( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού

Σχετικά έγγραφα
Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2

Αρμονικός ταλαντωτής Ασκήσεις

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

Το θεώρημα virial1 στην κβαντική μηχανική

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

Â. Θέλουμε να βρούμε τη μέση τιμή

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

Λυμένες ασκήσεις στροφορμής

Δύο διακρίσιμα σωμάτια με σπιν s 1

Για να υπολογίσουμε το ολοκλήρωμα στο δεξιό μέλος της (3), κάνουμε την αλλαγή μεταβλητής

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Παραμαγνητικός συντονισμός

μαγνητικό πεδίο παράλληλο στον άξονα x

. Να βρεθεί η Ψ(x,t).

1. Μετάπτωση Larmor (γενικά)

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Αρμονικός Ταλαντωτής

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι,

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Η Αναπαράσταση της Θέσης (Position Representation)

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

Η άλγεβρα της στροφορμής

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

2( ) ( ) ψ είναι οι ιδιοκαταστάσεις του τελεστή. ψ x, θα πάρουµε

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε.

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

μαγνητικό πεδίο τυχαίας κατεύθυνσης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης

Συστήματα Πολλών Σωματίων

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010

Κβαντομηχανική σε μία διάσταση

Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

Εύρεση των ιδιοτιμών της στροφορμής

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο».

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Άσκηση 1. h 2 B = 1 + A = Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroedinger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού V(x) = 0:

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ

ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω) Εξέταση: 17 Ιούνη 2013 ( ιδάσκων: Α.Φ. Τερζής) ΘΕΜΑ 1[ ]

Τα θεμέλια της κβαντομηχανικής. Τα θεμέλια της κβαντομηχανικής

Θεωρία Χρονοεξαρτώμενων Διαταραχών

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του

Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κεφάλαιο 38 Κβαντική Μηχανική

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Κβαντική Φυσική Ι. Ενότητα 21: Δέλτα πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

Transcript:

Half Oscillator Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού ì, x ï V x í ïî mw x, x > Το σύστημα αυτό αναφέρεται ως «Half Oscillator». Στα Ελληνικά, θα χρησιμοποιήσουμε τον όρο «μισός αρμονικός ταλαντωτής», ο οποίος, παρότι αδόκιμος, είναι διαισθητικά κατανοητός. i Ποιες είναι οι ιδιοσυναρτήσεις του μισού αρμονικού ταλαντωτή; Είναι κανονικοποιημένες; Είναι κάθετες μεταξύ τους; Γράψτε την κανονικοποιημένη βασική κατάσταση και την ελάχιστη ενέργεια του μισού αρμονικού ταλαντωτή. ii Δείξτε ότι η χαμιλτονιανή του μισού αρμονικού ταλαντωτή είναι ερμιτιανός τελεστής. Ποιο είναι το πλήρες ορθοκανονικό σύνολο των ιδιοσυναρτήσεων της χαμιλτονιανής; Λύση i Η περιοχή x είναι απαγορευμένη, διότι απειρίζεται το δυναμικό και η μέση δυναμική ενέργεια του σωματίου απειρίζεται και αυτή, άρα και η ολική του ενέργεια, αφού η μέση κινητική ενέργεια είναι πάντα θετική. Επομένως, στην περιοχή x η πυκνότητα πιθανότητας πρέπει να μηδενίζεται, άρα και η κυματοσυνάρτηση. Στην περιοχή x > έχουμε δυναμικό αρμονικού ταλαντωτή, με τις αντίστοιχες ιδιοσυναρτήσεις. Λόγω συνέχειας, οι ιδιοσυναρτήσεις του μισού αρμονικού ταλαντωτή πρέπει να μηδενίζονται στο μηδέν. Έτσι, ιδιοσυναρτήσεις του μισού αρμονικού ταλαντωτή είναι όσες ιδιοσυναρτήσεις του αρμονικού ταλαντωτή μηδενίζονται στο μηδέν. Στην προηγούμενη ανάρτηση, δείξαμε ότι μόνο οι περιττές ιδιοσυναρτήσεις του αρμονικού ταλαντωτή, y n + x, μηδενίζονται στο μηδέν. Επομένως, ιδιοσυναρτήσεις του μισού ταλαντωτή είναι οι y n + x, και οι ενέργειές του είναι 3 E n + n + + hw n + hw, όπου n,,... Οι y n + x είναι κανονικοποιημένες σε όλο τον πραγματικό άξονα, δηλαδή n + x - y n + - x -y n + x Επομένως //7

y n + - x -y n + x y n + x Η πυκνότητα πιθανότητας είναι επομένως άρτια συνάρτηση, οπότε n + x - n + x Έτσι, από την παίρνουμε n + x Από την τελευταία σχέση βλέπουμε ότι για να κανονικοποιήσουμε τις y n + x στην περιοχή x >, πρέπει να τις πολλαπλασιάσουμε με ιδιοσυναρτήσεις του μισού ταλαντωτή είναι, λοιπόν, οι. Οι κανονικοποιημένες y n+ x Οι y n + x είναι μεταξύ τους κάθετες, επομένως dxy m + x y n + x, όπου m ¹ n - Επειδή η y m+ x είναι πραγματική συνάρτηση, η τελευταία σχέση γράφεται dxy m + x y n+ x - y m + - x y n+ - x - y m + x y n+ x y m+ x y n + x δηλαδή το γινόμενο y m + x y n + x είναι άρτια συνάρτηση. Έτσι, το τελευταίο ολοκλήρωμα γράφεται dxy m + x y n + x Þ dx y m + x y n + x Επομένως, οι κανονικοποιημένες ιδιοσυναρτήσεις του μισού ταλαντωτή είναι μεταξύ τους κάθετες. Η κανονικοποιημένη βασική κατάσταση του μισού ταλαντωτή είναι η x 4 x y x exp -, pa a a όπου a E h, και η ελάχιστη ενέργειά του είναι mw 3hw ii Θα δείξουμε ότι //7

j, Hˆy Hˆ j,y, όπου d -i h dx Hˆ + mw x, m με x >, και j,y, δύο τυχαίες, τετραγωνικά ολοκληρώσιμες κυματοσυναρτήσεις στο διάστημα [,, που μηδενίζονται στο μηδέν. Είναι d -ih dx ˆ j, Hy dxj x + mw x y x m h dxj x y x + dxj x mw x y x m Δηλαδή h j, Hˆy dxj x y x + dxj x mw x y x m Θα δουλέψουμε τα δύο ολοκληρώματα ξεχωριστά. Το ο ολοκλήρωμα γράφεται dxj x y x xî, επομένως d d j x j x dx dx j x y x - dxj x y x 3 j j Þ j j και y,y < αφού το ρεύμα πιθανότητας πρέπει να είναι πεπερασμένο. Επομένως j x y x Έτσι, η 3 γράφεται dxj x y x - dxj x y x - j x y x + dxj x y x 4, με το ίδιο σκεπτικό, 3 //7

j x y x Έτσι, η 4 γράφεται dxj x y x dxj x y x 5 ο Το ολοκλήρωμα της γράφεται dxj x mw x y x mw x Î dx mw x j x y x 6 Αν αντικαταστήσουμε τις 5 και 6 στη, θα πάρουμε h dxj x y x + dx mw x j x y x m j, Hˆy - h d h dx j x + mw x j x y x dx + m w x j x y x m m dx dx Hˆ j x y x Hˆ j,y Δηλαδή j, Hˆy Hˆ j,y, εξ ορισμού, j, Hˆy º Hˆ j,y Συγκρίνοντας τις δύο τελευταίες σχέσης παίρνουμε Hˆ Hˆ Εφόσον η χαμιλτονιανή είναι ερμιτιανός τελεστής, οι ιδιοσυναρτήσεις της θα αποτελούν βάση πλήρες σύστημα στον χώρο των καταστάσεων του μισού αρμονικού ταλαντωτή, και θα είναι μεταξύ τους κάθετες όπως δείξαμε και στο προηγούμενο ερώτημα. Το σύνολο [,, y n + x n είναι ένα πλήρες ορθοκανονικό σύνολο στο διάστημα για τις τετραγωνικά ολοκληρώσιμες συναρτήσεις που μηδενίζονται στο μηδέν. Παρατηρήστε τον κρίσιμο ρόλο που παίζει η συνθήκη μηδενισμού της κυματοσυνάρτησης στο μηδέν. Η συνθήκη αυτή είναι αναγκαία για να είναι η χαμιλτονιανή ερμιτιανός τελεστής, επομένως αν δεν ισχύει, το σύνολο y n + x n δεν είναι πλήρες. Με άλλα λόγια, το σύνολο y n + x n δεν μπορεί να παράγει με τη μορφή αναπτύγματος κυματοσυναρτήσεις που δεν μηδενίζονται στο μηδέν. Αυτό σημαίνει ότι ο μισός αρμονικός ταλαντωτής δεν μπορεί να βρεθεί σε άρτια ιδιοκατάσταση 4 //7

του αρμονικού ταλαντωτή, δηλαδή σε κατάσταση : y n x, αφού αυτή δεν μηδενίζεται στο μηδέν, επομένως δεν μπορεί να παραχθεί από το σύνολο y n + x n. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. skonstan@hotmail.com 5 //7