A New Approach to Bounded Real Lemma Representation for Linear Neutral Systems

Σχετικά έγγραφα
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

INDIRECT ADAPTIVE CONTROL

Πραγματοποιήσιμοι Δυναμικοί Ελεγκτές σε Ουδέτερα Συστήματα με Χρονικές Καθυστερήσεις για Βιομηχανικές Εφαρμογές ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Resilient static output feedback robust H control for controlled positive systems

HMY 220: Σήματα και Συστήματα Ι

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

3 Frequency Domain Representation of Continuous Signals and Systems

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Applying Markov Decision Processes to Role-playing Game

Analiza reakcji wybranych modeli

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

High order interpolation function for surface contact problem

6.003: Signals and Systems

6.003: Signals and Systems. Modulation

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Identification of MIMO State Space Model based on MISO High-order ARX Model: Design and Application

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

ER-Tree (Extended R*-Tree)

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Motion analysis and simulation of a stratospheric airship

Μοντέρνα Θεωρία Ελέγχου

Optimal Stopping Time to Buy an Asset When Growth Rate Is a Two-State Markov Chain

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.


Η Πολυεδρική Προσέγγιση στην Ανάλυση και Σύνθεση Συστηµάτων Ελέγχου. Εργαστήριο Συστηµάτων Αυτοµάτου Ελέγχου

Parts Manual. Trio Mobile Surgery Platform. Model 1033


Feasible Regions Defined by Stability Constraints Based on the Argument Principle

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

, Snowdon. . Frahm.

Iterative Learning Control with a Forgetting Factor for Consensus Tracking in Multi-Agent Systems

A Control Method of Errors in Long-Term Integration

is the home less foreign interest rate differential (expressed as it

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

ΕΛΕΓΧΟΣ ΚΙΝΟΥΜΕΝΗΣ ΡΟΜΠΟΤΙΚΗΣ ΔΙΑΤΑΞΗΣ ΓΙΑ ΕΡΓΑΣΙΕΣ ΜΕ ΠΕΡΙΟΡΙΣΜΕΝΗ ΚΙΝΗΣΗ

HMY 799 1: Αναγνώριση Συστημάτων

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Second Order Partial Differential Equations

Multiple positive periodic solutions of nonlinear functional differential system with feedback control

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2)

Σύγχρονος Αυτόματος Έλεγχος. (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι

2002 Journal of Software

Numerical Analysis FMN011

Control Theory & Applications PID (, )


The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Abstract Storage Devices

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Probabilistic Approach to Robust Optimization

Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems

Prey-Taxis Holling-Tanner

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Maximum likelihood estimation of state-space models

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Simplex Crossover for Real-coded Genetic Algolithms

Theory and Effectiveness Evaluation of the Chinese Government s Intervention in the Housing Market

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

[4-7] Rosenbrock ( ) Runge-Kutta(RK)

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Ax = b. 7x = 21. x = 21 7 = 3.

Research on real-time inverse kinematics algorithms for 6R robots

Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Α Ρ Ι Θ Μ Ο Σ : 6.913

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Μοντέρνα Θεωρία Ελέγχου

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Quick algorithm f or computing core attribute

D-Wave D-Wave Systems Inc.

Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano

On Strong Product of Two Fuzzy Graphs

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes


D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

New conditions for exponential stability of sampled-data systems under aperiodic sampling

Jou rnal of M athem atical Study

(b) flat (continuous) fins on an array of tubes

Προσομοίωση Δημιουργία τυχαίων αριθμών

Center Manifold Theory and Computation Using a Forward Backward Approach

w o = R 1 p. (1) R = p =. = 1

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Transcript:

