ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ (Οµάδα Α) Θέµα1.Α κυκλώστε το Σ αν η πρόταση είναι σωστή και το Λ αν είναι λάθος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ (Οµάδα Α) Θέµα1.Α κυκλώστε το Σ αν η πρόταση είναι σωστή και το Λ αν είναι λάθος"

Transcript

1 ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ (Οµάδ Α) Θέµ.Α κυκλώστε το Σ ν η πρότση είνι σωστή κι το Λ ν είνι λάθος ) σχετική συχνότητ v = v ) Η µέση τιµή µις µετλητής εξρτάτι πο τις κριες τιµές γ) Η διάµεσος νφέρετι σε ποσοτική µετλητή δ) Το CV=. % s ε) Αν το CV είνι µικρότερο του % το δείγµ είνι νοµοιογενές Β. κυκλώστε το Σ ν η πρότση είνι σωστή κι το Λ ν είνι λάθος ) ν lm ( ) = ( ) τότε η είνι συνεχής στο ) ν lm ( ) = l κι lm g( ) = l τότε. lm( ( ). g( )) = l. l. ν ( ) ka l τότε lm 3. lm ( ) = l ( ) = l γ). η ( ) = e είνι συνεχής στο R. η ( ) = είνι συνεχής στο R 3. η ( ) = είνι συνεχής στο R Γ. κυκλώστε το Σ ν η πρότση είνι σωστή κι το Λ ν είνι λάθος. ) Αν η είνι πργωγίιµη στο τότε είνι κι συνεχής στο ) ( συνχ ) + ηµχ = γ) ( χ ) = χ δ) d = + ε) λ. ( ) d = λ + ( ) d ε) συνχd = ηµ ηµ ζ) e d = e a Σ Σ Λ Λ

2 3 > 3 + Θέµ ίνετι η συνάρτηση : R R µε τύπο ( ) = = ae + ln(4 ) < 3 Βρείτε ) lm ( ) ) lm ( ) γ) ρείτε γι ν υπάρχει το lm ( ) δ) γι =5 η συνάρτηση είνι συνεχής δ ) στο =3. δ ) στο R. {} 3 δ 3 ) στο R κυκλώσε το Σ ν η πρότση είνι σωστή κι το Λ ν είνι λάθος θέµ 3. Ο πρά κάτω πίνκς δείχνει τις κλήσεις που έκνν πό το κινητό τους τηλέφωνο 5 µθητές σε µι µέρ. Κλήσεις Μθητές ν 3 ω- 4 ω ω-3 6 % Αθροιστ.συχν. Αθρ.σχετ.συχ.% ) ρείτε το ω ) συµπληρώστε τον πίνκ γ) ρείτε την µέση τιµή δ) ρείτε διάµεσο κι επικρτούσ τιµή ε) το δείγµ είνι οµοιογενές στ) Αν η ετιρεί δώσει πριµ στους κλύτερους πελάτες πόσες κλήσεις τουλάχιστον πρέπει ν κάνει κάποιος γι ν πάρει το πρίµ ( δίνετι ότι,3 =, 5) θέµ 4. ίνετι η συνάρτηση ( ) = ( a + ) e ) ν η συνάρτηση προυσιάζει κρόττο στο χ= µε τιµή - ρείτε τ κι ) γι = κι =- ρείτε µονοτονί κι είδος υτού του κροτάτου γ) γι χ δείξτε ότι ( ) + δ) τοποθετείστε τους ριθµούς ( ), (,8), (,5) σε ύξουσ σειρά ( ) 5 7 ε) το d =, 3,,, 6 κυκλώστε το σωστό e 6 6

