r 0 ) M α = 10 11 yr 1 Ṁ M α =10 11 yr 1

L X α ǫ = L X /Ṁc2 ǫ =0,1 α =10 11 yr 1 10 37 10 41 erg s 1 10 32 10 41 erg s 1 10 38 40 erg s 1 L X, NGC6388 =2,7 10 33 erg s 1 L X, NGC6388 =8,3 10 32 erg s 1 α ǫ

T M BH M T =9976K α =10 11 yr 1 L X, NGC6388 α 10 11 10 14 yr 1 L X 10 31 erg s 1 ǫ = Ṁ/ṀEdd, Ṁ<0,1ṀEdd ǫ =0,1 ǫ =0,001

1e+42 1e+40 L X (erg s -1 ) 1e+38 1e+36 1e+34 1e+32 M = 100 M Sol M = 10000 M Sol 0.001 0.01 0.1 1 10 r est (r 0 ) ǫ =0,001 ǫ =0,1 M M α =1 10 11 yr 1

ρu du dr = dp dr ρdφ dt αuρ, φ dρ dr = ρ d ( ) P + P dρ dr ρ ρ dr, c 2 s γ P ρ γ = c p /c v c p c v

( ) ( ) u 1+ c2 s du dc 2 γu 2 dr = 1 s γ dr + c2 s dq q dr 2c2 s dφ r dr αρ r 2 u. q h = u2 2 + γ P γ 1 ρ +φ = u2 2 + c2 s γ 1 +φ, 1 d r 2 dr (qh)=αρ (ǫ+φ), ǫ h = ǫ+ α q r r ρ r 2 φdr. r est q =0 r>r st c 2 s c 2 s du dr = 1 ( u ) 1 c2 s u 2 [ (γ 1) d ( )] dr (h φ)+2c2 s r γdφ dr αρ r 2 u 2 c 2 s q u +γ. 2

ω = Ω (ξ)+ω 0, dψ dξ = 1 ( ψ ) 1 ψ2 s ψ 2 [ (γ 1) d dr (had φ ad )+ 2ψ2 s ξ γ dφad dξ dω/dξ ( )] ψ 2 s ω ψ +γ. 2 φ ad = φ/σ 2 h ad = h/σ 2 T =4000K R =70R M =0,8 M v e 35km s 1 ǫ = k T m +0,5v 2, k b m H

T ef ǫ = k bt ef m H. 15km s 1 T ef [10 4 10 5 ]K T ef q d(qh) dr = q dh dr =0. h = h t h t φ(r) M cum +M BH

φ =0 c 2 s = dp/dρ T 100 K T 0 T << T ef c 2 s u =0 h t h t =0 r est r<r est f s (ξ) f s (ξ)= (γ 1) d dr (had φ ad )+ 2ψ2 s ξ γ dφad dξ dω/dξ ( ψ 2 s ω ψ 2 +γ ). f s (ξ)

7 6 5 T = 100000 K T = 50811 K T = 10000 K T = 2000 K T = 1000 K 4 f s 3 2 1 0 0 2 4 6 8 10 r(r 0 ) f s (ξ) 1 10 3 2 10 3 1 10 4 5 10 4 1 10 5 K M 1 10 3 2 10 3 1 10 4 5 10 4 1 10 5 K M f s =0 r<r est T 2 10 3 K ξ int son

r est T 30000K f s (ξ)=0 ξ < ξ tidal f s (ξ)=0 h ρ 0 f s (ξ)= dφad dξ + (had tidal φad ) ξ, c 2 s = (h ad t φ ad )/2 dφ ad /dr = φ ad /r h ad t ξ =0. ξ h t =0 u dψ/dξ =0 ξ > ξ marea u =0 ξ

5

m λ

m λ0 A V = V V 0. E B V =(B V) (B V) 0. A λ = m λ E B V =(B B 0 ) (V V 0 )=A B A V. A λ λ R λ R λ = A λ /E(B V). E(B V) R λ

R λ R V R V 3,1 R V R V ν ǫ ν ǫ ν dω

dω I ν I ν dω dω l l + dl ǫ ν dωdl I ν κ ν I ν dωds κ di ν ds = κ νi ν +ǫ ν. ǫ ν =0 I ν,0 ( s ) I ν (s )=I ν,0 exp κ ν ds, 0 s T ν