46-57 388 4 3 3 sariai@ee.knu. ac.ir agira@knu. ac.ir 3 labibi@knu. ac.ir (388// 388/9/8 :. -..... :. A New Approac o Boune Real Lemma Represenaion for Linear Neural Sysems Ala Sariai, Hami Reza agira an Baool Labibi Absrac: is paper is concerne wi boune real crierion for linear neural elay sysems. wo new elay-epenen boune real lemmas (BRLs are obaine in is paper, in wic, Lyapunov eory is use o erive e firs elay-epenen represenaion for BRL. Using a escripor moel ransformaion of e sysem an a new Lyapunov-Krasovskii funcional, a less conservaive boune real lemma is obaine compare o a of e firs BRL. en sufficien coniions for e sysem o possess an -norm less an a prescribe level, is given in erms of a linear marix inequaliy (LMI. e significan avanage of e erive boune real lemmas is eir efficiency in esigning conroller for e close-loop neural sysems wen elaye erm coefficiens epen on e conroller parameers. Numerical examples are given wic illusrae e effeciveness of our propose BRLs. Keywors: Boune Real Lemma (BRL, Neural sysem, escripor moel, Linear Marix Inequaliy (LMI..[4].[8]-[] -.[]-[3] Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

47. K K. A j A j.... 3. 5. 4.. 6 - : x( = Ax ( + Ax ( τ + Ax( τ + Ew ( z ( = Cx ( + D ( ( ( (3 x τ + Dx τ + Dw x ( + θ = φ( θ θ [ τ,] w R p x z R q τ L [, E R np A A A R nn R nn R nn. D R q p D D C R q n R q n R q n.. N R nanb b(. R nb a(. R na :[7] X R nanb Ω a ( α Nb( α a( α X Y Na( α, Ω b( α Y N b( α X Y Ω Y >. R nanb Y R nanb - ([5]-[7]... -..[8].[8]-[] [] Xu Wang..[] Sake Friman.[3]. [8] Xu.[5] [4]. []. [4] Cen Guo : ( = ( + ( i i x Ax A x k j = j n i = ( j ( + A x + Ew A j (. A j.. [6] : ( = ( + ( τ + ( τ + ( x Ax BK x BK x Ew ( Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

48 Ω PA Y Y A τy PE + C D τa A R τa A A A R C * Q D D τa A R τa A ( AA R D * * R D D τa A R τ( A + AA ( A + AA R D * * * R τ ( A ( A R * * * * D D γ I τe E R τe A E A R < (5 * * * * * γ I τe E R * * * * * * τ * * * * * * * R * * * * * * * * τ * * * * * * * * * R * * * * * * * * * * I J < zw < γ zw. (=[ w ( w ( < γ ] J < J <. J < (3 (LMI.. (3 : (4 J(w < γ> τ > P Q R R w L [, R nn X Y X Y Y > X τy > τy R nn. (5-(7 ( Ω= A P+ PA+ Y + Y + τ X + X + Y + Y + Q (3 -. V = V+ V + V3 + V4 V = x( Px( = τ+ β V x ( α x( α β (6 (7. (8 (9 ( :. ( :[8] R y Q y S y R y S y Q( y S( y < S ( y R( y ( <, ( ( ( ( <, A M = B :[9] 3 : M = [ A B] { σ( A σ( B } σ( M { σ( A σ( B } max, max, I -3 γ >. ( = ( γ J w z z w w τ (4. (3 :[] 4 z < γ (3 ( = ( γ ( = ( γ J w z z w w τ J w z z τ. (=[ w ( w ( ] γ. < zw :[] : Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

49 X Y > (5 Y φ(=, [-τ,] γ >.V(q( = = z ( = ( γ J w z z τ (6 w ( (6 ( = w ( z ( = ( J w z z γ w w γ w w τ : : V( V( = = ( J z ( w = z z γ w w γ w w V + ( τ + V( V( = ( z zγ w w γ w w + V ( τ { : Jz ( w x C Cx+ x C Dx( τ + xcdx ( τ + xcdw + x ( τ DDx( τ + x ( τ DDx ( τ + x ( τ DDw + x ( τ DDx( τ + x ( τ DDw + wddwγ ww γ ww + V (} τ ζ Πζ τ (7 : J z (8 ζ = x( x( τ x( τ x( τ w( w( Σ Σ Σ3 Σ4 Σ5 Σ 6 * Σ Σ3 Σ4 Σ5 Σ 6 * * Σ33 Σ34 Σ35 Σ 36 Π = * * * Σ44 Σ45 Σ 46 * * * * Σ55 Σ56 * * * * * Σ66 (9 V = x ( α Qx( α + x ( α R x( α 3 τ τ β 4 = ( ( τ τ + η + ( / x ( α R x( α, τ V τ x α x α ηβ ( ( R R Q P. V( = X Y 4 V i i = : V x { A P + PA + τ ( X + X / + Y+ Y + τ ( Y + Y } x + x (( PA Y x ( τ + x ( τ ( PA Y x ( + x (( PA Y x ( τ + x ( τ( PA Y x ( τ x ( Y x ( τ τ x ( τ Y x ( + x A ϒAx + x A A ϒAAx + x A ϒA x ( τ + x A A ϒAAx ( τ + x A A ϒ ( A + AA x ( τ + x A ϒAx ( τ + x A A ϒAx ( τ + x ( τ( A ϒAx ( τ + x ( τ( AA ϒAAx ( τ + x ( τ( A ϒAx ( τ + x ( τ( A A ϒ ( A + AA x ( τ + x ( τ( A A ϒAx( τ + x ( τ( A ϒAx( τ + x ( τ( A + AA ϒ ( A + AA x( τ + x ( τ ( A + AA ϒAx( τ + x ( τ( A ϒAx( τ + x ( Qx ( x ( τ Qx ( τ x ( τ Rx( x ( τ( R / x ( τ + x ( PEw ( + ( Ax ( + Ax ( τ + Ax ( τ + Ew (. ϒEw ( + x ( A A ϒEw ( + x ( τ ( A A ϒEw ( + x ( τ ( A + AA ϒEw( + x ( τ ( A ϒEw ( + w ( E A ϒEw ( + w ( E ϒ Ew( (3 ϒ = R/ + ( τ / ϒ = R+τ Y > (4 Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

5 Ω PA Y Y A τy PE + C D τa A R τa A A A R C * Q D D τa A R τa A ( AA R D * * R τy D D τa A R τ ( A + AA ( A + AA R D * * * R τ ( A ( A R * * * * D D γ I τe E R τe A E A R < ( * * * * * γ I τ E E R * * * * * * τ * * * * * * * R * * * * * * * * τ * * * * * * * * * R * * * * * * * * * * I (5 (4 LMI Π< (5-(7. :. A A Y. (5 LMI Y. (3 (.A ( Y = [8]-[] A (5 LMI..... (3 : (4 J(w < γ> < τ τ w L [, P Q R R nn R X R nn Y R nn. (-( τ ( / Σ = A P + PA + Y + Y + X + X + Y + Y + Aϒ A + A A ϒ AA + Q + C C Σ ϒ ϒ = PA Y Y + A A + A A AA + C D Σ3 = PA τy + A ϒA + A A ϒ ( A + AA + C D Σ4 = A A ϒA Σ5 = PE + A ϒE + A A ϒAE + C D Σ6 = A A ϒE Σ = Q + A ϒA + ( AA ϒAA + D D Σ3 = A ϒA + D D + A A ϒ ( A + AA Σ = A A ϒ A 4 Σ5 = A ϒE + ( AA ϒAE + DD Σ6 = ( AA ϒE Σ33 = R + A ϒA + D D + ( A + AA ϒ( A + AA Σ34 = ( A + AA ϒA Σ35 = A ϒE + ( AA + A ϒAE + D D Σ36 = ( A + AA ϒE Σ44 = R /+ A ϒA Σ45 = A ϒAE Σ46 = A ϒE Σ55 = E ϒE + E A ϒAE + D D γ I Σ56 = E A ϒE Σ = E ϒ Eγ I 66 J z < Π< w (, w ( L [, 4. zw < γ. z < γ < z γ X Y Y > ( X = X /, = /, R = R /, Y = τ Y Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

5 x ( = Ax ( + Ax ( τ + Ax ( τ + Ew ( : Λ J z ( ζ Πζ + x (( τy x( + x ( τ( τy x( τ τ J z < Y.Π< (4 LMI = Y < (7 ζ Π ζ <.Π<. ( ( (5 LMI τ Y = Y ( τ ( τ X Y Y > : : X = X / ( τ ( ( τ X Y / Y > ( τ ( ( τ ( τ ( ( τ (8 X Y / Y (9 X Y / Y > ( τ ( ( τ X Y / Y >. (8 (3 ( :3 V τ -.. :II - 4 (3 (3. : ( = y( = y( + Ax( + A x( τ + A y( τ + Ew( x X τ Y > τ Y ( ( τ Ω= + + + + + + + A P PA Y Y τ X X Y Q ( - :. (8 -(. V( x (( τy x( τ Y = Y. Y= Y < V (3 x ( τ( τy x( τ : 4 i i= V( = V x { A P+ PA+ τ ( X + ( / X X Y ( } (( ( τ + Y+ Y + Y+ Y x+ x PA Y x + x ( PA x ( τ + x ( PEw( + ( x ( + x( τ ( τy ( x ( + x( τ x ( Yx( τ x ( τ Yx( + ( τ / x ( x( + ( / x ( Rx ( ( / x ( τ Rx ( τ + ( Ax + Ax ( τ + Ax ( τ + Ew( τ. ( Ax + Ax ( τ + Ax ( τ + Ew( + x ( Qx( x ( τ Qx( τ + x ( Rx ( x ( τ Rx ( τ + x ( ( τy x( + x ( τ( τy x( τ = Λ Y > X Y > Y Λ = Λ + x ( ( τy x( + x ( τ( τy x( τ (3 (4 (5. (3 Λ (6 Λ x( = ( / ( Ax( + Ax( τ + Ax ( τ + Ew( Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

5 Q C Φ Y + P P A A E R τ A R τa Q D * R A R τ A D * * R A R τ A * * * D D γ I * * * * γ I E R τe < Q * * * * * R * * * * * * τ * * * * * * * R * * * * * * * * τ * * * * * * * * * I x( V = x ( y ( EnP y ( τ + β + τ+ β V = y ( α y( α β y ( α y( α β (36 (37 V3= x ( α Qx( α + y ( α Ry( α τ τ (38 + y ( α R y( α τ R R Q I n P,, En = P P P = = > P P 3 V V = x ( Px ( x ( = x ( y ( P y ( = x ( y ( P (39 Ax ( A x ( τ ( + + x ( y ( P y ( Ay ( τ ( + = x ( y ( P Ew ( τ τ x( τ = x( x ( α y ( τ = y ( y ( α - (4 (4 ( ( ( ( ( τ ( τ x I x En = y A I y x + w A A + y E I n En = ( (33 (3 (3.. (3.3 (4 J(w < γ> τ > w L [, P Q R R nn R X Y P P 3 R nn X Y Y. (33 (34 I A Φ = P + P+ τ X + Y + Y A I I I (34 P. P = P P3. (3 (3. (3 - V = V + V + V3 (35 Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