3 ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ( Στ Μθηµτικά EΠΑΛ Α ) Θέµ Α. Μελετήσµε έν δείγµ µθητών ως το πόσες ώρες µίλησν στο κινητό τηλέφωνο Τον τελευτίο µήν κι πήρµε τ ποτελέσµτ στον πρ κάτω πίνκ. Ώρες οµιλ. Μθητές Σχετ.συχν. Αθρ. Συχν.Ν % F% Σύνολο εδοµένου ότι η διάµεσος υπερίνει την µέση τιµή κτά,5 5 a Α) δείξτε ότι = ) ρείτε την διάµεσο γ) ρείτε την µέση τιµή 5 ) ρείτε το ε) εξετάστε εάν το δείγµ είνι οµοιογενές (δίνετι, =, 3. λ + Θέµ Β. ίνετι η συνάρτηση µε τύπο ( ) = k Α) ρείτε λ ώστε ν υπάρχει το lm ( ) < = > Β) ρείτε κ ώστε η ν είνι συνεχής στο χ= Γ) ρείτε την τιµή της ποσότητς Α= 6(9)-() = ) ( ) + () 5λ = κύκλωσε το Σ ν είνι σωστό κι το Λ ν είνι λάθος 3 Θέµ Γ. ίνετι η συνάρτηση : R R µε τύπο ()= a + e Όπου = lm ka = ( + ) d ) ρείτε κι Β) ρείτε µονοτονί της Γ) δείξτε ότι γι χ ( ) 8 δ) το εµδόν που περικλείετι πό την γρφική

4 πράστση της τον άξον χ χ κι τις ευθείες χ= χ= είνι 6e- Θέµ. ίνετι η συνάρτηση 3 : R R δι την οποίν ισχύει ( ) = 4 5e + a + 3 Α) ν η συνάρτηση προυσιάζει κρόττο στο χ= ρείτε το Β) γι =- ρείτε ( ), () κι το είδος του κροτάτου υτού Γ) ν η τιµή του κροτάτου υτού είνι 4 ρείτε τον τύπο της () 4 ) ρείτε την τιµή του ολοκληρώµτος ( ( ) + 5e + ) d

5 ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ (στ Μθηµτικά ΕΠΑΛ Α ) Θέµ Α. Ο πρ κάτω πίνκς νφέρετι στη θµολογί φοιτητών των ΤΕΙ Αθηνών σε Κάποιο µάθηµ Βθµοί Συχνότητ Σχετ.συχνότητ Αθρ. Συχνότητ Σχετ.Αθρ.συχν.% Σύνολο Α) ν η µέση θµολογί των φοιτητών που έχουν θµό το πολύ 5 είνι = 4 ρείτε ) το κι το ) µέση θµολογί όλων των φοιτητών γ) συµπληρώστε τον πίνκ δ) ρείτε διάµεσο επικρτούσ εύρος ε) τι ποσοστό Φοιτητών πήρε τουλάχιστον θµό 5 Θέµ Β. ίνετι η συνάρτηση : R R µε τύπο ()= 4+k-3 Α) ρείτε το κ ώστε η γρφική πράστση της ν διέρχετι πό το σηµείο Α(,9) ( ) ) γι κ=8 ρείτε το Α= lm κι το Β= lm ( ) 3 γ) 4Α-Β+5= -, -,,,, 3 κυκλώστε το σωστό δ) ρείτε την πράγουσ F() της () γι την οποίν F()= Θέµ Γ. ίνετι η συνάρτηση : R R µε τύπο ()= λχ+ λ+4 = 3( + ) d ) ρείτε το λ ) γι λ= ρείτε σε ποιο διάστηµ η είνι γνησίως φθίνουσ γ) ρείτε τ κρόττ της δ) γι δείξτε ότι ( ) ε) ρείτε το ( ) d όπου Θέµ. ίνετιη συνάρτηση 3 a : R R µε τύπο ()= 6 + e + 3. Αν ( ) =

6 Α) ρείτε το. ) γι = ρείτε ) το ( ) lm () ) την τιµή του ολοκληρώµτος ( ) d ) µονοτονί κι κρόττ της

7

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 014 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΤΣΑΚΛΑΝΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ( ΕΠΑΛ Α )

