Χρήσεις του Η/Υ και Βάσεις Βιολογικών Δεδομένων

Σχετικά έγγραφα
Βιοστατιστική ΒΙΟ-309

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309

Περιγραφική Στατιστική

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

Μέρος V. Στατιστική. Εισαγωγή: Βασικές έννοιες και ορισμοί. Περιγραφική Στατιστική (Descriptive Statistics)

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Μάθηµα 3 ο. Περιγραφική Στατιστική

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Περιεχόμενα. Πρόλογος... 15

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

Εισαγωγή στη Στατιστική

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Mέτρα (παράμετροι) θέσεως

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

Στατιστική Ι (ΨΥΧ-1202) ΑΣΚΗΣΕΙΣ

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

ΗΥ-SPSS Statistical Package for Social Sciences 1 ο ΜΑΘΗΜΑ. ΧΑΡΑΛΑΜΠΟΣ ΑΘ. ΚΡΟΜΜΥΔΑΣ Διδάσκων Τ.Ε.Φ.Α.Α., Π.Θ.

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

i Σύνολα w = = = i v v i=

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Τάση συγκέντρωσης. Μέτρα Κεντρικής Τάσης και Θέσης. Μέτρα Διασποράς. Τάση διασποράς. Σχήμα της κατανομής

Ενότητα 1: Πληθυσμός και δείγμα Είδη Μεταβλητών - Περιγραφική στατιστική

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Κατανομή συχνοτήτων. Μέτρα κεντρικής τάσης. Μέτρα διασποράς. Σφάλματα μέτρησης. Εγκυρότητα. Ακρίβεια

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Υπολογισμοί Παραμέτρων Πληθυσμού και Στατιστικών Δείγματος

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

Χρήσεις του Η/Υ και Βάσεις Βιολογικών Δεδομένων

Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές.

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Περιγραφική Στατιστική

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Διάλεξη 1 Βασικές έννοιες

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Περιγραφική Στατιστική. Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσεων"

Χρήσεις Η/Υ και Βάσεις Βιολογικών Δεδομένων : ΒΙΟ109 [4] Επεξεργασία Δεδομενων σε λογιστικα φυλλα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Είδη Μεταβλητών. κλίµακα µέτρησης

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ΤΟΠΙΚΟ ΕΛΑΧΙΣΤΟ

Το υπουργείο μας. Ατυχήματα - πρώτες βοήθειες στο σχολείο

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

ΔΗΜΟΠΑΘΟΛΟΓΙΑ ΤΗΣ ΔΙΑΤΡΟΦΗΣ

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ

Θηκόγραμμα - Boxplot. Παράδειγμα 1: Δίνονται οι παρακάτω 20 παρατηρήσεις μιας μεταβλητής x:

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Γ. Πειραματισμός - Βιομετρία

Κεφάλαιο 5 Δείκτες Διασποράς

Εφαρμοσμένη Στατιστική

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Μοντέλα στην Επιστήμη Τροφίμων 532Ε

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Transcript:

Χρήσεις του Η/Υ και Βάσεις Βιολογικών Δεδομένων 2. Δεδομένα και Περιγραφική Στατιστική. Χριστόφορος Νικολάου Τμήμα Βιολογίας, Πανεπιστήμιο Κρήτης computational-genomics-uoc.weebly.com Χριστόφορος Νικολαου, ΒΙΟ109

Ποσοτικός τρόπος σκέψης Περιγραφή ενός φαινομένου μέσα από μαθηματικούς υπολογισμούς και αναπαραστάσεις Δημιουργία και έλεγχος υποθέσεων Σχεδιασμός πειραμάτων με βάση τις υποθέσεις, την τυχαία προσδοκία και τη μεθοδολογία που έχουμε διαθέσιμη Χριστόφορος Νικολαου, ΒΙΟ109 2

"Nessuna umana investigazione si può dimandare vera scienza, se essa non passa per le matematiche dimostrazione" "Καμιά ερευνητική δραστηριότητα δεν μπορεί να αποκαλείται αληθινή επιστήμη αν δεν συμπεριλαμβάνει μαθηματικές αποδείξεις" Leonardo da Vinci :Treatise on Painting) Χριστόφορος Νικολαου, ΒΙΟ109 3