53 Q x( ( ( R y( Q x( τ ( τ ( τ R y( τ ( ( ( τ ( τ (44 ( τ ( τ ( ( τ ( ( τ ( τ ( τ ( ( ( τ Ew( + y ( τ A REw( ( ( ( τ ( τ V 3 = x y x y y A R Ay y A R A y + + + y A R A y + y A R A y + y A R A y + y A R A y + y A R Ew + y A R + w E R Ew y R y (43 (4 V = V + V + V : V 3, (44 I x ( V x ( y ( P A Iy ( x( x( + τ x ( y ( X x ( y ( Y y ( + y ( x ( τ + x ( y (( Y N + y ( τ + x ( y ( P w( E Q x x ( y ( ( + R+ τ+ A ( R+ τ A y ( Q x ( τ x ( τ y ( τ R y ( τ + y ( τ A ( R+ τ Ay( τ + y ( τ A ( R+ τ Ay( τ + y ( A ( R+ τ A y( τ + y ( A ( R+ τ A y ( τ + y ( τ A ( R+ τ Ay ( τ + y ( A ( R+ τ Ew ( + y ( τ A ( R+ τ Ew ( + y ( τ A ( R+ τ Ew( + w ( E ( R + τ Ew( y ( τ R y( τ (45 J ( w z zγ w w γ w w + V ( τ z = ( ξ Πξτ (46 ξ = x ( y ( x ( τ y ( τ y( τ w ( w( x ( V = x ( Px ( = x ( y ( P I x ( = x ( y ( P A A I A y ( + + x ( α x ( y ( P A A τ y ( α + x ( y ( P w ( E a( α = x ( b( α = cl xcl ( = x ( y ( τ x ( α N = P y ( α A A I V xcl P x cl A A I A + + X Y N xcl ( + x cl ( x cl ( α τ Y N x cl ( α + xcl ( P w ( E I = xcl P xcl + τ xcl ( Xxcl ( (4 A I + x ( Yx ( + x (( Y + N x ( τ cl cl cl cl y ( α + y ( α y ( α τ y ( α + xcl ( P w ( E X Y V 3 Y (4 V = = x ( ( ( τ τa A y ( + + τy ( τ A Ay( τ + τy ( τ A Ay( τ + τy ( A A y( τ + τy ( A A y ( τ (43 + τy ( τ A Ay ( τ + τy ( A Ew( + τy ( τ A Ew( + τy ( τ A Ew( + τw ( E Ew ( V x y y( α ( α ( α α y ( α y y τ Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

54 Q C Φ Y + P P A A E R τ A R τ A Q D * R A R τ A D * * R A R τ A * * * D D γ I * * * * γ I E R τe < (47 Q * * * * * R * * * * * * τ * * * * * * * R * * * * * * * * τ * * * * * * * * * I 3 :4. LMI. (3. (45 τ.. (3 : w L [, J(w τ < τ( < τ X Y R nn P Q R R R nn (47 P P 3 R nn X Y Y I A Φ = P + P+ τ X + Y + Y A I I I. (48 (48 P. P = P P3 :5. Φ Y P P + A A E Q * Π = R * * R * * * DD γ I * * * * γ I + Λ Λ< I A Φ = P + P+ τ X + Y + Y A I I I Q C R τ A R τa D Λ = AR τ A D AR τ A ER τ E Q R τ = R τ I (33 LMI..J< Π< =. (34 (4. Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

55.4. A = A = A = 5.5. E= [.5 ] C = [ ] D=.4 D = [. ] D = [.3.7] A D D 3 γ. τ γ (eorem γ (eorem 3. τ γ / /45 /64 / 3/ /4 /3 3/97 /55 /4 5/5 3/9 /5 6/47 3/97 /6 8/37 4/94 (3 H 3 3.. γ γ τ (eorem τ (Corollary. 3 τ τ /5 / /9 3 /8 /37 3/5 /5 /44 4 /3 /5 4/5 /35 /56 γ 3 5 /39 /6.. -5 (3 :. A = A = E = [.5 ].9 C = [ ] [8] [].D = D = A =. [] γ τ=/846.. Sake, Yaes an e Souza [] Du an ang [] Friman an Sake [] eorem eorem 3 γ /. / / / 3 γ [] /364. [] 3 γ. [8] [] [].. [8] γ 3. (3 3 : Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