ΦΡΟΝΤΙΣΤΗΡΙΟ ΤΣΑΚΛΑΝΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ( ΕΠΑΛ Α ) ΦΡΟΝΤΙΣΤΗΡΙΟ ΤΣΑΚΛΑΝΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ( ΕΠΑΛ Α ) ΘΕΜΑ Εξετάζουµε τις αθµολογίες ενός δείγµατος φοιτητών σε κάποιο διαγώνισµα και πήραµε τον πίνακα Χ i (αθ.) ν i f i % N i F i % 4

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Α. Τι ονοµάζετι εύρος µις µετβλητής; Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς, δίπλ στο γράµµ που ντιστοιχεί σε κάθε πρότση,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α Β ΤΡΙΤΗ 3 IOYNIOY 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β; ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 3 ΜΑΪΟΥ 013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 4ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 7-8 Θέμ A Α Έστω η συνάρτηση Ν ποδείξετε ότι η είνι πργωγίσιμη στο,, δηλδή κι ισχύει Ν ποδείξετε ότι η δεν είνι πργωγίσιμη στο μονάδες 7 A Ν

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β; Ανκτήθηκε πό την Εκπιδευτική Κλίμκ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΘΕΜΑΤΑ Θεωρούµε τη συνάρτηση ( ) = ( + ) ( + ) µε κι. I. Ν ποδείξετε ότι η γρφική πράστση της δεν έχει σηµεί που ν ρίσκοντι πάνω πό τον άξον. II. Ν ποδείξετε ότι

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

just ( u) Πατρόκλου 66 Ίλιον

just ( u) Πατρόκλου 66 Ίλιον just f ( u) du it Πτρόκλου 66 Ίλιον 637345 6944 www.group group-aei aei.gr Νίκος Σούρµπης - - Γιώργος Βρδούκς Ν χρκτηρίσετε τ πρκάτω, σηµειώνοντς Σ (σωστό) ή Λ (λάθος). Αν z, z C, τοτε zz = zz. Η εξίσωση

Διαβάστε περισσότερα

µε Horner 3 + x 2 = 0 (x 1)(x

µε Horner 3 + x 2 = 0 (x 1)(x 998 ΘΕΜΑΤΑ. Η συνάρτηση f: ικνοποιεί τη σχέση f(f()) +f ) Ν ποδείξετε ότι η f είνι «έν προς έν». β) Ν λύσετε την εξίσωση f( 3 + ) f(4 ),. 3 () + 3,. ) Έστω, µε f( ) f( ). Τότε f(f( )) f(f( )) κι f 3 (

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3 Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές

Διαβάστε περισσότερα

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί

Διαβάστε περισσότερα

4o Επαναληπτικό Διαγώνισμα 2016

4o Επαναληπτικό Διαγώνισμα 2016 wwwaskisopolisgr ΘΕΜΑ A 4o Επνληπτικό Διγώνισμ 6 Διάρκει: ώρες Α Έστω μι συνάρτηση f πργωγίσιμη σ έν διάστημ,, με εξίρεση ίσως έν σημείο του f διτηρεί πρόσημο στο,,, ν,στο οποίο όμως η f είνι συνεχής Αν

Διαβάστε περισσότερα

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής, Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ 4 Ν υπολογίσετε το ολοκλήρωµ: 5 + d (988) 4 Αν I v π 4 v = εϕ d, ν Ν*, τότε: ) Ν ποδείξετε ότι γι κάθε ν>, ισχύει: Iv = Iv v β) Ν υπολογίσετε το Ι 5 (99) 4 Ν βρεθεί

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ 8.5. ΘΕΜΑ Α A. Έστω μι συνάρτηση f η οποί είνι συνεχής σε έν διάστημ Δ.