Πώς εργαζόμαστε; 1. Διατυπώνουμε με σαφήνεια το ερώτημα. 2. Καταγράφουμε τα δεδομένα που χρειαζόμαστε για να απαντήσουμε 3. Αναζητούμε/συλλέγουμε τα δεδομένα. Ανάλογα με το είδος τους μπορεί να είναι διαθέσιμα ή να πρέπει να τα συλλέξουμε οι ίδιοι μέσω πειραμάτων 4. Σχεδιάζουμε την ανάλυσή των δεδομένων με τρόπο που να οδηγεί στην απάντηση του ερωτήματος Χριστόφορος Νικολαου, ΒΙΟ109 4

Ένα Παράδειγμα: Πώς επηρρεάζουν τα ατμοσφαιρικά επίπεδα CO τη θρεπτική αξία των φυτικών τροφών; 2 Χριστόφορος Νικολαου, ΒΙΟ109 5

Tο ερώτημα: Τα επίπεδα του C O 2 στην ατμόσφαιρα μεταβάλλονται κυρίως λόγω της ανθρώπινης δραστηριότητας. Τα φυτά εξαρτώνται από το C O ως κύρια πηγή άνθρακα. Πώς μπορεί η αύξηση των επιπέδων CO στην ατμόσφαιρα να επιδρά πάνω στην ανάπτυξη και την ενσωμάτωση θρεπτικών στοιχείων στα φυτά; 2 2 Χριστόφορος Νικολαου, ΒΙΟ109 6

Δεδομένα που χρειαζόμαστε: 1. Μετρήσεις C O στην ατμόσφαιρα 2. Μετρήσεις C O σε καλλιέργειες 3. Μετρήσεις θρεπτικών στοιχείων σε φυτά που μεγαλώνουν σε: α) υψηλά και β) χαμηλά επίπεδα CO 2 2 2 Χριστόφορος Νικολαου, ΒΙΟ109 7

Ανάλυση Καταγραφή μετρήσεων σε ικανούς αριθμούς Σύγκριση μετρήσεων α) υψηλών και β) χαμηλών επιπέδων C O Eξαγωγή συμπερασμάτων Χριστόφορος Νικολαου, ΒΙΟ109 8 2

Ανάλυση/Παρουσίαση Αποτελεσμάτων Στατιστική ανάλυση των μετρήσεων. Τι αυξάνεται; Τι μειώνεται; και πόσο; Στατιστική επεξεργασία σημαντικότητας. Πόσο πιθανό είναι οι μεταβολές που παρατηρήσαμε να μην επαναληφθούν αν ξανακάναμε το πείραμα. Επαναληψιμότητα (Reproducibility): Ο βασικότερος δείκτης αξιολόγησης ενός πειράματος. Χριστόφορος Νικολαου, ΒΙΟ109 9

Επαναληψιμότητα Ο έλεγχος επαναληψιμότητας είναι ουσιαστικά στατιστική επεξεργασία αποτελεσμάτων στη βάση μιας υπόθεσης εργασίας. Ποια είναι η υπόθεσή μας εδώ; Πώς εκτιμούμε την υπόθεση ότι υπάρχει αύξηση/μείωση των επιπέδων θρεπτικών στοιχείων Σύγκριση μέσων τιμών από ικανό αριθμό μετρήσεων. Χριστόφορος Νικολαου, ΒΙΟ109 10

Στατιστική επεξεργασία δεδομένων Παρέχει τα εργαλεία για όλα όσα είδαμε παραπάνω: Περιγραφή ενός φαινομένου μέσω υπολογισμών (Περιγραφική Στατιστική) Διατύπωση και έλεγχος υποθέσεων (Επαγωγική Στατιστική) Εκτίμηση τυχαιότητας και σχεδιασμός πειραμάτων (Μαθηματική Μοντελοποίηση) Χριστόφορος Νικολαου, ΒΙΟ109 11

