Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.



Σχετικά έγγραφα
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΔΠΑΝΑΛΖΠΣΗΚΟ ΓΗΑΓΧΝΗΜΑ Γ' ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ. ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ζε όλη ηην ύλη) ΓΗΑΡΚΔΗΑ ΔΞΔΣΑΖ: 3 ΧΡΔ

ΘΔΜΑ 1 ο Μονάδες 5,10,10

B1. Η ζπλάξηεζε f είλαη ζπλερήο θαη παξαγσγίζηκε ζην 0,, σο πειίθν παξαγσγίζηκσλ. 1 x ln x ln x x ln x. x x x x. f x ln x 0 ln x 1 x e

f x 2xln x x x 2ln x 1 x f x 0 x 2ln x 1 0 2ln x 1 0 ln x ln e x e

Β. Να δώσετε τον ορισμό του τοπικού ελαχίστου μιας συνάρτησης f με πεδίο ορισμού το σύνολο Α. ΜΟΝΑΔΕΣ 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

x x x x tan(2 x) x 2 2x x 1

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

=90º ) κε πιεπξέο α, β, γ. Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη (ii) 4α, 4β, 3γ.

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά):

ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 133. Ύλη: Σσναρηήζεις-Σηαηιζηική Θέμα 1

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

x x 15 7 x 22. ΘΔΜΑ Α 3x 2 9x 4 3 3x 18x x 5 y 9x 4 Α1. i. . Η ιύζε είλαη y y x 3y y x 3 2x 6y y x x y 6 x 2y 1 y 6

ΤΝΟΠΣΙΚΗ ΜΔΘΟΓΟΛΟΓΙΑ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΔΙΟΤ ΘΔΣΙΚΗ ΚΑΙ ΣΔΥΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη

ΑΛΥΤΔΣ ΑΣΚΗΣΔΙΣ ΜΙΓΑΓΙΚΟΙ ΟΜΑΓΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. z2. Να απνδεηρζεί όηη:

ΚΕΦΑΛΑΙΟ Γείμηε όηη : ΡΑ ΡΒ ΡΓ 2 ΒΑ.

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

66. Ομογενής ράβδος ποσ περιζηρέθεηαι

Θέμα 3 ο v. Θέμα 5 ο Να βξεζεί ν γεσκεηξηθόο ηόπνο ησλ εηθόλσλ ησλ κηγαδηθώλ z γηα ηνπο νπνίνπο

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

Γεωμεηπικοί Τόποι Σςμμεηπίερ Α Λυκείου - Γεωμετρία

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 31. Ύλη:Εσθύγραμμη Κίνηζη

Χξόλνη xi vi fi% Ni Fi% [5,. ) α+4 [.,. ) 3α-6 [.,. ) 2α+8 [., 45) α-2 ύλνιν

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf

ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο.

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ

ΑΝΣΩΝΗ ΚΤΡΙΑΚΟΠΟΤΛΟ ΠΡΑΓΜΑΣΙΚΕ ΤΝΑΡΣΗΕΙ ΧΡΗΙΜΕ ΕΠΙΗΜΑΝΕΙ ΣΙ ΒΑΙΚΕ ΕΝΝΟΙΕ

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.

ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΚΑΣΑΛΛΗΛΑ ΓΙΑ 3 Ο Η 4 Ο ΘΔΜΑ ΣΙ ΠΡΟΑΓΩΓΙΚΔ ΔΞΔΣΑΔΙ Α ΛΤΚΔΙΟΤ

Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής

ΠΑΠΑΝΙΚΟΛΑΟΥ Σελίδα 1 από 18 ΛΥΣΔΙΣ ΑΣΚΗΣΔΩΝ ΣΤΗΝ ΔΙΣΑΓΩΓΗ ΤΩΝ ΣΥΝΑΡΤΗΣΔΩΝ

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο

ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Εξετάςεισ περιόδου Μαΐου Ιουνίου Εξεταςτζα Ύλη Άλγεβρασ Β Λυκείου ( όλα τα τμήματα )

Μεζνδνινγία Κύθινπ. Η εμίζσζε ελόο θύθινπ πνπ έρεη θέληξν ηελ αξρή ησλ αμόλσλ είλαη ηεο κνξθήο:

ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ Θέμα Α ( Α1 =10, Α2 = 15 ) 1) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΒΑΙΚΓ ΓΝΩΓΙ ΣΡΙΓΩΝΟΜΓΣΡΙΑ ΑΠΟ Α ΛΤΚΓΙΟΤ. 1. Σπιγωνομεηπικοί απιθμοί οξείαρ γωνίαρ ζε οπθοκανονικό ζύζηημα αξόνων.

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

BAΙΚΑ ΘΔΩΡΗΜΑΣΑ ΤΝΔΥΔΙΑ

Εξίσωση ευθείας. ) θαη Β( 1,

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.

