ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Σχετικά έγγραφα
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

είναι μιγαδικοί αριθμοί, τότε ισχύει , z 2 Μονάδες 2 β. Μία συνάρτηση f με πεδίο ορισμού Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x 0

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

OPMH. κοντά στο µαθητή!

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

4o Επαναληπτικό Διαγώνισμα 2016

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ (Οµάδα Α) Θέµα1.Α κυκλώστε το Σ αν η πρόταση είναι σωστή και το Λ αν είναι λάθος

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

just ( u) Πατρόκλου 66 Ίλιον

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

Σάββατο, 27 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. A.1. Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα Δ. Να αποδείξετε ότι:

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΕΠΑ.Λ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Α =, Β = α. Να υπολογίσετε τον πίνακα 3Α - 4Β. Μονάδες 5. β. Να υπολογίσετε τον πίνακα Χ έτσι ώστε να ισχύει: 2Α + Χ = 3Β Μονάδες 10

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. v i x i. Σχετική Συχνότητα (f i )

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Σχετική Συχνότητα (f i ) v i x i

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΜΑΘΗΜΑΤΙΚA Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΕ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

A ένα σημείο της C. Τι

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Σχετική Συχνότητα (f i ) v i x

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. α. Να μεταφέρετε τον παρακάτω πίνακα στο τετράδιό σας και να τον συμπληρώσετε με τη βοήθεια του παραπάνω ιστογράμματος συχνοτήτων.

f(x ) 0 O) = 0, τότε το x

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 η ΟΜΑ Α

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

µε Horner 3 + x 2 = 0 (x 1)(x

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

Transcript:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. ίνετι μί συνάρτησηf:[, R. ] Ν δώσετε τον ορισμό της συνέχεις της f στο διάστημ [., ] Μονάδες 6 Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς, δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση, τη λέξη Σωστό, ν η πρότση είνι σωστή ή τη λέξη Λάθος, ν η πρότση είνι λνθσμένη. ) Αν η f είνι συνεχής στο [, ] κι η F είνι μί πράγουσ της f, τότε ισχύει: f()d = F( ) F( ) (Μον. ) ) Το εύρος των τιμών μις μετλητής δεν επηρεάζετι πό τις κρίες τιμές της. (Μον. ) γ) Αν η συνάρτηση f είνι πργωγίσιμη στο R κι c R μί στθερά, τότε ισχύει: (c f) () = f () + c δ) + 1 * ( ) =, > 0, R. (Μον. ) (Μον. ) ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ε) Αν η f είνι συνεχής στο [, ], τότε ισχύει: f()d = f()d. (Μον. ) Μονάδες 10 Α3. Ν μετφέρετε κι ν συμπληρώσετε στο τετράδιό σς τις πρκάτω ισότητες: )Αν οι συνρτήσεις f, g είνι πργωγίσιμες στo R, τότε: (f g) () =... (Μον. 3) ) συν d =... γ)αν limf() = ll, R, τότεlim f() =... 0 0 (Μον. 3) (Μον. 3) ΘΕΜΑ Β ίνετι η συνεχής συνάρτηση f: R R, γι την οποί ισχύει: f() f() = 4 γι κάθε R. Β1. Ν δείξετε ότι: Β. Ν ρείτε το Β3. Ν ρείτε το f(). f() = 4. lim 4, γι. Μονάδες 7 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Γ Στον πρκάτω πίνκ προυσιάζοντι οι ηλικίες των υπλλήλων μίς ετιρείς: Α/Α Ηλικίες υπλλήλων Συχνότητ (ριθμός υπλλήλων) ν i 1 η κλάση [5, 35) 100 Κέντρο κλάσης i i ν i Σχετική συχνότητ f i % η κλάση [35, 45) 50 3 η κλάση [45, 55) 40 4 η κλάση [55, 65) 10 ΣΥΝΟΛΑ ν=00 Γ1. Ν μετφέρετε στο τετράδιό σς τον πρπάνω πίνκ κι ν τον συμπληρώσετε. Μονάδες 7 Γ. Ν υπολογίσετε τη μέση ηλικί των υπλλήλων. Μονάδες 5 Γ3. Ν υπολογίσετε το ποσοστό των υπλλήλων που έχουν ηλικί τουλάχιστον σράντ πέντε (45) ετών. Μονάδες 4 Γ4. Από την ετιρεί ποχωρούν πέντε (5) υπάλληλοι της 4 ης κλάσης, πέντε (5) υπάλληλοι της ης κλάσης κι τυτόχρον προσλμάνοντι δέκ (10) υπάλληλοι με ηλικίες στην 1 η κλάση. Ν υπολογίσετε τη νέ μέση τιμή της ηλικίς των υπλλήλων. ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ ίνετι η συνάρτηση ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ f() = e ( 1), R. 1. Ν ποδείξετε ότι: f() = f() + e. Μονάδες 6. Ν μελετήσετε τη συνάρτηση f ως προς τη μονοτονί κι ν ρείτε τ τοπικά της κρόττ. 3. Αν g() = f() + e, R, ν υπολογίσετε το εμδόν του χωρίου που περικλείετι πό τη γρφική πράστση της συνάρτησης g, τον άξον κι τις ευθείες με εξισώσεις = 1 κι = 1. Μονάδες 10 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο ν γράψετε μόνον τ προκτρκτικά (ημερομηνί, εξετζόμενο μάθημ). Ν μην ντιγράψετε τ θέμτ στο τετράδιο.. Ν γράψετε το ονομτεπώνυμό σς στο πάνω μέρος των φωτοντιγράφων μέσως μόλις σς πρδοθούν. εν επιτρέπετι ν γράψετε κμιά άλλη σημείωση. Κτά την ποχώρησή σς ν πρδώσετε μζί με το τετράδιο κι τ φωτοντίγρφ. 3. Ν πντήσετε στο τετράδιό σς σε όλ τ θέμτ. 4. Ν γράψετε τις πντήσεις σς μόνον με μπλε ή μόνον με μύρο στυλό νεξίτηλης μελάνης. 5. Κάθε πάντηση τεκμηριωμένη επιστημονικά είνι ποδεκτή. 6. ιάρκει εξέτσης: τρεις (3) ώρες μετά τη δινομή των φωτοντιγράφων. 7. Ώρ δυντής ποχώρησης: 10.00 π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 014 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕΜΑ A A1. Θεωρί σχολικού ιλίου σελίδ 138 A.. Σωστό,. Λάθος, γ. Λάθος, δ. Λάθος, ε. Σωστό. Α3.. Αν οι συνρτήσεις f, g είνι πργωγίσιμες στo IR,. συν d = τότε: f - g = f () - g () γ. Αν im f () =, IR, τότε im f () = ημ = ημ - ημ 0 0 ΘΕΜΑ Β Β1. f () - f () = - 4 ( - ) f () = - 4 Γι είνι - 4 f () = - - 4 Β. im = im - ( - ) ( + ) - = im ( + ) = 4. Β3. H f είνι συνεχής στο =, άρ - 4 f () = im f () = im = 4-0

ΘΕΜΑ Γ Γ1. Γ. Α/Α Κλάσεις v i i. i v i f i % 1 η κλάση [5, 35) 100 30 3000 50 η κλάση [35, 45) 50 40 000 5 3 η κλάση [45, 55) 40 50 000 0 4 η κλάση [55, 65) 10 60 600 5 ΣΥΝΟΛΑ ν = 00-7600 100 v + v + v + v 7600 v + v + v + v 00 1 1 3 3 4 4 = = = 1 3 4 38 έτη Γ3. f 3 % + f 4 % = 0% + 5% = 5% άρ το 5% των υπλλήλων έχουν ηλικί τουλάχιστον 45. Γ4. Α/Α Κλάσεις v i i. i v i 1 η κλάση [5, 35) 110 30 3300 η κλάση [35, 45) 45 40 1800 3 η κλάση [45, 55) 40 50 000 4 η κλάση [55, 65) 5 60 300 ΣΥΝΟΛΑ ν = 00-7400 v + v + v + v 7400 v + v + v + v 00 1 1 3 3 4 4 = = = 1 3 4 37 έτη

ΘΕΜΑ Δ Δ1. f () = e ( - 1) f () = e ( - 1) = (e ) ( - 1) + e ( - 1) Δ. f () = e = e ( - 1) + e = f () + e ( - 1) + e = e - e + e = e f () = 0 e = 0 = 0 f () > 0 e > 0 > 0 e >0 e >0-0 + f () - + f () Η f είνι γνησίως ύξουσ στο [0, +) ενώ είνι γνησίως φθίνουσ στο (-, 0]. Η f προυσιάζει τοπικό ελάχιστο γι = 0 την τιμή f (0) = -1 Δ3. g () = f () + e = f () = e 0 1 0 1 0 1 Ε = - g () d + g () d = - f () d + f () d -1 0-1 0 = - f () + f () = - f (0) - f (-1) + f (1) - f (0) -1 0 - = -(-)1 + + 0 - e (-1) = - τ.μ. e