Βασικές Εννοιες 1: Πληθυσμός και Δείγμα Ονομάζουμε πληθυσμό το σύνολο των οντοτήτων που μπορούν να είναι αντικείμενο μέτρησης. Ονομάζουμε δείγμα το υποσύνολο του πληθυσμού για το οποίο θα έχουμε μέτρηση. Ποτέ δεν έχουμε μετρήσεις για όλον τον πληθυσμό αλλά......θέλουμε το δείγμα να είναι αντιπροσωπευτικό. Χριστόφορος Νικολαου, ΒΙΟ109 12

Βασικές Εννοιες 2: Μεταβλητές Ποσοτικές (μετρήσεις όπως ύψος, βάρος, συγκέντρωση κλπ) Ποιοτικές/κατηγορικές (στοιχεία όπως φύλο, εθνικότητα, γεωγραφική προέλευση, νοσηρότητα, μεταλλαγές στο DNA) Διακριτές (μπορούν να πάρουν συγκεκριμένες τιμές, π.χ. οι βαθμοί στο μάθημά μας από 1-10) Συνεχείς (κατανέμονται σε ένα διάστημα τιμών, π.χ. συγκέντρωση Ζn) Χριστόφορος Νικολαου, ΒΙΟ109 13

Βασικές Έννοιες 3: Είδη Δεδομένων Kαθαρές τιμές: αριθμητικές ή κατηγορικές τιμές που μπορούν να μετρηθούν απευθείας (π.χ. το ύψος καθενός/μιας από εσάς) Συχνότητες: Ομαδοποιημένα δεδομένα που ορίζονται ως το ποσοστό των τιμών που "πέφτουν" μέσα σε ένα συγκεκριμένο διάστημα. (π.χ. τι ποσοστό από εσάς είναι ψηλότεροι/ες από 1.85m) Χριστόφορος Νικολαου, ΒΙΟ109 14

Βασικές Έννοιες 3: Είδη Δεδομένων Λόγοι: Αναλογίες που συνδυάζουν δύο (ή περισσότερες) μεταβλητές. (π.χ. πόσοι από αυτούς που είναι >1.85 είναι άνδρες και πόσες γυναίκες;) Διαφορές: Μεταβολές στην ίδια μεταβλητή μεταξύ δύο διαφορετικών συνθηκών. Είναι σημαντικό να μιλάμε για το ίδιο αντικείμενο (π.χ. πόσο πιο ψηλοί είστε σήμερα σε σχέση με την εποχή που τελειώνατε το γυμνάσιο). Χρονοσειρές: Αριθμητικές τιμές που μεταβάλλονται στον χρόνο (ή σε μια διάσταση που μπορεί να τον προσομοιάσει). (π.χ. τιμές μιας μετοχής, μέση θερμοκρασία του πλανήτη, αριθμός ατυχημάτων ανά χλμ της Εθνικής οδού κλπ). Χριστόφορος Νικολαου, ΒΙΟ109 15

Περιγραφική Στατιστική Είναι ο κλάδος της Στατιστικής που έχει σκοπό να αναδείξει τα βασικά χαρακτηριστικά ενός συνόλου δεδομένων. Τα δύο κύρια στοιχεία της είναι: Οι χαρακτηριστικές τιμές Τα διαγράμματα Χριστόφορος Νικολαου, ΒΙΟ109 16

Χαρακτηριστικές τιμές Μέση τιμή: Είναι το άθροισμα των τιμών, διαιρεμένο με το πλήθος τους. μ = N i=1 N x i Σταθμισμένη μέση τιμή: Είναι το σταθμισμένο άθροισμα των τιμών, με διαφορετικά βάρη ανά τιμή/τιμές: μ = N w i=1 Διάμεσος: Είναι η μεσαία τιμή στην με αύξουσα σειρά, διαταγμένη κατάταξη (rank) των τιμών Ερώτηση: Πόσο κοντά είναι η μέση τιμή και ο διάμεσος; Σε ποιες περιπτώσεις ταυτίζονται; x i w i Χριστόφορος Νικολαου, ΒΙΟ109 17