56 [8] Friman E., an Sake, U.,, "A Descripor Sysem Approac o Conrol of Linear ime- Delay Sysems", IEEE ransacion on Auomaic Conrol, 47,, 53-7 [9] Jiang, X., Han, Q. L., 5, "On Conrol for Linear Sysems wi Inerval ime-varying Delay", Auomaica, 4,, 99-6. [] Xu, S., Lam, J. an ou, Y., 6, "New Resuls on Delay-epenen Robus Conrol for Sysems wi ime-varying Delays", Auomaica, 4,, 343-348. [] Xu, S., Lam, J. an Yang, C.,, " an Posiive-Real Conrol for Linear Neural Delay Sysems", IEEE ransacions on Auomaic Conrol, 46, 8, 3-36. [] Wang, Q., Lam, J., Xu, S., an ang, L., 6, "Delay-Depenen -Subopimal H Moel Reucion for Neural Sysems wi ime-varying Delays", ransacions of e ASME. Journal of Dynamic Sysems, Measuremen an Conrol, 8,, 394-399. [3] Friman, E., Sake, U.,, "New Boune Real Lemma Represenaions for ime-delay Sysems an eir Applicaions", IEEE ransacions on Auomaic Conrol, 46,, 973-979. [4] Guo, L., an Cen, W. H., 3, "Oupu Feeback H Conrol for a class of Uncerain Nonlinear iscree-ime Delay Sysems", ransacions of Insiue of Measuremen an Conrol, 5,, 7-. [5] Guo, L.,, "H Oupu Feeback Conrol for Delay Sysems wi Nonlinear an Parameric Uncerainies", IEE Proceeings-Conrol eory an Applicaions, 49, 3, 6-36. [6] Sariai, A., agira, H. D. an Labibi, B., 9, "Delay-Depenen Sabilizaion of Linear Inpu- Delaye Sysems wi Composie Sae-Derivaive Feeback: Consan an ime-varying Delays", 7 Iranian Conference on Elecrical Engineering, 6-65, IUS, eran, Iran. [7] Moon, Y.S., Park, P., Kwon, W.H., Lee, Y.S.,, "Delay epenen robus sabilizaion of uncerain sae elaye sysems", Inernaional Journal of Conrol 74, 447-455. [8] Boy, S.P., EL. Gaoui, L., Feron, E., 994, Balakrisnan, V., Liner Marix Inequaliies in Sysem an Conrol eory. SIAM, Pilaelpia, Pensylvania. [9] Skogesa, S., Poslewaie, I., 5, Mulivariable Feeback Conrol: Analysis an Design. Jon Willy & Sons, Englan. [] Sariai, A., agira, H. D. an Labibi, B., "Delay- Depenen Conrol of Linear Sysems wi ime- Varying Delay Using Sae-Derivaive Feeback", -6.. [6]..... 3. [] Park, J.H., 5, "LMI Opimizaion Approac o Asympoic Sabiliy of Cerain Neural Delay Differenial Equaion wi ime-varying Coefficiens", Applie Maemaics an Compuaion, 6,, 355 36. [] ang,., Wang, W., Yang, B., 7, "Delay an is ime-derivaive Depenen Robus Sabiliy of Neural Conrol Sysem", Applie Maemaics an Compuaion, 47,, 36 33. [3] Li, Y., Xu, S., ang, B., Cu, Y., 8, "Robus Sabilizaion an H Conrol for Uncerain Fuzzy Neural Sysems wi Mixe ime Delays", Fuzzy Ses an Sysems, 59, 73-748. [4] Dumirescu, B., 5 "Boune Real Lemma for FIR MIMO Sysems", IEEE Signal Processing Leers, Vol., No. 7, 496-499. [5] Friman, E.,, "New Lyapunov-Krasovskii Funcionals for Sabiliy of Linear Reare an Neural ype Sysems", Sysems & Conrol Leers, 43, 4, 39-39. [6] Han, Q.L., 5, "On Sabiliy of Linear Neural Sysems wi Mixe ime Delays: A Discreize Lyapunov Funcional Approac", Auomaica, 4, 7, 9-8. [7] Friman, E., 6, "Descripor Discreize Lyapunov Funcional Meo: Analysis an Design", IEEE ransacions on Auomaic Conrol, 5, 5, 89-897. Journal of Conrol, Vol. 3, No 4, Winer 388 4 3

57 [] Du, H., ang, N., 7, "H conrol of acive veicle suspensions wi acuaor ime elay", Journal of Soun an Vibraion, 3, -, 36-5. Submie o Journal of Opimizaion eory an Applicaions. [] Sake, U., Yaes, I. an e Souza, C., 998, "Boune Real Crieria for Linear ime-delay Sysems", IEEE ransacion on Auomaic Conrol, 43, 7, 6-. Journal of Conrol, Vol. 3, No 4, Winer 388 4 3