κ ν = nσ e, σ e n = ρ polvo /m polvo 10 3 ρ gas ρ gas a q σ e = qπa 2. I ν = I ν,0 exp σe s 0 n(s)ds. I ν m m = 2,5logI ν +cte 1 µm

(I X0 exp s m m 0 = X X 0 = 2,5log s = 2,5log(exp κ X ρ(r)ds) s = 2,5log(exp σ e,x n(r)ds) 0 0 I X0 0 κ X(s)ρ(r)ds ) m 0 σ A λ A λ =1,08σ λ e s 0 n(r)ds. A V A λ A V = σ e,λ σ e,v. s s E λ V =1,08σ e,λ n(s)ds 1,08σ e,v n(s)ds =1,08 =1,08 =1,08 0 s 0 s 0 s 0 n(s)ds(σ e,λ σ e,v ) n(s)ds σ e,v ( σ e,λ σ e,v 1) n(s)ds σ e,v ( A λ A V 1). 0

A λ /A V R V A λ /A V = a(x)+b(x)/r V, x = λ 1 λ µm 1 a(x) b(x) A λ /A V E(B V) 0,1 r 0 4 r 0 4 r 0 r p 1µm m p 10 14 g q =0,1 s

senθ p p R t z T =5000,9976 12559 K M BH =0,398,1000 3981 M E(B V) E(B V) T =5000K T 10000K R t z

E(B V) 5000 K M = 398 1000 M

M BH = 1000 M M BH = 3981 M

E(B V) 9976 K M = 398 1000 3981 M T = 5000 K

M BH = 1000 M M BH = 3981 M

10 2 M BH 10 3

max{e(b V}) 1,32 10 6 1,13 10 7 5,52 10 5 1,38 10 7 E(B V) 1000 M T =9976K NGC 6681 100 M M BH 600 M

E(B V) 12556 K M = 398 1000 3981 M T = 5000 K

M BH = 1000 M M BH = 3981 M

10 17 kg m 3 p+e n+ν. ρ c =3,210 14 kg m 3 R 10 6 cm

ρ > 10 11 kg m 3 P 10 15 s 1 P/ P 10 7 yr

http : //www.naic.edu/pfreire/gcpsr.html

P<0 r 3 r 0 P P int a l a l P int a s a G

π r c R T a a l a c ( P/P) = a c + a c + a c + ( P/P), P a a c = µ2 D c, D c µ

a GM φ 1 (R,z) = 1 {R 2 +[a 1, +(z 2 +b 2 1 )1/2 ] 2 } 1/2 GM φ 2 (R,z) = 2 {R 2 +[a 2, +(z 2 +b 2 2 )1/2 ] 2 } [ ( ) 1/2 ( )] φ 3 (r) = GMc 1 ln r c 1+ r2 + r r 2 r c arctan r c, R r r 2 c a s a G ( P/P) obs ( P/P) a l a c

τ ( P/P) = P/(2 τ). ( P/P) a(r) a l a l = a θ = a r ((R T /r)), R T a l (r) M =1000M R T r z z ( P/P) int ( P/P) =( P/P) a c ( P/P) =( P/P) a c,

Rt = 0.94 r 0 Rt = 0.27 r 0 a normal (! 2 /r 0 ) 0.4 0.3 0.2 0.1 0 0 20 40 60 80 100 r (r 0 ) M ( P/P) < ( P/P) < ( P/P) ( P/P)

P/P int (s 1 ) 1,4 10 18 1,43 10 18 1,66 10 18 1,47 10 18 1,33 10 18 1,41 10 18 1,29 10 18 P/P int

Variacion intrinseca (s -1 ) 6e-17 4e-17 2e-17 0-2e-17-4e-17 47 Tuc Minimo Maximo Variacion intrinseca (s -1 ) 6e-17 4e-17 2e-17 0-2e-17 47 Tuc Minimo Maximo -4e-17-6e-17 0 2 4 6 8 10 12 14 Pulsar # -6e-17 0 2 4 6 8 10 12 Pulsar # Variacion intrinseca (s -1 ) 5e-17 0-5e-17 NGC 6440 Minimo Maximo Variacion intrinseca (s -1 ) 5e-17 0 NGC 6440 Minimo Maximo -5e-17 0 1 2 3 4 5 6 Pulsar # 0 1 2 3 4 5 6 Pulsar # 1.5e-16 NGC 6441 Minimo Maximo 1.5e-16 NGC 6441 Minimo Maximo Variacion intrinseca (s -1 ) 1e-16 5e-17 0 Variacion intrinseca (s -1 ) 1e-16 5e-17 0-5e-17-5e-17-1e-16-1 0 1 2 3 4 Pulsar # -1 0 1 2 3 4 Pulsar # ( P/P) int P/P