Mέτρα Διασποράς #1 Εύρος: Είναι η διαφορά της μέγιστης από την ελάχιστη τιμή. range = x max x min Ποσοστημόρια: Είναι τοπικά εύρη που περιέχουν ένα συγκεκριμένο ποσοστό των τιμών. Π.χ. η μικρότερη και μεγαλύτερη μεταξύ των χαμηλότερων 25% των τιμών ορίζουν το πρώτο τεταρτημόριο Ερώτηση: Ποια τιμή ορίζει το όριο μεταξύ του δεύτερου και του τρίτου τεταρτημόριου; Χριστόφορος Νικολαου, ΒΙΟ109 18

Mέτρα Διασποράς #2 Διασπορά: Είναι ένα μέτρο συνολικής απόκλισης των τιμών από τη 2 μέση τιμή. var = σ = Τυπική απόκλιση: Είναι η τετραγωνική ρίζα της διασποράς (κι έχει έτσι διαστάσεις και μονάδες ίδιες με αυτές του μετρούμενου μεγέθους). σ = N i=1 N i=1 (xi μ) N (xi μ) N 2 Ερώτηση: Ποια τιμή ορίζει το όριο μεταξύ του δεύτερου και του τρίτου τεταρτημόριου; 2 Χριστόφορος Νικολαου, ΒΙΟ109 19

Γραφικές Παραστάσεις #1 Ραβδογράμματα: Αναπαριστούν σε ύψη τις αριθμητικές τιμές διάφορων μετρήσεων. Χριστόφορος Νικολαου, ΒΙΟ109 20

Γραφικές Παραστάσεις #2 Διαγράμματα συχνοτήτων Χριστόφορος Νικολαου, ΒΙΟ109 21

Γραφικές Παραστάσεις #3 Ιστογράμματα: Αναπαριστούν τις συχνότητες εμφάνισης τιμών σε τμήματα/υποσύνολα του συνολικού εύρους. Μας δίνουν σημαντική πληροφορία για τη συμμετρία των τιμών γύρω από τις επικρατούσες τιμές (μέση τιμή, διάμεσο) καθώς και για τη διασπορά τους Χριστόφορος Νικολαου, ΒΙΟ109 22

Γραφικές Παραστάσεις #3 Παράδειγμα διαφορετικής τυπικής απόκλισης σε μετρήσεις διαφορετικών μερών του τέστ IQ. Παρά το γεγονός ότι η μέση τιμή δε διαφέρει (μ~100) οι τιμές διασπείρονται σε πολύ διαφορετικά εύρη. Χριστόφορος Νικολαου, ΒΙΟ109 23

Γραφικές Παραστάσεις #4 Θηκογράμματα: Δημιουργούνται με τη χρήση των ορίων μεταξύ των τεταρτημορίων και αναπαριστούν ταυτόχρονα, ακραίες τιμές, ενδο-τεταρτημοριακή απόσταση και διάμεσο. Χριστόφορος Νικολαου, ΒΙΟ109 24

The median isn't the message (by S.J. Gould) O Stephen J. Gould, ένας από τους πιο διάσημους εξελικτικούς βιολόγους στην ιστορία, διαγνώστηκε με μεσοθηλίωμα το 1982. Ο γιατρός του τον ενημέρωσε ότι η διάμεση (median) διάρκεια επιβίωσης είναι 8 μήνες! O SJ Gould πέθανε το 2002, 20 χρόνια μετά. Διαβάστε το κείμενο που έγραψε με τίτλο The Median isn't the message Χριστόφορος Νικολαου, ΒΙΟ109 25

Δοκιμάστε Προτείνετε μια διαδικασία για να απαντήσετε στο εξής ερώτημα: Μια νέα, πειραματική θεραπεία για την ασθένεια Χ υπόσχεται καλύτερα αποτελέσματα από τις υπάρχουσες. Πώς θα σχεδιάσετε μια κλινική μελέτη ώστε να το επιβεβαιώσετε ή να το διαψεύσετε. Η πρότασή σας θα πρέπει να λάβει υπ' όψιν: Τα αντικείμενα της μελέτης Πληθυσμούς και δείγματα Είδος μεταβλητών που θα μετρηθούν Είδος των αναλύσεων που θα πραγματοποιηθούν Χριστόφορος Νικολαου, ΒΙΟ109 26

Χριστόφορος Νικολαου, ΒΙΟ109 27