«Τεηπάδιο Επανάληψηρ» ΑΛΓΕΒΡΑ Ά ΛΥΚΕΙΟΥ

ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Εξετάςεισ περιόδου Μαΐου Ιουνίου 2016

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Transcript:

ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ πνπ πεξηθιείεηαη από ηελ C f, ηελ επζεία (ε), ηνλ άμνλα θαη ηελ επζεία =α, όπνπ α-, θαη λα βξεζεί lim Δ(α) α - ΛΤΗ α) Ιζρύεη + f() f(- ) = : () Από ηελ () ζέηνληαο όπνπ ην - έρνπκε όηη γηα θάζε IR ηζρύεη - f(- ) f() = : () Από ηελ () έρνπκε + f() f(- ) = f() f() Έηζη από ηελ () πξνθύπηεη όηη γηα θάζε IR ηζρύεη + f(- ) = : (3) Από ηελ (), ιόγω ηεο (3), έρνπκε: f() + + - - f() = = 3 f() f() 3 3 3 3 f() = f() = f() = Δίλαη θαλεξό όηη ε f()=, IR ηθαλνπνηεί ηελ () Άξα είλαη f()=, IR Σειίδα

β) Δίλαη f()=, f ()=( ) =, f( )=, f ( )=. M,f( ) είλαη Η εμίζωζε ηεο εθαπηνκέλεο (ε) ηεο C f ζην ζεκείν ηεο y - f( ) = f ( )( - ) y - = - y = + (- ) Γηα λα δηέξρεηαη ε επζεία (ε) από ην ζεκείν (-,-) πξέπεη θαη αξθεί λα ηζρύεη - = (-) + - - = - + - = = - - = g( ) = g(), όπνπ g() = -, IR - - Δίλαη - - - g () = - = - - = + >, γηα θάζε IR, νπόηε ε g είλαη γλεζίωο αύμνπζα ζην IR. Άξα ε g, ωο γλεζίωο κνλόηνλε ζην πεδίν νξηζκνύ ηεο, είλαη ζπλάξηεζε -. Έηζη από ηελ πξνθύπηεη όηη είλαη = g( ) = g(), δεδνκέλνπ όηη ε g είλαη ζπλάξηεζε -, Γηα = ε εμίζωζε ηεο (ε) γίλεηαη y=. Άξα ε δεηνύκελε εθαπηνκέλε ηεο C f είλαη ε επζεία (ε):y= θαη ην ζεκείν ηεο επαθήο είλαη ην Μ(,) γ) Δίλαη f () = θαη f () = > γηα θάζε IR, νπόηε ε f είλαη θπξηή ζην IR.Δπεηδή ε f είλαη θπξηή ζην IR έπεηαη όηη ε C f βξίζθεηαη πάλω από ηελ εθαπηόκελε ηεο επζείαο (ε):y=, κε εμαίξεζε ην θνηλό ζεκείν επαθήο Μ(,). Αθόκε ε επζεία (ε):y= ηέκλεη ηνλ άμνλα ζην ζεκείν Ο(,). Τν δεηνύκελν εκβαδόλ είλαη Δ=Δ +Δ,όπνπ Δ είλαη ην εκβαδόλ ηνπ ρωξίνπ πνπ πεξηθιείεηαη από ηελ C f, ηνλ άμνλα θαη ηηο επζείεο =α θαη = θαη Δ είλαη ην εκβαδόλ ηνπ ρωξίνπ πνπ πεξηθιείεηαη από ηελ C f, ηελ επζεία (ε) θαη ηηο επζείεο = θαη = Σειίδα

Δίλαη ν ν ν α α α θαη α Δ = f()d = d = = - η.κ Δ = f() - d = ν - d = d - d = - = = -- (- ) = - η.κ Δπνκέλωο ην δεηνύκελν εκβαδόλ είλαη α α Δα = Δ + Δ = - + - = - η.κ α Δίλαη lim Δα = lim - = - = η.κ α- α- Σειίδα 3

Γηα ηελ ζπλάξηεζε f : IR ΘΕΜΑ. IR ηζρύεη f() - f(y) - + y εκ - εκy γηα θάζε, y R θαη f() =. Να δείμεηε όηη ε ζπλάξηεζε g()=f()-,ir είλαη ζηαζεξή ζην IR θαη λα βξεζεί ν ηύπνο ηεο f.. Να βξείηε πνην ζεκείν ηεο C f απέρεη από ην ζεκείν Α(5,) ηελ κηθξόηεξε απόζηαζε. 3. Αλ Μ ν είλαη ην ζεκείν ηεο C f πνπ απέρεη από ην Α(5,) ηελ κηθξόηεξε απόζηαζε. α) λα δείμεηε όηη ε εθαπηόκελε (ε) ηεο Cf ζην Μ ν είλαη θάζεηε ζηελ επζεία ΑΜ ν. β) λα βξείηε ην εκβαδόλ ηνπ ρωξίνπ πνπ πεξηθιείεηαη από ηελ C f, ηνλ άμνλα, ηελ επζεία ΑΜ ν θαη ηελ επζεία =. ΛΤΗ ) Έζηω IR ηπραίνο. Λόγω ηεο () έρνπκε όηη γηα θάζε ν ηζρύεη : εκ - εκ f() - f( ) - + εκ - εκ f() - - f - εκ - εκ εκ - εκ g - g g - g εκ - εκ - g - g - - - εκ - εκ g() - g( ) εκ - εκ - : () - - - Σειίδα 4