2e-16 2e-16 M 62 Minimo Maximo M 62 Minimo Maximo Variacion intrinseca (s -1 ) 1e-16 0-1e-16 Variacion intrinseca (s -1 ) 1e-16 0-1e-16-2e-16-2e-16-1 0 1 2 3 4 5 6 Pulsar # -3e-16-1 0 1 2 3 4 5 6 Pulsar # 3e-16 3e-16 2e-16 M 15 Minimo Maximo 2e-16 M 15 Minimo Maximo Variacion intrinseca (s -1 ) 1e-16 0-1e-16 Variacion intrinseca (s -1 ) 1e-16 0-1e-16-2e-16-3e-16-2e-16-4e-16-3e-16-1 0 1 2 3 4 5 6 7 8 Pulsar # -5e-16-1 0 1 2 3 4 5 6 7 Pulsar # 2e-15 Variacion intrinseca (s -1 ) 1e-16 0-1e-16 NGC 6752 Minimo Maximo Variacion intrinseca (s -1 ) 1e-15 0-1e-15 NGC 6752 Minimo Maximo -1 0 1 2 3 4 5 Pulsar # -2e-15-1 0 1 2 3 4 5 Pulsar # ( P/P) int P/P ( P/P) int < 0

DM z ρ(r) z DM cum DM DM = DM cum + z z n e (r(z ))dz. α DM cum ( P/P) int χ 2 = N P 1 (DM DM) 2 DM 2, ( P/P) int α

P DM obs DM χ 2 R T z z

225 224 T = 5000 K T = 9976 K T = 12559 K 224 T = 5000 K T = 9976 K T = 12559 K 223 223 DM (pc cm -3 ) 222 221 DM (pc cm -3 ) 222 221 220 219 0.06 0.08 0.1 0.12 0.14 R t (arcmin) 220 0.06 0.08 0.1 0.12 0.14 R t (arcmin) 100 M R t z

24.44 24.42 DM (pc cm -3 ) 24.4 24.38 24.36 24.34 24.32 0 0.05 0.1 0.15 0.2 0.25 0.3 Rt (arcmin) 100 1000 M M BH 100 M M 6000 M 3981 6309 10000 M α [10 14 8 10 12 ]yr 1 1000 M

116 115.5 T = 5000 K T = 9976 K T = 12559 K DM (pc cm -3 ) 115 114.5 114 113.5 113 0 0.1 0.2 0.3 0.4 Rt (arcmin) 2511 M R t z

67.4 67.4 67.35 T = 5000 K T = 9976 K T = 12559 K 67.35 T = 5000 K T = 9976 K T = 12559 K 67.3 67.3 DM (pc cm -3 ) 67.25 67.2 DM (pc cm -3 ) 67.25 67.2 67.15 67.15 67.1 0.015 0.02 0.025 0.03 0.035 0.04 R t (arcmin) 67.1 0.015 0.02 0.025 0.03 0.035 0.04 R t (arcmin) 67.4 67.35 T = 6294 K T = 9976 K T = 12559 K DM (pc cm -3 ) 67.3 67.25 67.2 67.15 67.1 0.015 0.02 0.025 0.03 0.035 0.04 R t (arcmin) 3981 M 6309 M 10000 M M 6000 M

33.36 33.34 T = 5000 K T = 9976 K T = 12559 K 33.35 T = 5000 K T = 9976 K T = 12559 K DM (pc cm -3 ) 33.32 33.3 33.28 DM (pc cm -3 ) 33.3 33.25 33.26 33.24 33.2 0.1 0.15 0.2 0.25 Rt (arcmin) 0.08 0.1 0.12 0.14 0.16 0.18 0.2 R t (arcmin) 100 M 1000 M M BH 100 M

6

ω 10 9 ω

r est r 0

E(B V)