ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

Σχετικά έγγραφα
On Certain Subclass of λ-bazilevič Functions of Type α + iµ

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

The Neutrix Product of the Distributions r. x λ

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Differential Equations (Mathematics)

Identities of Generalized Fibonacci-Like Sequence

On Inclusion Relation of Absolute Summability

On Quasi - f -Power Increasing Sequences

On Generating Relations of Some Triple. Hypergeometric Functions

17 Monotonicity Formula And Basic Consequences

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

A study on generalized absolute summability factors for a triangular matrix

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES


CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Meromorphically Starlike Functions at Infinity

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

Bessel function for complex variable

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

arxiv: v1 [math.fa] 30 Jan 2018

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Homework for 1/27 Due 2/5

IIT JEE (2013) (Trigonomtery 1) Solutions

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Entisar El-Yagubi & Maslina Darus

Data Dependence of New Iterative Schemes

α β

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The Heisenberg Uncertainty Principle

n=2 In the present paper, we introduce and investigate the following two more generalized

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

physicsandmathstutor.com

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

2 Composition. Invertible Mappings

Solutions: Homework 3

Example Sheet 3 Solutions

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

A Note on Intuitionistic Fuzzy. Equivalence Relation

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

Note On Euler Type Integrals

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

Example 1: THE ELECTRIC DIPOLE

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

, -.

Analytical Expression for Hessian

1. Matrix Algebra and Linear Economic Models

ST5224: Advanced Statistical Theory II

Congruence Classes of Invertible Matrices of Order 3 over F 2

Uniform Convergence of Fourier Series Michael Taylor

Laplace s Equation in Spherical Polar Coördinates

Statistical Inference I Locally most powerful tests

Degenerate Perturbation Theory

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Homework 4.1 Solutions Math 5110/6830

Concrete Mathematics Exercises from 30 September 2016

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M. S. SAROA, GURMEET SINGH AND GAGANDEEP SINGH

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

LAD Estimation for Time Series Models With Finite and Infinite Variance

Finite Field Problems: Solutions

Existence and Nonexistence of Weak Positive Solution for Classes of 3 3 P-Laplacian Elliptic Systems

Reminders: linear functions

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Matrix Hartree-Fock Equations for a Closed Shell System

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

A General Note on δ-quasi Monotone and Increasing Sequence

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Matrices and Determinants

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

4. ELECTROCHEMISTRY - II

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

C.S. 430 Assignment 6, Sample Solutions

Every set of first-order formulas is equivalent to an independent set

Presentation of complex number in Cartesian and polar coordinate system

1. Introduction and Preliminaries.

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Transcript:

Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali Positif) ANAS ALJARAH & MASLINA DARUS ABSTRACT I this aticle, a cetai diffeetial oeato Sα,β,λ,δ, f( ) ad a subclass S,( α,β,δ,λ, ) fo aalytic fuctios with ositive coefficiets of the fom f ( ) = + a = + 1 ae itoduced. Some oeties such as the coefficiets iequalities, distotio theoem, adii of stalieess ad covexity, closue theoems ad exteme oits ae give. A class esevig a itegal oeato is also stated. Keywods: aalytic fuctio; stalie fuctios; covex fuctios; itegal oeato ABSTRAK Dalam maalah ii, egoeasi embea tetetu Sα,β,λ,δ, f( ) da subelas S,( α,β,δ,λ, ) bagi fugsi aalisis beeali ositif dalam betu f ( ) = + a = + 1 dieeala. Bebeaa sifat seeti etasamaa eali, teoem eota, jejai ebabitaga da ecembuga, teoem tutua da titi estem dibei. Kelas megeala egoeasi amia juga diyataa. Kata uci: fugsi aalisis; fugsi babitag; fugsi cembug; egoeasi amia 1. Itoductio ad Pelimiaies Let A ( ) deote the class of fuctios of the fom: ( ) = + a f ( U,! := {1,2,3,...}), (1.1) which ae aalytic ad -valet i the oe uit disc U = {! : < 1}. A fuctio f( ) i A ( ) is said to be -valet stalie of ode γ if ad oly if Re f ' () f () > γ ( U ), (1.2) fo some γ(0 γ ). We deote by S *(γ ) the class of all -valet stalie fuctios of ode γ. Similaly, a fuctio f( ) i A ( ) is said to be -valet covex of ode γ if ad oly if Re 1+ f '" () f () > γ ( U ), (1.3) fo some γ(0 γ < ). We deote by C(γ) the class of all -valet covex of ode γ.

Aas Aljaah & Maslia Daus Fo the fuctio f A( ), we defie the followig ew diffeetial oeato: S 0α,β,λ,δ, f () = f (), S 1α,β,λ,δ, f () = [1 ( λ δ )( β α )] f () + [( λ δ )( β α )]f ' (),, ad ( Sα,β,λ,δ, f () = S Sα 1 f (),β,λ,δ, = + ) ((λ δ )(β α )( ) + 1) (1.4) a, {} fo f A( ),α, β,δ, λ 0, λ > δ, β > α,!, = 1,2,3,... ad! =! 0. It is easily veified fom (1.4) that ( λ δ )( β α )(Sα,β,λ,δ, f ())' = Sα+1 f () (1 ( λ δ )( β α ))Sα,β,λ,δ, f ().,β,λ,δ, (1.5) Rema 1: Whe = 1, we have the oeato itoduced ad studied by Ramada ad Daus (2011). Maig use of the oeato Sα,β,λ,δ, f ( ) we say that a fuctio f ( ) A( ) is i the class S, (α, β,δ, λ, ) if it satisfies the followig iequality (Aouf 2012): { ( ℜ S f () α +1 S f () ) } > β, ' (1.6) fo some α (α > 0), β (0 β < ),!,! 0 ad fo all U. We ote that (Altitas et al. 1994), M 0 (1,α, β ) = M (1,α, β ). (1.7) I Ualeggadi ad Gaigi (1986), they defied the class H * (α) as follows: { f () A( ) : ℜ { +1 } } f '() > α,0 α <, U. (1.8) Some othe subclasses of the class A( ) wee studied (fo examle) by Cho et al. (1987, 1989), Liu (2000), Liu ad Sivastava (2001; 2004), Joshi et al. (1995), Raia ad Sivastava (2006), Aouf ad Shammay (2005). I this ae, coefficiet iequalities, distotio theoem, adii of stalieess ad covexity, closue theoems, exteme oits ad the class esevig itegal oeatos of the fom F() = c + c 1 t f (t)dt fo all c >, c 0 fo the class S, (α, β,δ, λ, ) ae cosideed. 42

O cetai subclass of -valet fuctios with ositive coefficiets 2. Coefficiet Iequalities I this sectio, we give a ecessay ad sufficiet coditio fo a fuctio f ( ) give by (1.1) to be i the class S, (α, β,δ, λ, ). Theoem 2.1. A fuctio f ( ) give by (1.1) is i S, (α, β,δ, λ, ), whee α > 0, β,δ, λ 0,,! ad! 0 if ad oly if ((λ δ )(β α )( )) (α 1)a (1 α β ). (2.1) Poof. Suose that f ( ) S, (α,β,δ,λ, ). The we fid fom (1.6) that + (( λ δ )( β α )( ) + 1) a ℜ >β +1 1 α (( λ δ )( β α )( ) + 1) a ℜ (1 α ) 2 (( λ δ )( β α )( )) (α 1)a + > β (α > 0, β,δ,λ 0,! ad! 0 ). If we choose = < 1, the we have 1 α ((λ δ )(β α )( )) (α 1)a β fo α > 0, β,δ,λ 0,! ad! 0, which is equivalet to (2.1). Covesely, let us suose that the equivalet (2.1) holds tue. The we have S f () α +1 (S f ()) (1 α ) 2 = (( λ δ )( β α )( )) (α 1)a + ((λ δ )(β α )( )) (α 1)a + 1 α β fo α > 0, β,δ,λ 0,! ad! 0, which imlies that f () S, (α, β,δ, λ, ). This gives the equied coditio. Hece the theoem follows. Coollay 2.2. Let the fuctio f ( ) be defied by (1.1). If f S, (α,β,δ,λ, ). The 43

Aas Aljaah & Maslia Daus a (1 α β ) (( λ δ )( β α )( )) (α 1) ( ;!;! 0 ). (2.2) The equality i (2.2) is attaied fo the fuctios f ( ) give by f ( ) = + (1- α - β) ((λ - δ)(β - α)( - )) (α - 1) ( ; ; 0 ). (2.3) 3. Distotio Theoem A distotio oety fo fuctios i the class S, (α,β,δ,λ, ) is cotaied i the followig theoem. Theoem 3.1. Let the fuctios f ( ) give by (1.1) be i the class S, (α,β,δ,λ, ), whee α > 0, β,δ,λ 0, ad 0. The fo = < 1, we have (1 α β) ((λ δ)(β α)( )) (α 1) f () + 1+ (1 α β) ((λ δ)(β α)( )) (α 1) 1+ ad (1 α β)(1+ ) ((λ δ)(β α)( )) (α 1) (1 α β)(1+ ) f () +. ((λ δ)(β α)( )) (α 1) Poof. Sice f S, (α,β,δ,λ, ), fom Theoem 2.1 eadily yields the iequality a (1 α β) ((λ δ)(β α)( )) (α 1). Thus, fo = < 1, ad maig use of (3.1) we have f () + a + + +1 a (1 α β) ((λ δ)(β α)( )) (α 1) +1 +1 ad f () a 44 +1 a (1 α β) ((λ δ)(β α)( )) (α 1).

O cetai subclass of -valet fuctios with ositive coefficiets Also fom Theoem 2.1, it follows that ((λ δ)(β α)( )) (α 1) a 1+ ((λ δ)(β α)( )) (α 1)a (3.2) (1 α β). Hece f () 1 + + a 1 1 + (1 α β)(1+ ) ((λ δ)(β α)( )) (α 1) a ad f () 1 a 1 1 (1 α β)(1+ ) ((λ δ)(β α)( )) (α 1) a. This comletes the oof of Theoem 3.1. 4. Radii of Stalieess ad Covexity I this sectio, we detemie the adii of stalieess ad covexity fo fuctios i the class S, (α,β,δ,λ, ). The esult is give as follows. Theoem 4.1. Let the fuctio f ( ) defied by (1.1) is i the class S, (α,β,δ,λ, ), whee α > 0, β,δ,λ 0, ad 0. The f ( ) is stalie of ode δ(0 δ < 1) i < 1, whee 1 ( δ)( δ)((λ δ)(β α)( )) (α 1) = if 1 +1 (1 + δ)(1 α β) ( +1). (4.1) The esult is sha fo the fuctio f ( ) give by (2.3). Poof. It suffices to ove that f ( ) - - δ, f ( ) (4.2) fo < 1. We have 45

Aas Aljaah & Maslia Daus f () f () = + (1 )a a (1 )a. (4.3) 1+ a Hece (4.3) holds tue if o (1 )a ( δ) 1+ a (1 + δ) a 1 ( δ). With the aid of (2.1), (4.4) is tue if (4.4) (1 +δ) ( δ) ((λ δ)(β α)( )) (α 1) (1 α β). (4.5) Solvig (4.5) fo, we obtai ( δ)( δ)((λ δ)(β α)( )) (α 1) (1 +δ)(1 α β) 1 ( +1). This comletes the oof of Theoem 4.1. Theoem 4.2. Let the fuctio f( ) defied by (1.1) is i the class S,( α,β,δ,λ, ), whee α >0, β,δ,λ 0, ad 0. The f( ) is covex of ode δ( 0 δ <1) i < 2, whee 2 = if +1 (1 δ)((λ δ)(β α)( )) (α 1) (1 +δ)(1 α β) 1 1 ( +1). (4.6) The esult is sha fo the fuctios f( ) give by (2.3). Poof. By usig the same techique emloyed i the oof of Theoem 4.1, we ca show that f ' " ( ) f ( ) - δ, (4.7) fo < 2, with the aid of Theoem 2.1. Thus, we have the assetio of Theoem 4.2. 46

O cetai subclass of -valet fuctios with ositive coefficiets 5. Closue Theoems Let the fuctios f j ( ), j = 1,2,..., l be defied by f j ()= + a,j ( a,j 0), (5.1) fo U. I this sectio, we ove the closue theoem fo the class S,( α,β,δ,λ, ). The esults ae give i the followig theoems. Theoem 5.1. Let the fuctios f j( ) defied by (5.1) be i the class S,( α,β,δ,λ, ), whee α >0, β,δ,λ 0, ad 0 fo evey j = 12,,...,l. The the fuctio Gdefied ( ) by G()= + b ( b 0) (5.2) is a membe of the class S,( α,β,δ,λ, ), whee b = 1 l l a,j j=1 ( +1). Poof. Sice f j( ) S,( α,β,δ,λ, ), it follows fom Theoem 2.1 that ((λ δ)(β α)( )) (α 1) a (1 α β). fo evey j = 12,,...,l. Hece, = = 1 l ((λ δ)(β α)( )) (α 1) b l j=1 l 1 l ((λ δ)(β α)( )) (α 1) a,j l j=1 ((λ δ)(β α)( )) (α 1) a,j 1 (1 α β) = (1 α β), l j=1 which (i view of Theoem 2.1) imlies that G ( ) S,( α,β,δ,λ, ). Theoem 5.2. The class S,( α,β,δ,λ, ) is closed ude covex liea combiatio, whee α >0, β,δ,λ 0, ad 0. Poof. f ()= j + a,j ( a,j 0; j =1,2;!) (5.3) 47

Aas Aljaah & Maslia Daus be i the class S,(α,β,δ,λ, ). It is sufficiet to show that the fuctio h() defied by h() = t f 1()+ (1 t) f 2() (0 t 1) (5.4) is also i the class S, (α,β,δ,λ, ). Sice fo 0 t 1, h() = + t a,1 + (1 t) a,2 (0 t 1), (5.5) we obseve that ((λ δ)(β α)( )) (α 1) t a =t,1 + (1 t) a,2 ((λ δ)(β α)( )) (α 1)a,1 + (1 t) ((λ δ)(β α)( )) (α 1) a,2 t(1 α β) + (1 t)(1 α β) = (1 α β). Hece h( ) S, (α,β,δ,λ, ). This comletes the oof of Theoem 5.2. 6. Itegal Oeatos I this sectio, we coside the itegal tasfoms of fuctios i the class S, (α,β,δ,λ, ). Theoem 6.1. If the fuctio f ( ) give by (1.1) is i the class S, (α,β,δ,λ, ), whee α > 0, β,δ,λ 0, ad 0 ad let c be a eal umbe such that c > -, the the fuctio F ( ) defied by F() = c + c 1 f (t) dt c t 0 (6.1) is also belogs to the class S, (α,β,δ,λ, ). c+ Poof. Fom (6.1), it follows that F() = + b, whee b = a. Theefoe + c ((λ δ)(β α)( )) (α 1)b = c+ ((λ δ)(β α)( )) (α 1) + c a ((λ δ)(β α)( )) (α 1)a (1 α β), sice f () S,(α,β,δ,λ, ). Hece by Theoem 2.1, F() S,(α,β,δ,λ, ). 48

O cetai subclass of -valet fuctios with ositive coefficiets 7. Exteme Poits Now, we detemie exteme oits fo fuctios i the class S, (α,β,δ,λ, ). Theoem 7.1. Let f ( ) = ad f = + (1 α β) ((λ δ)(β α)( )) (α 1). The f S, (α,β,δ,λ, ) if ad oly if it ca be exessed i the fom f () = ξ f ()+ ξ (), U, whee ξ 0 ad ξ = 1 f ξ. Poof. Suose that f () = ξ f ()+ ξ f () (1 α β) f () = 1 ξ + ξ + ((λ δ)(β α)( )) (α 1) = + (1 α β) ξ ((λ δ)(β α)( )) (α 1). The fom Theoem 2.1 we have (1 α β) ((λ δ)(β α)( )) (α 1) ((λ δ)(β α)( )) (α 1) ξ (1 α β). Hece f S, (α,β,δ,λ, ). Covesely, let f S, (α,β,δ,λ, ). Usig Coollay 2.2, we have a ((λ δ)(β α)( )) (α 1). (1 α β) We may set ξ = ((λ δ)(β α)( )) (α 1) a (1 α β) ad lettig ξ = 1 ξ, we have 49

Aas Aljaah & Maslia Daus f ()= + a = = 1 ξ = ξ f ()+ + ξ ξ + ξ f (). + This comletes the oof of the theoem. Refeeces ξ + ξ (1 α β) ((λ δ)(β α)( )) (α 1) (1 α β) ((λ δ)(β α)( )) (α 1) Altitas O., Ima H. & Sivastava H. M. 1994. Family of meomohically uivalet fuctios with ositive coefficiets. PaAme J. Math. 5: 75-81. Ramada S. F. & Daus M. 2011. O the Feete-Sego iequality fo a class of aalytic fuctios defied by usig geealied diffeetial oeato. Acta Uivesitatis Aulesis 26: 167-178. Ualegaddi B. A. & Gaigi M. D. 1986. Meomohic multivalet fuctios with ositive coefficiets. Neali Math. Sci. Re. 11(2): 95-102. Cho N. E., Lee S. H. & Owa S. 1987. A class of meomohic uivalet fuctios with ositive coefficiets. Kobe J. Math. 4: 43-50. Cho N. E., Owa S., Lee S. H. & Altitas O. 1989. Geealiatio class of cetai meomohic uivalet fuctios with ositive coefficiets. Kyugoo J. Math. 29: 133-139. Jili L. 2000. Poeties of some families of meomohic -valet fuctios. Mathematica Jaoicae 52(3): 425-434. Liu J. L. & Sivastava H. M. 2001. A liea oeato ad associated families of meo-mohically multivalet fuctios. J. Math. Aal. Al 259: 566-581. Liu J. L. & Sivastava H. M. 2004. Classes of meomohically multivalet fuctios associated with the geealied hyegeometic fuctio. Mathematical ad Comute Modellig 39(1): 21-34. Joshi S. B., Kulai S. R. & Sivastava H. M. 1995. Cetai classes of meomohic fuctios with ositive ad missig coefficiets. Joual of Mathematical Aalysis ad Alicatios 193(1): 1-14. Raia R. K. & Sivastava H. M. 2006. A ew class of meomohically multivalet fuctios with alicatios to geealied hyegeometic fuctios. Mathematical ad Comute Modellig 43(3): 350-356. Aouf M. K. & Shammay A. E. 2005. A cetai subclass of meomohically valet covex fuctios with egative coefficiets. J. Aox. Theoy ad Al. 1(2): 157-177. Aouf M. K. 2012. A family of meomohically -valet fuctios with ositive coefficiets. Geeal Mathematics 20(1): 25-37. School of Mathematical Scieces Faculty of Sciece ad Techology Uivesiti Kebagsaa Malaysia 43600 UKM Bagi Selago DE, MALAYSIA E-mail: aasjah@yahoo.com, maslia@um.edu.my* * Coesodig autho 50