Σχετικά έγγραφα

HMY 799 1: Αναγνώριση Συστημάτων


FORMULAS FOR STATISTICS 1

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α


Introduction to the ML Estimation of ARMA processes

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Biostatistics for Health Sciences Review Sheet

Fundamentals of Signal Processing for Communications Systems

Sampling Basics (1B) Young Won Lim 9/21/13

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ Κεφ. 10.3, ) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

w o = R 1 p. (1) R = p =. = 1

Κλασσική Θεωρία Ελέγχου

HMY 799 1: Αναγνώριση Συστημάτων


LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

rs r r â t át r st tíst Ó P ã t r r r â

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα


ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

RSA3408A 24 GSM/EDGE

LTI Systems (1A) Young Won Lim 3/21/15

Επεξεπγαζία Ήσος Φυνήρ 4 η Διάλεξη ΦΗΦΙΑΚΟ ΣΟΤΝΣΙΟ

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Ψηφιακή Επεξεργασία Σημάτων

Δειγματοληψία και ανακατασκευή αναλογικών σημάτων

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ITU-R BT.1908 (2012/01) !" # $ %& '( ) * +, - ( )

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Α Ρ Ι Θ Μ Ο Σ : 6.913

Probability and Random Processes (Part II)

Assessment of otoacoustic emission probe fit at the workfloor


Οδηγός λύσης για το θέμα 2

Εισαγωγή στην Τεχνολογία Αυτοματισμού

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής

Inference in the Skew-t and Related Distributions

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Magnetically Coupled Circuits

Οδηγός λύσης θέματος 2

ENERGIA - POTENZA - CORRELAZIONE

HMY 799 1: Αναγνώριση Συστημάτων

Baseband Transmission

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Προβλέψεις ισοτιμιών στο EViews

Characterization Report

Μετατροπή Αναλογικού Σήµατος σε. Ψηφιακό (A/D Conversion) Μετατροπή Ψηφιακού Σήµατος σε Αναλογικό (D/A Conversion)

MATHACHij = γ00 + u0j + rij

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics


Notes from Covariance Matching Estimation Techniques for Array Signal Processing Applications

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

HMY 799 1: Αναγνώριση Συστημάτων

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Asymptotic distribution of MLE

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Ιστοσελίδα:

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

Κλασσική Θεωρία Ελέγχου

Ασύρµατες Επικοινωνίες


Alterazioni del sistema cardiovascolare nel volo spaziale

6.3 Forecasting ARMA processes

Approximation of distance between locations on earth given by latitude and longitude

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου

Στοχαστικά Σήματα και Τηλεπικοινωνιές

7KH VHQVLWLYLW\ RI UDGLRWKHUDS\ WR WLVVXH FRPSRVLWLRQ DQG LWV HVWLPDWLRQ XVLQJ QRYHO GXDO HQHUJ\ &7 PHWKRGV Guillaume Landry


Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Στοχαστικά Σήµατα και Εφαρµογές

C F E E E F FF E F B F F A EA C AEC

SECTION II: PROBABILITY MODELS

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

THICK FILM LEAD FREE CHIP RESISTORS

6. MAXIMUM LIKELIHOOD ESTIMATION

Fundamentals of Array Antennas

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

Reminders: linear functions

Transcript:

μ μ μ

s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0)

xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ )

Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase reflection Out-of-phase reflection Refl. Atten.: -3dB, δ=0.5 Refl. Atten.: -3dB, δ=0.05 Refl. Atten.: -10dB, δ=0.5 Refl. Atten.: -10dB, δ=0.05 Carrier-Phase Estimation Bias (cycles) 0.14 0.12 0.1 0.08 0.06 0.04 0.02 Refl. Atten.: -3dB Refl. Atten.: -5dB Refl. Atten.: -10dB -0.4 0 0.5 1 1.5 2 2.5 3 Delay of the Reflection / T c 0 0 0.5 1 1.5 2 2.5 3 Delay of the Reflection / T c δ

δ

Y= AS() τ + E m N [ ] A = α α α m d 0 1 d 1 S() τ st ( s τ0) s(2 Ts τ0) snt ( s τ0) st ( τ ) s(2 T τ ) snt ( τ ) st ( s τd 1) s(2 Ts τd 1) snt ( s τd 1) s 1 s 1 s 1 = d N st () N