Η ζπλάξηεζε θ()=εκ είλαη παξαγωγίζηκε ζην IR κε θ ()=(εκ) =ζπλ, νπόηε είλαη : θαη εκ - εκ εκ - εκ lim = lim - - - θ() - θ( ) = lim lim - = θ = = - εκ - εκ lim - = - =, - g() - g( ) lim = - νπόηε ιόγω ηεο () πξνθύπηεη όηη Δπνκέλωο ε g είλαη παξαγωγίζηκε ζε θάζε ζεκείν IR θαη ηζρύεη g ( )= γηα θάζε IR. Άξα ε g είλαη ζηαζεξή ζην IR.Δπεηδή ε g είλαη ζηαζεξή ζην IR έρνπκε όηη γηα θάζε IR, ηζρύεη: g() = g() f() - = f() - f() - = f() = + (ηθαλνπνηεί ηελ ππόζεζε) ) Έζηω Μ, + ζεκείν ηεο C f.δίλαη ΑΜ = - 5 + +- = - 5 + + Δίλαη θαλεξό όηη ε απόζηαζε (ΑΜ) γίλεηαη ειάρηζηε αλ θαη κόλν αλ ην (AΜ) γίλεηαη ειάρηζην. y C f M(, +) O A(5,) Σειίδα 5

Δίλαη (ΑΜ) =(-5) +( +) = 4 +3 -+6=h(), R. Η ζπλάξηεζε h είλαη παξαγωγίζηκε ζην R κε h ()=4 3 +6-. Δίλαη h ()= +6> γηα θάζε R, νπόηε ε h είλαη γλεζίωο αύμνπζα ζην R. Αθόκε είλαη h ()=4 3 +6-=. Έηζη έρνπκε h ()>h ()>h ()>, (αθνύ ε h είλαη γλεζίωο αύμνπζα ζην R). Όκνηα h ()<h ()<h ()<,(αθνύ ε h είλαη γλ. αύμνπζα ζην R.) h ()=h ()=h ()=, (αθνύ ε h ωο γλεζίωο αύμνπζα ζην R είλαη ζπλάξηεζε - ). - + h () - + h() Από ην πξόζεκν ηεο h () πνπ θαίλεηαη ζηνλ πίλαθα πξνθύπηεη όηη ε h είλαη γλεζίωο θζίλνπζα ζην (-,] θαη γλεζίωο αύμνπζα ζην [,+). min Άξα ε h παξνπζηάδεη νιηθό ειάρηζην ζην =, ην νπνίν είλαη ην h min =h()=. Γηα = είλαη y=f()= +=. Δπνκέλωο ην ζεκείν ηεο C f πνπ απέρεη από ην Α(5,) ηελ κηθξόηεξε απόζηαζε είλαη ην Μ ν (,) θαη ε απόζηαζή ηνπ από ην Α είλαη (ΑΜ ν )=(ΑΜ) min = hmin = 5 Σειίδα 6

f () = + =, IR, νπόηε ν ζπληειεζηήο δηεύζπλζεο 3) α) είλαη: ηεο εθαπηνκέλεο (ε) ηεο C f ζην ζεκείν Μ ν (,) είλαη ιε=f ()= Ο ζπληειεζηήο δηεύζπλζεο ηεο επζείαο ΑΜ ν είλαη yμ - y ν Α - ι ΑΜ = = = - ν - - 5 Μν Α Δίλαη β) ιε ι ΑΜ ν = - = - νπόηε ε επζεία (ε) είλαη θάζεηε ζηελ επζεία ΑΜ ν C f Μ ν (,) (,) Ο Β(,) Α(5,) Τν δεηνύκελν εκβαδόλ είλαη Δ=Δ +Δ, όπνπ Δ είλαη ην εκβαδόλ ηνπ ρωξίνπ πνπ πεξηθιείεηαη από ηελ C f, ηνλ άμνλα θαη ηηο επζείεο = θαη = θαη Δ είλαη ην εκβαδόλ ηνπ ηξηγώλνπ ΑΒΜ ν. Δίλαη f()d = 3 4 4 Δ = + d = + = - = η.κ 3 3 3 Δ = ΑΒ ΒΜ ν = 4 = 4 η.κ Άξα ην δεηνύκελν εκβαδό είλαη θαη 4 6 Δ = Δ + Δ = + 4 = η.κ 3 3 Σειίδα 7

ΘΕΜΑ 3. Γηα ηελ δπν θνξέο παξαγωγίζηκε ζπλάξηεζε f : IR IR ηζρύεη f () = - f () + f() γηα θάζε IR θαη είλαη f () =. α) Να δείμεηε όηη f() = -,, = β) Να βξεζεί ε f () θαη ε f (). γ) Να κειεηεζεί ε f ωο πξνο ηελ κνλνηνλία, ηα ηνπηθά αθξόηαηα, ηελ θπξηόηεηα θαη ηα ζεκεία θακπήο. β - β δ) Αλ <α<β< λα δείμεηε όηη: α - d > ln α Γηα θάζε IR έρνπκε: ΛΤΗ f () + f () () = f () - + f() - f () = - f () + f() f () + f () = - f () + f() f () = - f() f () = - f() + c c IR ζηαζεξά Γηα = έρνπκε f () = - f () + c c = f () = Δηζη γηα θάζε IR έρνπκε : f() + = f() + f() + = c c IR ζηαζεξά f () = - f() + f () + f() = f() + Γηα = έρνπκε : f() + = c c = Δηζη γηα θάζε IR ηζρύεη f() + = f() = - : () Σειίδα 8