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Αν z

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνάρτηση, η οποί είνι συνεχς σε έν διάστηµ Ν ποδείξετε ότι: Αν >0 σε κάθε εσωτερικό σηµείο του, τότε η είνι γνησίως

Διαβάστε περισσότερα

είναι μιγαδικοί αριθμοί, τότε ισχύει , z 2 Μονάδες 2 β. Μία συνάρτηση f με πεδίο ορισμού Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x 0

είναι μιγαδικοί αριθμοί, τότε ισχύει , z 2 Μονάδες 2 β. Μία συνάρτηση f με πεδίο ορισμού Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x 0 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui qwertyuiopasdfghjklzcvbnmq wertyuiopasdfghjklzcvbnmqw ertyuiopasdfghjklzcvbnmqwer tyuiopasdfghjklzcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzcvbnmqwertyui ΟΛΟΚΛΗΡΩΤ ΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2 - 7 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. ίνετι η συνάρτηση f η οποί είνι συνεχής στο διάστηµ [, ]. Ν ποδείξετε ότι υπάρχει έν τουλάχιστον ξ (, τέτοιο, ώστε: ξ f(d=ξf(ξ. ( Θ. Rolle στην F(= f( d. ίνετι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σττιστική είνι ο κλάδος των µθηµτικών που συγκεντρώνει στοιχεί τ τξινοµεί κι τ προυσιάζει σε κτάλληλη µορφή ώστε ν µπορούν ν νλυθούν κι ν ερµηνευτούν. Πληθυσµός είνι το σύνολο των

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΑΘΗΜΑ 9. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Θεωρί - Σχόλι - Μέθοδοι Ασκήσεις νισοτήτων ΘΕΩΡΙΑ. Ορισµός Αν f συνεχής στο [, ], τότε ν f ()d lim f ( ξκ ) ν + κ. Εισήµνση Το ολοκλήρωµ δεν εξρτάτι ό τη µετλητή, δηλδή f

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Αν η συνάρτηση f είνι συνεχής στο, πργωγίσιμη στο κι γι κάθε ισχύει f f ( ) d = e e e Α) Ν ποδείξετε ότι: f = e i) η f είνι πργωγίσιμη στο κι ισχύει ii) f() = e Β)

Διαβάστε περισσότερα

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 3ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 17-18 Θέμ A Α1 Έστω f μι συνεχής συνάρτηση σ έν διάστημ β ν ποδείξετε ότι: f t dt G β G Α Πότε μι συνάρτηση λέγετι 1-1; Α3 Πότε μι συνάρτηση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

Μελέτη συνάρτησης f(x) = α x. α f(x) είναι περιττή α 0 x. Να μελετηθεί ως προς την μονοτονία η συνάρτηση f με f(x),α 0

Μελέτη συνάρτησης f(x) = α x. α f(x) είναι περιττή α 0 x. Να μελετηθεί ως προς την μονοτονία η συνάρτηση f με f(x),α 0 Z. 7. Μελέτη συνάρτησης f() = Απρίτητες γνώσεις Θεωρίς Θεωρί 4. Ν ποδείξετε ότι η συνάρτηση: f() είνι περιττή 0 Απόδειξη: Το πεδίο ορισμού της f είνι το R* R 0 Γι κάθε R*, R* κι f(-) f() ( ) Επομένως η

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. Α. Έστω συνάρτηση f παραγωγίσιµη δύο φορές στο [, ] f''! 0 για κάθε χ [ a, β ] και έστω η

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. Α. Έστω συνάρτηση f παραγωγίσιµη δύο φορές στο [, ] f''! 0 για κάθε χ [ a, β ] και έστω η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΘΕΜΑΤΑ Α Έστω συνάρτηση πργωγίσιµη δύο φορές στο [, ] ''! γι κάθε χ [, ] κι έστω η + g t dt ( ) = ( ) ( ), [, ] ) είξτε ότι υπάρχει ξ (, ) στε '( ξ)( χ ) ( ) µε

Διαβάστε περισσότερα

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E. ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3

Διαβάστε περισσότερα

ολοκληρωτικος λογισμος

ολοκληρωτικος λογισμος γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος επιμελει : τκης τσκλκος 7 ... ρχικη συνρτηση... ορισμενο ολοκληρωμ... η συνρτηση F()= f()d... εμδον επιπεδου χωριου γιτι...