{ * } E e[ n] e [ l] = Qδ nl,

( τ ) { 1 } f (, τ AQ, ) = lnq+ Tr C, A Q ( τ ) = ˆ ˆ ( τ) ˆ ( τ) + ˆ ( τ) * * *, yy ys ys ss C A R AR R A AR A f 1 * ( ) ( ) ( ) (, τ A) = lnrˆ Rˆ τ Rˆ τ Rˆ τ yy ys ss ys ( ˆ ( ) ˆ 1( )) ˆ 1 ( ) ˆ ( ) ˆ A Rys τ Rss τ Rss τ A Rys τ Rss ( τ) + ( ) *

f () τ = ln Rˆ Rˆ () τ Rˆ () τ Rˆ () τ = ln Q () τ 1 * ˆ yy ys ss ys ML Qˆ () τ ML V () τ = ln I B() τ ˆ ˆ ˆ ˆ ˆ 1 B() τ = R R () τ R () τ R () τ R = Rˆ YP Y Rˆ S N 1/2 1 * 1/2 1/2 * 1/2 yy ys ss ys yy yy * ( τ) yy

{ } { * Qˆ } ML YP Y w f ( τ) = Tr ( τ) = const-tr * S ( τ ) Qˆ () τ ML P S * ( τ ) jωτ 1 0 jωτ 1 d 1 S () τ = S * * ω e e e jω τ e e jω τ 2 0 2 d 1 e jω τ jω τ N 0 N d 1

op { W } op B g (, W ) = Tr () τ τ ( ) 1 () i () i 1/2 g (, τ Wop ) = V () τ + op ( N ) g ( τ, W ) = V ( τ) + o (1) ( ij) ( ij) op p W = I B( τ ) ˆτ g(,) τ I w f () τ op

1 { } { 2 } 1 { 3 V () τ = ln I B() τ = Tr B() τ Tr B () τ Tr B () τ } 2 3 1/2 1/2 lim B( τ) = I Ryy QRyy 0 N V {( ˆ ˆ ) } () τ Tr I+ B() τ + B () τ + B () τ = g ( τ, W) () i 2 () i () i ˆ

V ( λ ) V () τ = ln I B() τ = ln 1 () τ k k = 1 m () i m () i () i λk τ λk τ () i () () () τ = g (, ˆ ) 1 λ ( ) τ τ 1 λ ( τˆ ) W k= 1 k k= 1 m () i () i { } λ g λ = = = g(,) τ I Tr B() τ () τ (,) τ I () τ m k k= 1 k= 1 k m k

V () τ = ln I B() τˆ + B() τˆ B() τ 1 ( ) ( ) = ln I B() τˆ + ln I+ I B() τˆ B() τˆ B() τ Ŵ { ˆ } { } V() τ ln I B() τˆ + Tr WB ˆ () τ Tr WB ˆ () τ = const + g(, τ Wˆ )

1 W = W Rˆ YP Y Rˆ W S ( τ) N { 1/2 1/2 * 1/2 1/2 } g( τ, ) Tr ýy * ýy 1 ( * * 1 ) 1 * * * = 1 = S ( τ) S ω ω ω ω ω G P P S G G S S G G S

± λ δ

RMS Time-Delay Estimation Error / T c 10 0 10-1 10-2 CRB Asymp. Efficient Estim., IQML, g( τ, W) Consistent Estim., ESPRIT,g(τ, I) w White-noise Estim., IQML, f ( τ) Asymp. Efficient Estim., IQML ("2 iter"), g( τ, W) 0 2 4 6 8 10 12 14 16 18 20 Number of Pulses

10 0 RMS Time-Delay Estimation Error / c T 10-1 CRB Asymp. Efficient Estim., IQML, τ, W) g( Consistent Estim., ESPRIT,g( τ, I) w White-noise Estim., IQML, ( τ) f 10-2 -50-40 -30-20 -10 0 10 20 30 40 Signal to Interference Ratio (db), with respect to the first signal

RMS Time-Delay Estimation Error / c T 10 0 10-1 10-2 CRB Asymp. Efficient Estim., IQML, τ, W) g( Consistent Estim., ESPRIT,g( τ, I) w White-noise Estim., IQML, ( τ) f 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Delay of the Second Replica / T c

RMS Time-Delay Estimation Error / c T 10 0 10-1 10-2 CRB Asymp. Efficient Estim., IQML, τ, W) g( Consistent Estim., ESPRIT,g( τ, I) w White-noise Estim., IQML, ( τ) f 0 10 20 30 40 50 60 DOA of the Second Replica (degrees)

S τ = [ s τ s τ + T s τ + d T ] ( ) ( ) ( ) ( ( 1) ) T 0 0 1 ˆ ˆ * ( τ ) N { 1/2 1/2 * g( τ, W) TrW R 1/2 1/2 } yy YP Y Ryy W g G = * = S 1 ( * * 1 ) 1 * * * = 1 = S ( τ ) S ω ω ω ω ω G P P S G G S S G G S gd gd 1 1 0 0 g g 1 0 0 0 gd gd 1 1 d d 1 = [ 1 ] g g d 1 T ( z)

d 1 d 1 1 d 0 n= 0 ( π ) d ( z) = z + g z + + g = z x exp( j2 T n/ NTs) x( τ) = exp( j2 πτ/ NT s ) ( z) g= Kt() x d t( x) = 1 x x. ( * * 1 ) GS S G 1 ω ω ( * * 1 ) GS 1 ω SωG gx x x T * (, W) = t (1/ ) K CKt( ) T

RMS Time-Delay Estimation Error / c T 10 0 10-1 CRB Proposed estimator (coupled iter.), τ, W) g( Exact ML estimator, τ) f( w White-noise estimator, (τ) f τ τ 1 0 10-2 0 0.5 1 1.5 Delay difference between the two rays / T c

α0 = α0a0 CRB 1/2 for the Time-Delay of the Direct Signal / T c 10-1 10-2 Without knowledge of the LOSS steering vector With knowledge of the LOSS steering vector 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Delay of the Reflection / c T

T Y = α a s ( τ ) + E 0 0 0 α Γ ( τ ) = ( τ ) 1 + ( τ ) ( τ ) ( τ ) rˆ ( τ ) Wˆ ( τ ) a * 1 1 * 1 * 0 0 0 ˆ ˆ ˆ ys 0 W 0 P ˆ ˆ s rys 0 W 0 r ys 0 ˆ H ˆ 1 Ps a0 W ( τ 0) a0 2 Wˆ ( τ ) = Rˆ rˆ ( τ ) rˆ ( τ ) Pˆ * 1 0 yy ys 0 ys 0 s

( * ˆ ˆ ˆ 1 ) Γ ( τ ) = Rˆ 1 α ( τ ) r ( τ ) R a 0 yy 0, ML 0 ys 0 yy 0 ˆ α ˆ ( τ ) ˆ ( τ ) = aw r * 1 0 0 ys 0 0, ML ˆ * ˆ 1 P s aw 0 ( τ 0) a0 τ = ˆ τ 0 0, ML * ˆ 1ˆ 0 yy ys ( τ 0) MV ( τ 0) ˆ τ Λ ( τ ) = ar r Λ ˆ ( ) ˆ ( ) = 1 Λ ( τ ) 0, ML ML 0 * 1 P s rˆ ys τ ˆ 0 R yy r ys τ0 2 TE 0

Asymptotic Cost Function 10 2 10 1 10 0 10-1 10-2 ML ML only with temporal reference MV beamformer 10-3 -0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Trial Delay / T c

( pt ) ( p T ) s( τ ) (1 δ) s + δs ( + 1) 0 0 0 ΛML ( τ 0) δ N 1 s( τ 0 ) = Sω u( z) z= exp( j2 πτ0 / NT s ) u() z = 1 z z T Λ ( τ ) = ML 0 u( z ) S Y Rˆ a a Rˆ YS u( z) 1 * 1 * 1 * ω yy 0 0 yy ω ( ˆ ) yy 1 * 1 * ( z ) ω N ω ( z) u S I Y R Y S u

ˆ τ, ˆ α, w = arg min w Y α s ( τ ) * T 0 0 hyb 0 0 τ, α, w 0 0 2 2 * wa 0 = 1 τ, α 0 0 τ, α 0 0

1 * ˆ 1 yy 0 hyb ( τ0, α0) = α0 yy ys ( τ0) + β( τ0, α0 ) * ˆ 1 ar 0 yy a0 w R r Rˆ a βτ (, α) = 1 α arˆ r ( τ) * * 1 0 0 0 0 yy ys 0 w hyb ( ˆ τ, ˆ α ) 0 0 ˆ τ, ˆ α 0 0

RMS Time-Delay Estimation Error / c T 10-1 10-2 CRB ML MV beamformer ML, white-noise 10-3 0 2 4 6 8 10 12 14 16 18 20 Number of Pulses

-10-15 Hybrid beamformer MV beamformer Temporal ref. beamformer Temporal ref. beamformer (ML-TEE) Cancellation of the Interference (db) -20-25 -30-35 -40-45 -50-55 0 2 4 6 8 10 12 14 16 18 20 Number of Pulses

0.16 0.02 Time-Delay Estimation Bias / T c 0.14 0.12 0.1 0.08 0.06 0.04 0.02 ML ML only with temporal reference ML for white noise ML for white noise and only temporal reference Carrier-Phase Estimation Bias (cycles) 0.01 0-0.01-0.02-0.03-0.04 0-0.02 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Delay of the Reflection / T c -0.05-0.06 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Delay of the Reflection / T c ML ML for white noise

10-1 RMS Time-Delay Estimation Error / T c 10-1 10-2 CRB for the detailed model CRB for the simplfied model ML ML only with temporal reference ML for white noise RMS Carrier-Phase Estimation Error (cycles) 10-2 CRB for the detailed model CRB for the simplified model ML ML for white noise 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Delay of the Reflection / T c 10-3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Delay of the Reflection / T c

5 Cancellation of the Reflection (db) 0-5 -10-15 -20-25 -30 Hybrid beamfomer MV beamformer Temporal ref. beamformer Temporal ref. beamformer (ML-TEE) Mean and STD of the coefficients β(α 0,τ 0 ) and α 0 10 0 10-1 10-2 β(α 0,τ 0 ) α 0-35 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Delay of the Reflection / T c 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Delay of the Reflection / T c

0.1 10 0 0 Time-Delay Estimation Bias / T c -0.1-0.2-0.3-0.4 ML ML only with temporal reference MV beamformer ML for white noise -0.5-20 -10 0 10 20 30 40 50 Signal to Noise Ratio (SNR) of the direct signal (db) RMS Time-Delay Estimation Error / T c 10-1 10-2 10-3 CRB for the detailed model CRB for the simplified model ML ML only with temporal reference MV beamformer ML for white noise 10-4 -20-10 0 10 20 30 40 50 Signal to Noise Ratio (SNR) of the direct signal (db)

0.07 Time-Delay Estimation Bias / T c 0.06 0.05 0.04 0.03 0.02 0.01 Hybrid Beamformer (reflection delay ) 0.4T c Hybrid Beamformer (reflection delay ) T c ML (reflection delay 0.4T and T) c c Reflection delay 0.4 T c Mean and STD of the coefficients β(α 0,τ 0 ) and α 0 10 0 10-1 10-2 β(α 0,τ 0 ), Reflection delay: 0.4T c α 0, Reflection delay: 0.4T c β(α 0,τ 0 ), Reflection delay: T c α 0, Reflection delay: T c Reflection delay T c 0 0 20 40 60 80 100 120 Iterations 0 10 20 30 40 50 60 70 80 90 100 Iterations

σ 2 TE = ( * )( * 1 d τ ) 0 Ps ( τ ) d τ0 α0q α0 0 1 2 ( ) ( ) d( τ ) 0 d ( τ 0) = s dτ 0 σ 2 MV = ar QR a * 1 1 0 yy yy 0 ( τ ) s τ τ 2 d ( ) P d( ) a R α * * 1 0 ( ) 0 0 yy 0 0 2 σ aq a * 1 2 0 0 ML = * * 1 2 d ( 0 ) P ( ) d( 0) a0q a0 ( τ ) s τ τ 0 2

100 90 RMS Time-Delay Estimation Error / T c 10-1 10-2 2 Theoretical ML σ ml 2 Theoretical MV σ mv 2 Simulated ML σ ml 2 Simulated MV σ mv Robust ML (Ψ(τ)) Percentage of outlayers (%) 80 70 60 50 40 30 20 ML estim. Λ ml (τ) MV beam. estim. Λ mv (τ) Robust ML estim. Ψ(τ) 10-20 -15-10 -5 0 5 10 15 20 Pointing Error (degrees) 0-20 -15-10 -5 0 5 10 15 20 Pointing Error (degrees)

τ 1 y() i

[ α τ ] y() i = A( ) d () i + e() i i= 0 M 1 1 1 α A( τ 1 ) : d [ ] () i = d () i d ( i 1) : 1 1 1 T

E e( i) e ( l) = Qδil { * }, Q = Q I sp Q= I Q m P te

{ } ln I+ B Tr B, B 0 α ˆ τ = arg max f ( τ ) 1 1 τ 1 Wˆ = Rˆ Rˆ Rˆ Rˆ 1 * yy yd dd yd

Ŵ ˆ s W Q ˆ s W Ŵ Wˆ s = P+ σ 2 I Ŵ min P, σ 2 ˆ 2 W P σ I rank { P} F = d

Wˆ = Wˆ + λi d # Ŵ

λ ft = 210 3 d

Timing RMSE (chips) 10-1 10-2 Space-Time div. fdt=0 Time div. fdt=0 Space div. fdt=0 CRB Space-Time div. fdt=2e-3 Time div. fdt=2e-3 Space div. fdt=2e-3 0 50 100 150 200 250 300 350 400 450 500 M, Length of the training sequence (bits)

Probability of acquisition 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Space-Time div. fdt=0 Time div. fdt=0 Space div. fdt=0 Space-Time div. fdt=2e-3 Time div. fdt=2e-3 Space div. fdt=2e-3 0.2 0 5 10 15 20 25 30 35 40 K, Number of users

Space-Time div. fdt=0 Time div. fdt=0 Space div. fdt=0 CRB Space-Time div. fdt=2e-3 Time div. fdt=2e-3 Space div. fdt=2e-3 Timing RMSE (chips) 10-1 10-2 -40-30 -20-10 0 10 20 Signal to External Interference Ratio SIR (db)

1 0.9 Probability of acquisition 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Space-Time div. fdt=0 Time div. fdt=0 Space div. fdt=0 Space-Time div. fdt=2e-3 Time div. fdt=2e-3 Space div. fdt=2e-3 0-10 -5 0 5 10 15 20 25 30 35 Near-Far Ratio (db)

xt () = α 0 dl () pt ( lt) + wt () l wt N σ 2 () (0, ) ˆ ϕ * 0 = ylt ( + τ0) d( l) ˆ L ˆ c τ0 = d l e y lt + τ0 l L * j ˆ0 ϕ ( ) Re ( ) ( ) nc ( τ ) = y( lt + τ ) 0 0 l 2

8 x 10-3 7.5 CRB ML ML with linear approximation RMS Time-Delay Estimation Error / T c 7 6.5 6 5.5 5 4.5 4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Spacing of the linearization grid, T 0 / T c

σ 2 τ = 1 N { 2 ( ) } N N Λ τ 0 2 ( lim Λ ( τ )) lim E ( ) N 0 * ˆ 1ˆ Λ 0 yy ys ( τ 0) MV ( τ 0) ML ( τ ) = ar r Λ ˆ ( ) ˆ ( ) = 1 Λ ( τ ) 0 * 1 P s rˆ ys τ ˆ 0 R yy r ys τ0 2 TE 0 α 0 a 0

a0 = a( ρ) Ψ ( τ ) = E { Λ ( τ ; ρ) } 0 ρ ML 0 ( ρ) ˆ ( τ ) ( ρ) * 0 Λ ( τ0 ; ρ) = a W a * ˆ 1 a ρ Ryy a ( ) ( ρ) 2 ρ a( ρ) a0 + ρb0 + h 1 2 0 1 x x 2 1+ x +