- Απν ηελ () έρνπκε όηη γηα θάζε είλαη f() =. Δπεηδή ε f είλαη ζπλερήο ζην = (αθνύ ε f είλαη παξαγωγίζηκε ζην R), έπεηαη όηη ηζρύεη : limf() = f(). Άξα είλαη : - -, αλ - f() = limf() = lim = lim = lim = Άξα f() = - +, αλ = - + - - - - Β. Γηα θάζε είλαη f () = = = = = Σην =, έρνπκε - - -- f() - f() -- lim = lim = lim lim - - - = lim lim = lim = IR, νπόηε ε f είλαη παξαγωγίζηκε ζην = κε f () = Έηζη έρνπκε f () = - +, αλ, αλ = Σειίδα 9

Γηα θάζε - + - + - - + f () = = = 4 3 - - - - + - = = Σην = έρνπκε : 4 3 - + - f () - f () - + - lim = lim = lim = 3 - - + - - - - lim = lim = lim = lim = 3 6 3 3 lim = IR 3 3 Άξα ε f είλαη παξαγωγίζηκε ζην = κε f () = 3 Έηζη έρνπκε f () = - + - 3, αλ 3, αλ = Σειίδα

Γ) Θεωξνύκε ηελ ζπλάξηεζε g()=(-) +, R Δίλαη g ()= = έρνπκε : g () > > > g () < < < g () = = - + g () - + g() min Από ην πξόζεκν ηεο g () πνπ θαίλεηαη ζηνλ πίλαθα πξνθύπηεη όηη ε g είλαη γλεζίωο θζίλνπζα ζην -, θαη γλεζίωο αύμνπζα ζην,+, νπόηε ε g παξνπζηάδεη νιηθό ειάρηζην κόλν ζην ζεκείν = ην νπνίν είλαη g min =g()=. Δπνκέλωο γηα θάζε IR ηζρύεη g() g() = κε ηελ ηζόηεηα λα ηζρύεη κόλν γηα = Άξα γηα θάζε ηζρύεη - + g() > ( -) + > > f () > Αθόκε είλαη f ()= >, έηζη γηα θάζε R είλαη f ()>, νπόηε ε f είλαη γλεζίωο αύμνπζα ζην R θαη ε f δελ έρεη ηνπηθά αθξόηαηα. Θεωξνύκε ηελ ζπλάξηεζε θ() = - + -, IR Δίλαη θ () = = (-) + ( -+) = γηα θάζε R κε ηελ ηζόηεηα λα ηζρύεη κόλν γηα =, νπόηε ε θ είλαη γλεζίωο αύμνπζα ζην IR Σειίδα

Έηζη ) γηα θάζε > έρνπκε θr > θ() > θ() ( - + ) - > 3 > - + - 3 > f () > ) γηα θάζε < έρνπκε θr < θ() < θ() ( - + ) - < 3 < 3) - + - 3 > f () > f () = > 3 Έηζη γηα θάζε IRηζρύεη f ()> νπόηε ε f είλαη θπξηή ζην IR θαη ε C f δελ έρεη ζεκείν θακπήο Γ) Έζηω < α < β <.Γηα θάζε α,βέρνπκε: - - - < < < f() > f( ), αθνύ f IR > > - - - > β - β - β - d > d - d > α α α - - β - β β - β d > α d d > ln = lnβ - lnα α α α - - β - β α - d > ln α Σειίδα

ΘΕΜΑ 4 Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f :,+ IR ηζρύεη : + f() + f () = + f() γηα θάζε > θαη f()=. ) Να δείμεηε όηη: α) β) f() f() + = + ln, γηα θάζε >. ln f() =, > ) Να κειεηεζεί ε f ωο πξνο ηελ κνλνηνλία θαη ηα αθξόηαηα θαη λα δείμεηε όηη ln γηα θάζε > 3) Να δείμεηε όηη γηα θάζε α (,) ηζρύεη : d α ln > α 4) Να βξεζνύλ νη α,β>, ώζηε α αβ β α β = 5) Να ιπζεί ζην,+ ε εμίζωζε : = Σειίδα 3

ΛΤΗ ) α) Γηα θάζε > έρνπκε: + f() + f() + f () = f() + f () + f() = + f() f() f() + = + f() + f() = + > f() f() f() + = + f() + = + ln f() f() + = + ln + c, c IR ζηαζεξά Γηα = έρνπκε : f() f() f() + = + ln+ c f() + = + c + = + c c = f() Άξα γηα θάζε > ηζρύεη f() + = + ln : () β) Θεωξνύκε ηελ ζπλάξηεζε g() = +, IR. Δίλαη g () = + > γηα θάζε IR, νπόηε ε g είλαη γλεζίωο αύμνπζα ζην IR. Δπνκέλωο ε g είλαη ζπλάξηεζε -. Γηα θάζε > έρνπκε : g "-" f() f() ln f() + = + ln f() + = ln + g f() = g ln ln f() = ln f() = ln Άξα είλαη f() =, >. ( Δίλαη θαλεξό όηη ηθαλνπνηεί ηελ ππόζεζε ) Σειίδα 4