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Κωνστντόπουλος Κων/νος Μθημτικός ΜSc ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κτεύθυνσης Γ Λυκείου ΑΠΑΝΤΗΣΕΙΣ -ΥΠΟΔΕΙΞΕΙΣ ΤΟΥ ου ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α Α. (i) Βλέπε σχολικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I Σε κθεµιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράµµ Α, ν ο ισχυρισµός είνι ληθής κι το γράµµ Ψ, ν ο ισχυρισµός είνι ψευδής δικιολογώντς συγχρόνως την πάντησή

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

( 0) = lim. g x - 1 -

( 0) = lim. g x - 1 - ν ν ΘΕΜΑ Η πολυωνυµική συνάρτηση ν + ν + + + έχει όριο στο R κι ισχύει lim ν ν Έχουµε lim + + + lim ν ν ν ν lim ν + lim ν + ν ν ν lim + ν lim + + lim + lim ν ν ν + ν + + Εποµένως, lim ΘΕΜΑ Η ρητή συνάρτηση

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α} 1997 ΘΕΜΑΤΑ 1 ίνοντι οι πργµτικές συνρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη κι δεύτερη πράγωγο κι πργµτικός ριθµός Θέτουµε Α f() g(), που γι κάθε Έστω κι Β f () Α g () Αν φ g() είνι πργµτική συνάρτηση

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α ΜΑΘΗΜΑ 5 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α 7. Έστω συνάρτηση f : R R, η οποί είνι πργωγίσιµη κι κυρτή στο R µε f() κι f () i) Ν ποδείξετε ότι f() γι κάθε R f (t)dt Ν ποδείξετε ότι ηµ Αν επιπλέον ισχύει f () (f()

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Κεφάλιο ο: ΟΟΚΗΡΩΤΙΚΟΟΓΙΜΟ Ερωτήσεις του τύου «ωστό - άθος». * Η συνάρτηση F () = ln - είνι µι ράγουσ της συνάρτησης f () = ln.. * Κάθε συνεχής συνάρτηση σε έν διάστηµ, έχει µόνο µι ράγουσ στο.. * Αν F,

Διαβάστε περισσότερα

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Τετάρτη, Μ ου 9 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Έστω μί συνάρτηση f ορισμένη σε έν διάστημ Δ. Αν η f είνι συνεχής στο Δ κι γι κάθε εσωτερικό σημείο του Δ ισχύει f (), ν ποδείξετε ότι η f είνι

Διαβάστε περισσότερα

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες

Διαβάστε περισσότερα

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Αρχική Συνάρτηση Ορισμός Έστω f μι συνάρτηση ορισμένη σε έν διάστημ Δ. Αρχική συνάρτηση ή πράγουσ της f στο Δ ονομάζετι κάθε συνάρτηση F που είνι πργωγίσιμη στο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α ΜΑΘΗΜΑΤΙΚΑ II Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε Σχολικό Βιβλίο,

Διαβάστε περισσότερα

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους Λύσεις Θέμ Α Α. Σχοικό ιίο σείδ. Α. Σχοικό ιίο σείδ 9. Α. ) () κάτω, () το σημείο επφής τους ) () Α4. ) Σωστό ) Λάθος γ) Λάθος Θέμ Β ν ( ν κ= f(ξ κ )Δ ), f()d Β. Επειδή τ σημεί Α(,), Β(,) νήκουν στη γρφική

Διαβάστε περισσότερα

Σάββατο, 27 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. A.1. Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα Δ. Να αποδείξετε ότι:

Σάββατο, 27 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. A.1. Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα Δ. Να αποδείξετε ότι: Σάββτο, 7 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.. Έστω συνάρτηση, η οποί είνι συνεχής σε έν διάστηµ Δ. Ν ποδείξετε ότι: Αν (>0 σε κάθε εσωτερικό σηµείο x του Δ, τότε η είνι γνησίως ύξουσ σε

