Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Σχετικά έγγραφα
Βέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α'

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Το Πρόβλημα Ελευθέρων Αρχικών & Τελικών: Χρόνου & Οριακών Συνθηκών

Έλεγχος «Ελάχιστης Ενέργειας»

Έλεγχος «Ελάχιστης Ενέργειας»

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Συστήματα Αυτόματου Ελέγχου

Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Βέλτιστος Έλεγχος Συστημάτων

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Συστήματα Αυτόματου Ελέγχου

Άσκηση 3. Έλεγχος ανατροφοδότησης κατάστασης dc κινητήρα. Έλεγχος ανατροφοδότησης κατάστασης

Βέλτιστος Έλεγχος Συστημάτων

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.

Έλεγχος Κίνησης

Συστήματα Αυτομάτου Ελέγχου II

1.1. Διαφορική Εξίσωση και λύση αυτής

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

website:

Συστήματα Αυτομάτου Ελέγχου 1

Γεωµετρικη Θεωρια Ελεγχου

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

Ονοματεπώνυμο: Επιμέλεια διαγωνίσματος: Αξιολόγηση :

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov)

Νόμοι της κίνησης ΙΙΙ

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

a n = 3 n a n+1 = 3 a n, a 0 = 1

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

Βέλτιστος Έλεγχος Συστημάτων

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις:

Σεµινάριο Αυτοµάτου Ελέγχου

Βέλτιστος Έλεγχος Συστημάτων

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα

Βέλτιστος Έλεγχος Συστημάτων

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

Θεωρία Βέλτιστου Ελέγχου Ασκήσεις

Βέλτιστος Έλεγχος Συστημάτων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( ( videos/bulletproof-balloons) n=0

Σερβοκινητήρες πρόωσης σε συστήματα CNC

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Γεωµετρικη Θεωρια Ελεγχου

Βέλτιστος Έλεγχος Συστημάτων

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ. Αριθμητικές μέθοδοι ελαχιστοποίησης ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση

y = u i t 1 2 gt2 y = m y = 0.2 m

Συστήματα Αυτόματου Ελέγχου

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (

Ευχαριστίες Δύο λόγια από την συγγραφέα... 17

Μάθημα: Ρομποτικός Έλεγχος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

Transcript:

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

Δομή της Ύλης του Μαθήματος Εισαγωγη στο Χώρο Κατάστασης Μοντελοποίηση στο Χώρο Κατάστασης Ανάλυση Συστημάτων στο Χώρο Κατάστασης Δομικές Ιδιότητες Συστημάτων Ελεγξιμότητα Παρατηρησιμότητα Ευστάθεια Σχεδίαση Συστημάτων Ελέγχου Ποιοτικά Κριτήρια Σχεδίασης Ανατροφοδότηση Κατάστασης Εισαγωγή στον Βέλτιστο Έλεγχο Εισαγωγή στην Βελτιστοποίηση σε χώρουν πεπερασμένων και απείρων διαστάσεων. Εισαγωγή στο Λογισμό των Μεταβολών Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών Αναγκαίες Συνθήκες Βελτίστου Ελέγχου Προβληματα τύπου «Γραμμικού Ρυθμιστή» Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2

Βέλτιστος Έλεγχος Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3

Ακρότατα Συναρτησιακών πολλών Συναρτήσεων Θέλουμε να βρούμε την αναγκαία συνθήκη που πρέπει να ικανοποιείται από ένα ακρότατο του συναρτησιακού όπου ο αρχικός χρόνος t 0 και αρχική τιμή x(t 0 )=x 0 είναι καθορισμένα και ο τελικός χρόνος t f και τελική τιμή x(t f )=x f είναι «ελέυθερα» (ακαθόριστα). Όπως και για τη περίπτωση μίας συνάρτησης, από την ολικη μεταβολή ΔJ(x) οδηγούμαστε στην πρώτη μεταβολή δj(x) και εφαρμόζοντας το Ακρογωνιαίο Θεώρημα Λογισμού των Μεταβολών... T T T

Ακρότατα Συναρτησιακών πολλών Συναρτήσεων Να σημειωθεί ότι, στις προηγούμενες (και επόμενες) σχέσεις, εφόσον το x είναι n- διάστατο διάνυσμα τα θα είναι n- διάστατα διανύσματα («στήλες»). g x, g!x Αποδεικνύεται ότι η παραπάνω σχέση, και στην n- διάστατη περίπτωση, οδηγεί στις αντίστοιχες n+1 σχέσεις Εξίσωση Euler T Οριακές Συνθήκες T Όπως και στη μονοδιάστατη, ανάλογα με τις τελικές οριακές συνθήκες οι παραπάνω σχέσεις εξειδικεύονται όπως φαίνονται στον επόμενο πίνακα: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 58

Ακρότατα Συναρτησιακών πολλών Συναρτήσεων T T + Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 59

Παράδειγμα: καθορισμένα οριακά σημεία Example 4.3-2 KIRK Example 4.3-3 KIRK g x 1 d dt g x 2 d dt g!x 1 = 0 g!x = 0 2 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 60

Παράδειγμα: καθορισμένα οριακά σημεία (συνεχ.) Example 4.3-2 KIRK Example 4.3-3 KIRK Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 61

Παράδειγμα: Ελεύθερα (μερικώς) οριακά σημεία Example 4.3-2 KIRK Example 4.3-3 KIRK g x 1 d dt g x 2 d dt g!x 1 = 0 g!x 2 = 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 62

Παράδειγμα: Ελεύθερα (μερικώς) οριακά σημεία (συνεχ.) E Example 4.3-3 KIRK Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 63

Παράδειγμα: Ελεύθερα (μερικώς) οριακά σημεία (συνεχ.) Since c 3 =0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 64

Ασκήσεις εξάσκησης για το σπίτι c Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 65

Παράδειγμα late Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 66

Παράδειγμα late Τ g!x t=t f =2 = 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 67

Παράδειγμα late g x( t),!x ( t),t ( ) g!x Τ!x t=t f = 0 x( t ) f = z f = 5 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 68

Βέλτιστος Έλεγχος μέσω Λογισμού των ( ) Μεταβολών Εστω σύστημα!x ( t) = a x( t),u( t),t με t 0, x(t 0 ) καθορισμένα. Ζητείται η εύρεση κατάλληλης συνάρτησης ελέγχου u*(t) που, παράγοντας τη τροχιά x*(t) μέσω της παραπάνω ΔΕ του συστήματος, αντιστοιχεί σε ακρότατη τιμή του συναρτησιακού Στο συναρτησιακό, το ολοκλήρωμα αντιστοιχεί στην διαδικασία της πορείας του συστήματος μεταξύ [t 0, t f ] ενώ η συνάρτηση h(x(t f ), t f ) εξαρτάται μόνο από την τελική κατάσταση και χρόνο. Ποιές είναι οι αντιστοιχες συνθηκες που μας οδηγούν στην εύρεση του ακροτάτου? Παρατηρούμε ότι οπότε το συναρτησιακό γίνεται Επειδή το h(x(t 0 ), t 0 ) είναι ανεξάρτητο της βελτιστοποίησης (εξαρτάται μόνο από τα x(t 0 ), t 0 που είναι προκαθορισμένα) μπορούμε να ασχοληθούμε με την εύρεση ακροτάτων για το Αν δε, εφαρμόσουμε τον «κανόνα της αλυσίδας» Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 69

Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών ( ) Οι ΔΕ!x ( t) = a x( t),u( t),t του συστήματος εισάγονται ως ισοτικοί περιορισμοί μέσω των πολ/στών Lagrange οπότε, άν «δομηθούν» με τη μορφή του διανύσματος T p( t) = p 1 ( t) p 2 ( t)! p n ( t), λαμβάνουμε Ορίζοντας Καταλήγουμε στο (γνώριμο) πρόβλημα ευρεσης ακροτάτων για το συναρτησιακό ] Aν ακολουθήσουμε τη γνωστή τακτική εύρεσης ολικής και πρωτης μεταβολής με βαση τις μεταβολές δ x,δ!x,δu,δ p και ότι δεν εμφανίζονται τα!u,!p στο g a έχουμε + Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 70 ( ) + +

Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών + + + Αν ληφθεί υπόψη η μορφή της g a και το Ακρογωνιαίο Θεώρημα Λογισμού των Μεταβολών λαμβάνουμε εξισώσεις τύπου Euler (διαφορικές) και Οριακών συνθηκών (αλγεβρικές) που πρέπει να ικανοποιούν οι επιζητούμενες συναρτήσεις ακροτάτων x ( t), p ( t),u ( t). Δηλαδη Εξισώσεις κατάστασης Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 71 ( ) Εξισώσεις «Συγκατάστασης» (Co- state Equajons) Εξισώσεις Ελέγχου Οριακές Εξισώσεις Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 71

Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών Αν στa παραπάνω εισάγουμε την έννοια την Χαμιλτονιανής ή Συνάρτησης Pontryagin Οι προηγούμενες εξισώσεις των ακροτάτων γίνονται Εξισώσεις κατάστασης Εξισώσεις «Συγκατάστασης» (Co- state Equajons) Εξισώσεις Βελτίστου Ελέγχου Οριακές Εξισώσεις Όπως και στη προηγούμενη θεώρηση (βελτιστοποίηση συναρτησιακού χωρίς ισοτικούς περιορισμούς), ανάλογα με τις τελικές οριακές συνθήκες, οι παραπάνω σχέσεις εξειδικεύονται όπως φαίνονται στον επόμενο πίνακα: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 72

Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών Αντικατάσταση στις Οριακές Εξισώσεις 3. 4. 5. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 73

Παράδειγμα- 1 Ξ Solujon u ( t) = p 2 ( t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 74

Παράδειγμα- 1 Solujon Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 75

Παράδειγμα- 1 Εξισώσεις Καταστασης, x(0)=0 Εξισώσεις Συγκατάστασης: x( 0) = 0 h x x( 2) p 2 ( ) = 0 p( 2) = x( 2) 5 2 T Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 76

Παράδειγμα- 2 Αναζητουμε τον βέλτιστο σχεδιασμό προφυλακτήρα για «βέλτιστη απόδοση» κατά τη σύγκρουση Θεωρούμε ως είσοδο τη δύναμη από το προφυλακτήρα και το μοντελλο: x1 = y x2 = y! Με y την μετατόπιση από τη στιγμή της προσκρουσης και μετά. Οι λειτουργικές προδιαγραφές είναι: ti = 0 tf = 1 y(ti) = 0, y (ti) = 4 y(tf) = free, y (tf) = 0 Η έννοια του «βελτιστου» υλοποιείται t μ έσω ελαχιστοποίησης ενός κριτηρίου =1 1 λειτουργικής απόδoσης J =!! y 2 ( t ) dt 2 t =0 ΛΥΣΗ: Οι εξισώσεις κατάστασης f i x!1 = x2 x!2 = F =u m οπότε ως είσοδος u ελήφθη η ανα μονάδα μάζας δύναμη και το κριτήριο 1 λειτουργικής απόδoσης γίνεται J ( u ) = 1 u 2 ( t ) dt 20 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 77

Παράδειγμα- 2 Θεωρούμε την Χαμιλτονιανή Η εξίσωση Βελτίστου Ελέγχου είναι οπότε x,u, p Οι εξισώσεις συγκατάστασης Οι εξισώσεις κατάστασης είναι Οι οριακές συνθήκες είναι t=0: t=1: H ( x,u, p) = 1 2 u2 + p 1 x 2 + p 2 u H u = H u ( ) = 0 = u + p 2 u = p 2!p 1 = H = 0 p 1 ( t) = c 1 x 1!p 2 = H = p 1 = c 1 p 2 x 2 ( ) = 0 c 4 = 0 x 2 ( 0) = 4 c 3 = 4 x 1 0 ( ) = 0 c 2 + c 3 = 0 c 2 = 4 x 1 ( 1) : free h x 2 1 x 1 p 1!x 2 = H = p 2 = c 1 t c 2 x 2 p 2 H = H ( x,u, p ) = 1 2 p 2 ( t) = c 1 t + c 2 ( ) 2 + p 1 x 2 ( t) = c 1 2 t 2 c 2 t + c 3!x 1 = H = x 2 = c 1 p 1 2 t 2 c 2 t + c 3 x 1 ( t) = c 1 6 t 3 c 2 2 t 2 + c 3 t + c 4 ( ( )) p 1 ( 1) = 0 p 1 ( 1) = 0 c 1 = 0 x 1 x 1 ( t) = 2t 2 + 4t x 2 t t ( ) = 4t + 4 ( ) = 0 p 2 ( t) = 4 u ( t) = p 2 ( t) = 4 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 78

Παράδειγμα- 2 Στο σχήμα φαίνονται: Οι βέλτιστες αποκρίσεις και Ο έλεγχος Από κατασκευαστικής σκοπιάς είναι σημαντικό να διερευνηθεί αν ο απαιτούμενος «σταθερός έλεγχος» (δύναμη αντίστασης) μπορεί να υλοποιηθεί με παθητική ή είναι απαραίτητη η ενεργητική διάταξη. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 79

Παράδειγμα- 3 Σε ορισμένες περιπτωσεις, που έχουμε μειώσεις της γωνιακής ταχυτητας γεννητριών, θέλουμε να την επαναφέρουμε στον ελάχιστο δυνατό χρόνο στην επιθυμητή γωνιακή ταχύτητα, προσέχοντας ταυτόχρονα να μη ασκήθει απότομα μεγάλη ροπή στην άτρακτο του ρότορα. Το σύστημα περιγράφεται από την: dω T = B ω + J dt Αν Β = J = 1, η κατάσταση x = ω και η είσοδος u = T, τότε: x! = x + u Οριακές συνθήκες (απλουστευμένη περίπτωση) x(0) = 0 και x(tf) = 10, tf : free Επιθυμούμε: Η μετάβαση x(0) = 0 x(tf) = 10 να γίνει στον ελάχιστο δυνατό χρόνο tf, και ταυτόχρονα να μη ασκήθει απότομα μεγάλη ροπή στην άτρακτο του ρότορα δηλαδή να διατηρηθεί η απόλυτη τιμή της επιτάχυνσης ω! = x! = x + u σε χαμηλά επίπεδα. Επομένως μπορούμε να υιοθετήσουμε ένα Δείκτη Λειτουργικής Απόδωσης tf 1 2 J ( u ) = γ t f + ( u x ) dt 20 όπου γ «επιβάλλει» τη σχετική βαρύτητα μεταξύ των 2 «επιθυμιών» μας. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 80

Παράδειγμα- 3 ΛΥΣΗ: 1 2 Θεωρούμε την Χαμιλτονιανή H ( x,u, p ) = ( u x ) + p ( u x ) H H 2 Eξίσ. Βελτίστου Ελέγχου: = ( x,u, p ) = 0 = u x + p u = x p οπότε u u 1 2 H = H ( x,u, p ) = ( p ) 2 Εξισ. Συγκατάστασης: H p! = = 0 p ( t ) = c1 x Εξισ. (βέλτιστης τροχιάς) κατάστασης: H x! = = p = c1 x ( t ) = c1 t + c0 p Οι οριακές συνθήκες είναι h ( x (t ),t ) t t=0: x ( 0 ) = 0 c0 = 0 x ( t ) = c1 t t f : free H + γ t=1: x t f = 10 c1 t f = 10 ( ) ( f ) tf f 2 1 = 0 ( p ) + γ = 0 c1 = ± 2γ 2 t Για να λάβουμε χρόνο tf θετικό πρέπει c1 < 0, επομένως c1 = 2γ f x ( t ) = 2γ t p ( t ) = 2γ u ( t ) = x ( t ) p ( t ) = 2γ ( t + 1) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 81