) Δίλαη ln - ln - ln ln - ln f () = = = = έρνπκε : - ln f () > > - ln > ln < ln < ln > > > > > ln,+ < < < > f () < f () = θόκε > θαη = > > + f () + - f() ma Από ην πξόζεκν ηεο f () πνπ θαίλεηαη ζηνλ πίλαθα πξνθύπηεη όηη ε f είλαη γλεζίωο αύμνπζα ζην, θαη γλεζίωο θζίλνπζα ζην,+, νπόηε ε f παξνπζηάδεη νιηθό κέγηζην κόλν ζην =, ην νπνίν είλαη ην mαf() = f() =. Δπεηδή ε f έρεη νιηθό κέγηζην έπεηαη όηη γηα θάζε > ηζρύεη ln f() maf() ln Δπνκέλωο γηα θάζε > ηζρύεη γηα =. ln : () κε ηελ ηζόηεηα λα ηζρύεη κόλν Σειίδα 5

3) Γηα θάζε > ηζρύεη ln Έηζη γηα θάζε α(,)θαη γηα θάζε α, κε ηελ ηζόηεηα κόλν γηα = ηζρύεη: () <α < lnα ln ln ln κε ηελ ηζόηεηα λα ηζρύεη κόλν γηα =. Δπνκέλωο είλαη: - d > d - d > ln ln d > d = ln = ln - lnα = ln = α α α α α α ln α IR ln d α d α ln α ln = ln > > α α αβ β α 4)... α β = : Δ αβ β α ln α β = ln Έρνπκε: β α αβ αβ βlnα + αlnβ ln α + ln β = βlnα + αlnβ = = αβ lnα lnβ + = f(α) + f(β) = : Σ α β Από ην () εξώηεκα έρνπκε όηη γηα θάζε > ηζρύεη: f() maf() = f() = κε ηελ ηζόηεηα λα ηζρύεη κόλν γηα =. Σειίδα 6

Έηζη ηζρύνπλ: f(α) κε ηελ ηζόηεηα λα ηζρύεη κόλν γηα α= θαη ηελ ηζόηεηα λα ηζρύεη κόλν γηα β= f(β) κε Έηζη είλαη f(α) + f() θαη ηελ ηζόηεηα λα ηζρύεη κόλν όηαλ α= θαη β=. Δπνκέλωο γηα λα ηζρύεη ε (Σ), νπόηε θαη ε ηζνδύλακε ηεο ζρέζε (Δ), πξέπεη θαη αξθεί λα είλαη α=β= 5) Έρνπκε: =, > ln ln ln( ) = ln( ), > ln = ln, > =, > ln f() =, > Έηζη ε εμίζωζε: =, > είλαη ηζνδύλακε κε ηελ εμίζωζε ln f() = ln Γηα ην =, ηζρύεη f() = νπόηε ην = είλαη ξίδα ηεο εμίζωζεο ln f() = θαη κάιηζηα κνλαδηθή ζην, αθνύ ε f είλαη γλεζίωο κνλόηνλε, ζην, ln4 Γηα ην =4,+ ηζρύεη f(4) = 4 ln( ) ln ln = = = 4 4 ln νπόηε ην =4 είλαη ξίδα ηεο εμίζωζεο f() = θαη κάιηζηα κνλαδηθή ζην (,+) αθνύ ε f είλαη γλεζίωο κνλόηνλε ζην (,+). ln Από ηα παξαθάηω πξνθύπηεη όηη ε εμίζωζε f() = νπόηε θαη ε ηζνδύλακή ηεο εμίζωζεο =,> έρεη αθξηβώο δπν ξίδεο ζην,+ νη νπνίεο είλαη : =, =4. Σειίδα 7

ΘΕΜΑ 5 Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f: IRIRηζρύεη + tf(t) f () = 3 + f(t)dt - f() dt - γηα θάζε IR θαη f()=f()+7. Να δείμεηε όηη ππάξρεη μ(,), ώζηε f (μ)=3μ. Να δείμεηε όηη - f(t)dt = f() 3. Να βξεζεί ν ηύπνο ηεο f 4.Έζηω (ε) ε εθαπηόκελε ηεο C f ζην ζεκείν ηεο Μ (α,f(α)), κε α > α) Να βξείηε ην εκβαδόλ Δ ηνπ ρωξίνπ πνπ πεξηθιείεηαη από ηελ C f θαη ηελ εθαπηνκέλε (ε) β) Αλ ην α απμάλεηαη κε ξπζκό 3cm/sc(ηα κήθε ηωλ κνλαδηαίωλ δηαλπζκάηωλ ηωλ αμόλωλ είλαη cm) λα βξείηε ην ξπζκό κεηαβνιήο ηνπ εκβαδνύ Δ ωο πξνο ηνλ ρξόλν t ηελ ρξνληθή ζηηγκή t θαηά ηελ νπνία είλαη Δ=8cm ΛΥΣΗ. Θεωξνύκε ηελ ζπλάξηεζε g()=f()- 3 Η g είλαη παξαγωγίζηκε ζην κε g ()=f ()-3, νπόηε ε g είλαη ζπλερήο ζην, θαη παξαγωγίζηκε ζην (,). Σειίδα 8

Αθόκε είλαη g()=f()- 3 =f()- θαη g()=f()- 3 =f()-8 Δίλαη όκωο f()=f()+7, νπόηε g() =(f()+7)-8=f()-. Άξα είλαη g()=g() Δπνκέλωο ε gηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ Θ.Rll ζην,, νπόηε ππάξρεη μ(,) ώζηε g (μ)= f (μ)-3μ =f (μ)=3μ. Από ηελ ππόζεζε έρνπκε όηη γηα θάζε IRηζρύεη : + tf(t) f () = 3 + f(t)dt - f() dt : () Από ηελ () γηα =μ έρνπκε: μ+ tf(t) - μ - f (μ) = 3μ + f(t)dt - f() dt μ+ tf(t) 3μ = 3μ + f(t)dt - f() dt - μ μ+ t f(t) f(t)dt - f() dt = : () - μ είλαη μ < μ + θαη γηα θάζε t μ,μ + μ+ tf(t) tf(t) ηζρύεη dt >, νπόηε είλαη dt > μ Έηζη απν ηελ () πξνθύπηεη όηη f(t)dt - f() = f(t)dt - f() = : (3) - - Σειίδα 9

3. Από ηελ () ιόγω ηεο (3) έρνπκε όηη γηα θάζε IRηζρύεη : 3 3 f () = 3 f() = f() = + c, c IRζηαζεξά 3 3 Έρνπκε όκωο f(t)dt = f() t + c dt = + c - - 4 t + ct = c + c - - c = c c = c c = 4 4 4-3 Άξα f() =, IR (ηθαλνπνηεί ηελ ππόζεζε) 3 3 4. α) Δίλαη f() =, f () = 3, f(α) = α, f (α) = 3α νπόηε ε εμίζωζε ηεο εθαπηνκέλεο (ε) ηεο C f ζην ζεκείν ηεο Μ (α,f(α)), α > 3 3 είλαη y - f(α) = f (α)( - α) y - α = 3α ( - α) y = 3α -α 3 Άξα είλαη (ε) : y = 3α - α Βξίζθνπκε ηηο ηεηκεκέλεο ηωλ θνηλώλ ηεο επζείαο (ε) θαη ηεο C f Λύλνπκε ηελ εμίζωζε 3 f() = 3α - α 3 3 3 Έρνπκε : f() = 3α - α - 3α + α = 3 3 3 -α - 3α + 3α = - α + α + α - 3α - α = -α + α - α = - α - α + α = -α = = α -α + α = ή ή + α = = -α Άξα ηα θνηλά ζεκεία ηωλ C f θαη (ε) είλαη Ν -α,f -α Μ α,f α θαη Σειίδα

Τν εκβαδόλ ηνπ ρωξίνπ Ω όπνπ πεξηθιείεηαη από ηελ C f θαη α α 3 3 3 ηελ (ε) είλαη: Δ = f() - 3α - α d = - 3α + α d -α -α 3 3 Δίλαη - 3α + α - α + α γηα θάζε -α,α, α > Έηζη είλαη: α α α α 3 3 3 3 Δ = - 3α + α d = d - 3α d + α d -α -α -α -α 4 α α 3 4 4 4 3α = - 3α + α α - -α α -6α - α - 4α + 6α 4 4 -α -α 4 5 4 9α 4 7 4 7 4 = - α + + 6α = α cm. Άξα είλαη Δ = α cm. 4 4 4 β) Έζηω θαηά ηελ ρξνληθή ζηηγκή t sc είλαη α = α(t) cm θαη Δ=Δ(t) cm. 7 4 Δίλαη Δ(t) = α (t), νπόηε παξαγωγίδνληαο ωο πξνο t έρνπκε 4 7 3 3 Δ (t) = 4α (t)α (t) = 7α (t) α (t) 4 Γηα ηελ ρξνληθή ζηηγκή t θαηά ηελ νπνία είλαη Δ=8cm Έρνπκε Δ (t ) = 7α (t ) α (t ) 3 Έρνπκε όκωο : αt 7 4 4 α t = 3cm / sc θαη Δt = 8 α t = 8 α t = 6 α t = cm 4 Έηζη ν δεηνύκελνο ξπζκόο κεηαβνιήο είλαη : 3 Δ t = 7 3 = 648 cm /sc Σειίδα

ΕΤΡΕΗ ΣΤΠΟΤ ΤΝΑΡΣΗΗ. Γηα ηελ ζπλάξηεζε f:irir ηζρύεη f() + f(- ) = + γηα θάζε IR.Να βξεζεί ν ηύπνο ηεο f.. Γηα ηελ ζπλάξηεζε f:irir ηζρύεη + γηα θάζε IR.Να βξεζεί ν ηύπνο ηεο f. f() f(- ) = 3. Γηα ηελ ζπλάξηεζε f :,, y, θαη είλαη f()= θαη f()=. Να βξείηε ηνλ ηύπν ηεο f. IR ηζρύεη f() - f(y) - y γηα θάζε 4. Γηα ηελ ζπλάξηεζε f : IR * + IR ηζρύεη f() ln + γηα θάζε > θαη είλαη : + f() + f = γηα θάζε >. Να βξεζεί ν ηύπνο ηεο f. 5. Η ζπλάξηεζε f:irir είλαη γλεζίωο αύμνπζα ζην IR θαη ηζρύεη f f =, γηα θάζε R. Να δείμεηε όηη f =, R. Σειίδα

6. Γηα ηελ ζπλάξηεζε f:irir ηζρύεη f f() + f() = γηα θάζε IR θαη ε f είλαη γλεζίωο αύμνπζα ζην IR. Να δείμεηε όηη f()=, IR. 7. Γηα ηελ ζπλάξηεζε f:irir ηζρύεη f() - f(y) - y,yir. γηα θάζε α) Να δείμεηε όηη ε ζπλάξηεζε g()=f()-3 είλαη γλεζίωο θζίλνπζα ζην R. β) Αλ επηπιένλ ηζρύεη f f() + 3 = 4f() γηα θάζε IR, λα βξείηε ηνλ ηύπν ηεο f. y 8. Αλ γηα ηελ ζπλάξηεζε f:irir ηζρύεη f() - f(y) - θάζε,yir. Να δείμεηε όηη ε f είλαη ζηαζεξή. γηα 9. α) Να βξεζεί ην πεδίν νξηζκνύ ηεο ζπλάξηεζεο g() = ln + + θαη ε παξάγωγνο ηεο. β) Να βξείηε ηνλ ηύπν ηεο παξαγωγίζηκεο ζπλάξηεζεο f:irir γηα ηελ νπνία ηζρύεη f () = + f () γηα θάζε IR θαη f()=. Σειίδα 3

. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f :,+ ηζρύεη f ()= f () γηα θάζε θαη f()=-. IR α) Να δείμεηε όηη ε ζπλάξηεζε - f(t)dt g() = f(), είλαη ζηαζεξή ζην,+. β) Να βξεζεί ν ηύπνο ηεο f.. Να βξεζεί ν ηύπνο ηεο παξαγωγίζηκεο ζπλάξηεζεο f:irir γηα ηελ νπνία ηζρύεη f() f () = γηα θάζε IR θαη f()=.. Να βξεζεί ν ηύπνο ηεο δπν θνξέο παξαγωγίζηκεο ζπλάξηεζεο f : IR * IR γηα ηελ νπνία ηζρύεη f () = γηα θάζε. 3. Να βξεζεί ν ηύπνο ηεο παξαγωγίζηκεο ζπλάξηεζεο f : IR IR ηελ νπνία ηζρύεη f()- f () = γηα θάζε IR θαη f()=. γηα 4. Να βξεζεί ν ηύπνο ηεο παξαγωγίζηκεο ζπλάξηεζεο f : IR IR γηα ηελ νπνία ηζρύεη f () = f() + ζπλ γηα θάζε IR θαη f()=. Σειίδα 4

5. Να βξείηε ηνλ ηύπν ηεο παξαγωγίζηκεο ζπλάξηεζεο f : IR IR ηελ νπνία ηζρύεη f () + f() = f() - f ()γηα θάζεirθαη f()=. γηα 6. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f:irir ηζρύεη f () -f(α) f(α +) γηα θάζε IR, (αir). Να δείμεηε όηη f()= γηα θάζε IR. 7. Γηα ηελ δπν θνξέο παξαγωγίζηκε ζπλάξηεζε f : IR * + IR ηζρύεη f() f () = - γηα θάζε IR * + θαη f() =,f ()=. Να βξεζεί ν ηύπνο ηεο f. 8. Να βξείηε ηηο παξαγωγίζηκεο ζπλαξηήζεηο f,g : IR IR, κε f()= θαη g()=-, αλ γηα θάζε IR ηζρύνπλ f () g() = θαη f() g () = -3. Σειίδα 5

9. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f : IR * + IR ηζρύεη yf(y) = f() + yf(y) γηα θάζε, y IR * + θαη είλαη ) Να βξεζεί ην f (). f() ) Να δείμεηε όηη f () = - γηα θάζε >. 3) Να βξείηε ηνλ ηύπν ηεο f. f() lim =. -. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f : (,π) IR f () εκ = f() ζπλ + f() εκ π π, π θαη f =. γηα θάζε Να βξείηε ηνλ ηύπν ηεο f. ηζρύεη. Να βξεζεί ν ηύπνο ηεο παξαγωγίζηκεο ζπλάξηεζεο f : (,+ ) IR γηα ηελ νπνία ηζρύεη f () = -f 3 γηα θάζε > θαη f() =.. Να βξείηε ηελ ζπλερή ζπλάξηεζε ηζρύεη π π f : -, IR γηα ηελ νπνία f() = + - f(t)εκt ζπλt dt γηα θάζε π π -,. Σειίδα 6

3. Γηα ηελ ζπλερή ζπλάξηεζε f:irir ηζρύεη 9 f(t)dt + = f() + γηα θάζε IR. Να βξεζεί ν ηύπνο ηεο f. 4. Γηα ηελ ζπλερή ζπλάξηεζε f :, f ()d = f()d -. Να βξεζεί ν ηύπνο ηεο f. IR ηζρύεη 5. Να βξείηε ηελ παξαγωγίζηκε ζπλάξηεζε f :,+ IR γηα ηελ νπνία ηζρύνπλ f()= θαη f(t) f () - dt = ln γηα θάζε >. t 6. Έζηω ζπλερήο ζπλάξηεζε f : IR IR * γηα ηελ νπνία ηζρύεη t f( - t)dt = εκ, γηα θάζε.να βξεζεί ν ηύπνο ηεο f. Σειίδα 7

7. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f :, 3 4 f() = (- ) f () γηα θάζε,. Να δείμεηε όηη f()=,,. IR ηζρύεη 8. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f: α,β IR ηζρύεη f() = + - α -β f () - γηα θάζε Να δείμεηε όηη f() =, α,β. α,β. 9. Γηα ηελ ζπλερή ζπλάξηεζε f :, IR ηζρύεη 4 f ()d = 4 f()d -. 3 Να δείμεηε όηη f() =,,. 3. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f:irir ηζρύεη f () = + f() - f(- ), γηα θάζε IR θαη f()=. Να βξείηε ηνλ ηύπν ηεο f. Σειίδα 8

3. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f:irir ηζρύεη f () = f () f(-), IR θαη f() =. Να βξεζεί ε ζπλάξηεζε f. 3. Να βξείηε ηνλ ηύπν ηεο παξαγωγίζηκεο ζπλάξηεζεο f:irir γηα ηελ νπνία ηζρύεη +-f() + f () = + γηα θάζε IR θαη f()=. 33. Να βξείηε ηνλ ηύπν ηεο παξαγωγίζηκεο ζπλάξηεζεο f:irir γηα ηελ νπνία ηζρύεη f () = ζπλ γηα θάζε IR θαη f()=. * 34. Γηα ηελ ζπλάξηεζε f : IR IR θάζε,y IR * ηζρύεη yf() - f(y) y - y γηα ) Να δείμεηε όηη ε ζπλάξηεζε f() g() =, > είλαη ζηαζεξή. ) Να βξείηε ηνλ ηύπν ηεο f. Σειίδα 9

35. Να βξεζεί ν ηύπνο ηεο ζπλερνύο ζπλάξηεζεο f:irir γηα ηελ νπνία ηζρύεη 3 γηα θάζε IR. 3 f( t)dt + 6 f(t)dt = tdt + 36. Να βξεζεί ν ηύπνο ηεο ζπλάξηεζεο f:irir κε f() = t dt. (τωρίς το σύμβολο τοσ ολοκληρώματος) 37. Γηα ηελ ζπλερή ζπλάξηεζε f:irir ηζρύεη π - γηα θάζε IR. f(t)dt + f(t)dt = εκ + ζπλ Να βξείηε ηνλ ηύπν ηεο f. * 38. Γηα ηελ ζπλερή ζπλάξηεζε f : IR IR ηζρύεη t + f() = dt γηα θάζε >. f(t) t + t Να βξεζεί ν ηύπνο ηεο f. 39. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f:irir ηζρύεη f( + y) f() + f(y) + y γηα θάζε,yir θαη είλαη f()=f ()=. Να βξεζεί ν ηύπνο ηεο f. Σειίδα 3

4. Γηα ηελ ζπλερή ζπλάξηεζε f:irir ηζρύεη f(t) f() = + εκ dt + γηα θάζε IR. +εκt Να βξείηε ηνλ ηύπν ηεο f. * 4. Γηα ηελ παξαγωγίζηκε ζπλάξηεζε f : IR IR ηζρύεη lim h h -f( + h - f + h) h = - f() γηα θάζε > θαη f()=. Να βξείηε ηνλ ηύπν ηεο f. 4. Να βξείηε ηνλ ηύπν ηεο παξαγωγίζηκεο ζπλάξηεζεο f:irir γηα f () ηελ νπνία ηζρύεη θαη f()=. f + f (t) - f(t) dt + f () = f() + γηα θάζε IR 43. Να βξεζεί ν ηύπνο ηεο ζπλερνύο ζπλάξηεζεο f:irir γηα ηελ νπνία ηζρύεη t f - t dt = f() + γηα θάζε R. Σειίδα 3

44. α) Να δεηρζεί όηη ε ζπλάξηεζε - () = >, = f, είλαη ζπλερήο ζην,+ β) Να βξείηε ηηο παξάγνπζεο ηεο f. γ) Να ππνινγίζεηε ην εκβαδό ηνπ ρωξίνπ πνπ πεξηθιείεηαη κεηαμύ ηεο C f, ηωλ επζεηώλ, = θαη ηνπ άμνλα. * 45. Να βξείηε ηνλ ηύπν ηεο ζπλερνύο ζπλάξηεζεο f : IR IR γηα ηελ νπνία ηζρύεη 4 - f() - f( t)dt = γηα θάζε >. 46. Γηα ηε ζπλάξηεζε f:rr ηζρύεη f(+y)=f()+f(y)+3y(+y) γηα θάζε,yr θαη ε f είλαη παξαγωγίζηκε ζην = κε f ()=. ) Να απνδείμεηε όηη ε f είλαη παξαγωγίζηκε ζην R ) Να απνδείμεηε όηη f()= 3, R. 47. Γηα ηε ζπλερή ζπλάξηεζε f : (-,)R ηζρύεη εκ f(t)dt = γηα θάζε (-,). Να βξεζεί ν ηύπνο ηεο f. Σειίδα 3