Διαβάστε περισσότερα

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης ΜΑΘΗΜΑ.5 Η ΣΥΝΑΡΤΗΣΗ F() ΘΕΩΡΙΑ. Θεώρηµ f ()d Βσικό θεώρηµ της πράγουσς Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης Θεωρί - Σχόλι - Μέθοδοι Ασκήσεις Αν η f είνι µι συνεχής συνάρτηση σε διάστηµ κι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α. Απόδειξη σελ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α. Απόδειξη σελ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 7-5-4 ΘΕΜΑ Ο Α. Απόδειξη σελ. 6 6 Β. Ορισμός σελ. Γ. Σωστό β Σωστό γ Λάθος δ Λάθος ε Σωστό ΘΕΜΑ Ο. D () ln { R : > } (, + ) Η πργωγίζετι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΠΑΡΑΓΟΥΣΑ ΑΣΚΗΣΕΙΣ Ν ρείτε τις ράγουσες F των ρκάτω συνρτήσεων ( ) = ( +) ( -) log ( -) γ ( ) = ( +) ( - ) +, > ln( -) ln( -) ( ) = + 5, > δ ( ) = 5 +, > Ν ρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

x. Αν ισχύει ( ) ( )

x. Αν ισχύει ( ) ( ) ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ 000 ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος τις συνάρτησης c f είναι ίση με c f Θεωρία σχολικό σελίδα 0 Β. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και Β το σύνολο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν

Διαβάστε περισσότερα

1 η ΕΚΑ Α ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

1 η ΕΚΑ Α ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. ίνετι η συνάρτηση f () ( ) κι το σηµείο Α(, 0) µε > 0 Ν µελετηθεί η f ως προς την µονοτονί, τ κρόττ, την κυρτότητ, τ σηµεί κµπής κι τις σύµπτωτες. Γι τις διάφορες τιµές

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΥΤΟΤΕΛΩΝ ΤΜΗΜΑΤΩΝ & ΤΜΗΜΑΤΩΝ ΣΥΝ Ι ΑΣΚΑΛΙΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 0-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Θερινά ΗΜΕΡΟΜΗΝΙΑ: /0/06 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Κατσαρός Δημήτρης - Συμεώνογλου Βασίλης ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας βασισμένες στο βιβλίο των μαθηματικών της Γ τάξης

Ερωτήσεις θεωρίας βασισμένες στο βιβλίο των μαθηματικών της Γ τάξης Ερωτήσεις θεωρίς βσισμένες στο βιβλίο των μθημτικών της Γ τάξης 1ο ΕΠΑΛ ΣΑΛΑΜΙΝΑΣ 27 Απριλίου 29 2 Μθημτικά Γ Τάξης 1. Τι είνι πληθυσμός, άτομο κι μέγεθος ενός πληθυσμού; Πληθυσμός ονομάζετι το σύνολο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση: Λυµέν Θέµτ κι Ασκήσεις κ.λ.π. ΚΕΦΑΛΑΙΟ 4 Επιµέλει: Σκουφά Σωτήρη Βούρβχη Κώστ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Λογριθµική συνάρτηση >. Γνωρίζουµε ότι γι κάθε ( 0, + ) l οg. Αυτό σηµίνει ότι σε κάθε ( 0, ) Θεωρούµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΠΑΛ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1. Δίνεται η συνάρτηση f με f() s όπου η μέση τιμή και s η διακύμανση ενός δείγματος ν παρατηρήσεων μιας μεταβλητής Χ. Η εφαπτομένη της Α 1, f ( 1) έχει εξίσωση

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνί: Σάββτο 7 Ινουρίου 07 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Ν συµπληρώσετε τους τύπους: i. ii....,... =...,... β

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΑΝΤΩΝΗΣ ΚΥΡΙΑΚΟΠΟΥΛΟΣ Μθηµτικός Συγγρφές µέλος του Σ της ΕΜΕ Πρόεδρος της Συντκτικής Επιτροπής του περιοδικού «Ευκλείδης Β» ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 28 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΜΕΡΟΣ Α. Ν βρείτε το ολοκλήρωμ: (8x 3 ημx 5 + 7) dx ex (8x 3 ημx 5 e x + 7) dx = (8x3 ημx 5e x + 7)dx =

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΕΠΑ.Λ. 8 ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι: ( f (x) + g (x)) = f (x) + g(x) Μονάδες 0 Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα