L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Hadronic Tau Decays at BaBar

AdS black disk model for small-x DIS

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China


Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων


m 1, m 2 F 12, F 21 F12 = F 21

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Lecture 21: Scattering and FGR

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

Large β 0 corrections to the energy levels and wave function at N 3 LO

The Θ + Photoproduction in a Regge Model

A Precision Measurement of the Neutral Pion ? :=+2/#"*1F,+/'2%21='>#1/'",%#+12/'",(?!+(4=/(%0"#%/3+%! G ='0+/'*+? 8!9&:;%1/%HI%J+K

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

Hartree-Fock Theory. Solving electronic structure problem on computers

κ α ι θ έ λ ω ν α μ ά θ ω...

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis

Βασικές Ιδιότητες των Επιταχυντών Σωµατιδίων

A Classical Perspective on Non-Diffractive Disorder

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Μάθημα 6o Οπτικό θεώρημα και Συντονισμοί 10/4/2014

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

Μαθηµα Φεβρουαρίου 2011 Tuesday, February 22, 2011

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα


ITU-R P (2012/02) khz 150





ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ


Wavelet based matrix compression for boundary integral equations on complex geometries

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid. Stimulated Chalk Reservoirs

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία :

Ενεργός διατοµή Χρυσός Κανόνας του Fermi

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 24/4/2007

Μάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 27/4/2017

Low Frequency Plasma Conductivity in the Average-Atom Approximation

ŒˆŠ Š ˆ Š ˆ ˆ ˆ œ ƒ ƒˆƒ Š ƒ.. ˆÏÌ μ,.. ²


Three coupled amplitudes for the πη, K K and πη channels without data

High order interpolation function for surface contact problem


Central exclusive production at RHIC and LHC

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Iterative Monte Carlo analysis of spin-dependent parton distributions

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Neutrino emissivities in quark matter

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Sur les articles de Henri Poincaré SUR LA DYNAMIQUE. Le texte fondateur de la Relativité en langage scientiþque moderne. par Anatoly A.

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Μαγνητικά Υλικά Υπεραγωγοί

ΟΠΤΙΚΟ ΘΕΩΡΗΜΑ (Optical Theorem)

Inflation and Reheating in Spontaneously Generated Gravity


Μάθημα 9o' 12/5/2014

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order Partial Differential Equations

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

CONSULTING Engineering Calculation Sheet

Coupling strategies for compressible - low Mach number flows

Déformation et quantification par groupoïde des variétés toriques

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté


Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α'

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

? 9 Ξ : Α : 4 < ; : ; 4 ϑ Α Λ Χ< : Χ 9 : Α Α Χ : ;: Ψ 8< ;: 9 : > Α ϑ < > = 8 Α;< 4 <9 Ξ : 9 : > Α 4 Α < >

Gradient Descent for Optimization Problems With Sparse Solutions

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

MA4445: Quantum Field Theory 1

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

Transcript:

L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8

e p Integrated luminosity 96- + 3-7 (high energy) e + p : 3pb e p : 85pb H Integrated Luminosity / pb - 4 3 Status: -July-7 electrons positrons low E HERA- HERA- 5 5 Days of running CLAS workshop Feb. 9 - L.Favart p./8

e p GeV e (k ) e (k) γ * (q) 3 } p (p) X 4 5 ep ex s x = q = (k k ) x = /(p q) = x y s y = p q/(p e) W = (p + q) γ p CLAS workshop Feb. 9 - L.Favart p.3/8

e CLAS workshop Feb. 9 - L.Favart p.4/8

HERA Fixed Target Experiments xf 3 5 4 3 y= F F L - -6-5 -4-3 - - x CLAS workshop Feb. 9 - L.Favart p.5/8 (GeV ) x

F σ r (x, ) x i 7 6 5 4 3 - - -3 HERA I e + p Neutral Current Scattering - H and x =.3, i= x =.5, i= x =.8, i= x =.3, i=9 x =., i=8 x =.3, i=7 x =.5, i=6 x =.8, i=5 x =.3, i=4 x =., i=3 x =.3, i= x =.5, i= x =.8, i= x =.3, i=9 x =., i=8 x =.3, i=7 x =.5, i=6 x =.8, i=5 HERA I (prel.) Fixed Target H PDF -JETS x =.3, i=4 x =.8, i=3 x =.5, i= x =.4, i= x =.65, i= 3 4 5 / GeV HERA Structure Functions Working Group e (k) p (p) { e (k) p (p) x. γ * (q) γ * (q) q q x e (k ) e (k ) } X } X CLAS workshop Feb. 9 - L.Favart p.6/8

F ( q(x, Q ) P qq + g(x, ) Pqg) dx x dq(x, ) dlog αs H and Combined PDF Fit HERA Structure Functions Working Group April 8 = GeV Q xf HERAPDF. (prel.) x.8 exp. uncert. xu v model uncert..6 xd v xg (.5).4. xs (.5) - - -3-4 x H Collaboration CLAS workshop Feb. 9 - L.Favart p.7/8

CLAS workshop Feb. 9 - L.Favart p.8/8

QCD in Breit frame e e J/ψ γ * x ξ x + ξ p p GP D(x, ξ, Q ) dx Ψ (x, ξ, t; µ) t CLAS workshop Feb. 9 - L.Favart p.9/8 Colour Dipole -z q r z q γ * σ dipole p p q q + q qg +... γ dr ψ in (r, z, ) σ d ψ out (r, z, ) σ = ψ in σd r q q

z ρ, φ, J/ψ,γ r z b p p q AL q q γ t = q Ψγ γ mpx fm E EI m σdip(r, z, b) q q MV r µ = z( z)( + M V ) z / µ ( + M V )/4 AL z =, µ AT CLAS workshop Feb. 9 - L.Favart p./8

MY t W σt Q 8 σ( ) σl Q 6 αs( ) Naive R = σl/σt /M V modified. W σ W δ x g(x, µ ) W δ = 4(α(t) ) = 4(α() + α t ) σt σl Hard scale: δ, α() : universal with Q +M X 4 t dσ/dt e b t b = bdip bexch by bt > bl Hard scale: b: universal with Q +M X 4 MY W CLAS workshop Feb. 9 - L.Favart p./8

M V ρ, φ, ω = J/ψ υ Υ CLAS workshop Feb. 9 - L.Favart p./8

σ [nb] 4 3 γ p ρ p H HERA- prel. H SV σ [nb] γ p φ p H HERA- prel. H SV γ p ρ Y H HERA- prel. (x.5) γ p φ Y H HERA- prel. (x.5) - W = 75 GeV M Y < 5 GeV - W = 75 GeV M Y < 5 GeV +M [GeV ] φ +M [GeV ] σ γ p ρy / σ γ p ρp.8.6.4 H ρ electroproduction (preliminary) H HERA- prel. σ γ p φy / σ γ p φp.8.6.4 H φ electroproduction (preliminary) H HERA- prel. i.e.. W = 75 GeV M Y < 5 GeV 3 4 [GeV ]. W = 75 GeV M Y < 5 GeV 5 5 [GeV ] CLAS workshop Feb. 9 - L.Favart p.3/8

α IP () σ(γ*p ρ p) (nb).6.4 3 - W ρ Φ J/Ψ pb - 4 6 8 4 6 8 γ p ρ p H HERA- prel. H SV γ p J/ψ p H W (GeV) γ p φ p σ γ p φp [nb] H HERA- prel. H φ electroproduction (preliminary) H HERA- prel. [GeV ] 3.3 6.5 6.5 Fit W δ W [GeV] σ(γ * p J/ψp) (nb) p) (nb) - - (a) // Photoproduction DIS 98- H DIS α IP () = + δ/4 + α IP / t α IP =.5 GeV + M α IP () Fit with W δ (GeV ). ( ).4 (.) 3. (.) 6.8 (.5) 6. (.3) W (GeV). H DVCS α IP ()=.8 +M [GeV ] + M GeV σ T CLAS workshop Feb. 9 - L.Favart p.4/8

e e γ * γ p p α IP ().6 γ p ρ p H HERA- prel. H SV γ p φ p H HERA- prel. α IP ().6 γ p ρ p H HERA- prel. H SV γ p φ p H HERA- prel..4 γ p J/ψ p γ p J/ψ p DVCS H H.4 H.. H DVCS α IP ()=.8 4 6 8 +M [GeV ] µ [GeV ] µ = + M X µ = Q +MX 4 µ = CLAS workshop Feb. 9 - L.Favart p.5/8

b [GeV - ] dσ/d t (nb/gev ) dσ/d t (nb/gev ) dσ/d t (nb/gev ) 8 t ρ Φ 5 H HERA- preliminary J/Ψ γ p φ p pb - t (GeV ) t (GeV ) t (GeV ) dσ/d t (nb/gev ) dσ/d t (nb/gev ) dσ/d t (nb/gev ) e p ρ p H HERA- prel. H SV t (GeV ) t (GeV ) t (GeV ) dσ/d t [nb/gev ] e p φ p 4 H HERA- prel. H 96 ep J/Ψp H < > [GeV ] 3.5 (x ) 6.8 (x ) 6. (x ) Fit e bt - MRS (Sat)...3.4.5.6.7.8 t t [GeV ] e b t + M dσ(γ * p J/ψp)/dt (nb/gev ) Fit < < GeV e bt, b = 4.7 ±.5 ±. GeV - ( - t/m g ) - 4, m g =.55 ±. GeV.5.5.75 -t (GeV ) < < 5 GeV (b) 5 < < GeV (c).5.5 (a) < < GeV (d).5 -t (GeV ) 6 4 a) 5 5 5 3 35 4 45 +M [GeV ] + M CLAS workshop Feb. 9 - L.Favart p.6/8

b [GeV - ] 4 e p ρ p H HERA- prel. H SV H 94 e p φ p H HERA- prel. ep J/Ψp H b [GeV - ] 4 e p ρ p H HERA- prel. H SV e p φ p H HERA- prel. ep J/Ψp H 8 DVCS H 8 DVCS H 6 6 4 a) 4 a) 5 5 5 3 35 4 45 5 5 5 +M [GeV ] µ [GeV ] µ = + M X µ = Q +MX 4 µ = CLAS workshop Feb. 9 - L.Favart p.7/8

θ Φ ϕ r ij kl T λ ρ λ γ T λ ρ λ γ T λρ λ γ. hadronic centre of mass ϕ e VM M+ T : γ L ρ L e γ φ p decay plane M T : γ T ρ T T : γ T ρ L electron scattering plane production plane VM direction in the hadronic centre of mass system. θ M VM rest frame M+ T : γ L ρ T T : γ T ρ T s T = T = T = t t t < ) T > T > T > T > T CLAS workshop Feb. 9 - L.Favart p.8/8

ρ.8.6.4. -.. -. -. r 4 Re r 4 r 4. -. -...5 -.5 -.. -.. -. r Re r r - Im r.3.5.... -.5 -. - r.5 -.5 -. Im r - r 5 r 5 Re r 5..5.4.5..5..5 r 4 r 5 r r 6 r 5 r r 5 - Im r 6 Im r 6 - -.5.4.5. -. -. -.5 -.4 -.5 -. [GeV ] H ρ electroproduction (preliminary) H HERA- prel. GK (GPD) CLAS workshop Feb. 9 - L.Favart p.9/8

R = σ L /σ T R = σ L / σ T R SCHC = ɛ 5 γ p ρ Y H HERA- prel. H r 4 ɛr 4 H ρ and φ electroproduction (preliminary) = T T R = σ L / σ T 5 4 3 H ρ electroproduction (preliminary) γ p ρ Y H HERA- prel..6.8 m ππ [GeV] γ p φ Y H HERA- prel. H 4 [GeV ] R=σ L /σ T 5 4.5 4 3.5 3.5 pb - < >=3 GeV < >= GeV R /M R φ ρ ρ.5.5.6.7.8.9...3 M ππ (GeV) CLAS workshop Feb. 9 - L.Favart p./8

T / T M Q +γ γ T / T M t γ T / T t Q γ γ.75.5.5 T / T H ρ prel. H φ prel. [GeV ].4. T / T H ρ prel. H φ prel. [GeV ].. -. -. T / T H ρ prel. H φ prel. [GeV ].. -. -. T - / T H ρ prel. H φ prel. [GeV ] T / T T / T > T / T T / T σ L /σ T T > T > T > T, T CLAS workshop Feb. 9 - L.Favart p./8

t T / T M Q +γ γ T / T M t γ T / T t Q γ γ.75.5.5 T / T H ρ prel. H φ prel. t [GeV ].4. T / T H ρ prel. H φ prel. t [GeV ].. -. -. T / T H ρ prel. H φ prel. t [GeV ].. -. -. T - / T H ρ prel. H φ prel. t [GeV ] T / T T / T T / T T / T t t T / T t T / T t σ L /σ T CLAS workshop Feb. 9 - L.Favart p./8

RSCHC+T = T t R = σl/σt T+T r 4 = σl / σ tot H ρ HERA- prelim..8 = 3.4 GeV 8 = 9. GeV 6 R = σl / σ T.6 4 pb - < > = 3 GeV < > = GeV.4..4.6.8 t (GeV ) t [GeV ] σt σl bl < bt t R ρ CLAS workshop Feb. 9 - L.Favart p.3/8

ρ φ σ L [nb] 3 H ρ and φ electroproduction (preliminary) γ L p ρ p H HERA- prel. σ T [nb] 3 H ρ and φ electroproduction (preliminary) γ T p ρ p H HERA- prel. GK (GPD) INS (k t fact) MPS (Sat) γ L p φ p γ T p φ p - - H HERA- prel. W = 75 GeV GK (GPD) INS (k t fact) MPS (Sat) - - H HERA- prel. W = 75 GeV +M [GeV ] +M [GeV ] + M σ L σ L σ T σ T σ L = CLAS workshop Feb. 9 - L.Favart p.4/8

J/ψ 4 r.5 H.5.5.5.5 4 r - SCHC r - H Photoproduction H Electroproduction Photoproduction Electroproduction 5 5 r +r r +r. J/ψ J/ψ a) b) c) d) e) [GeV ] J/ψ 4 r 4 r - r - 5 5 r +r r +r R t. f) g) h) i) j) t [GeV ].5.5.5.5.5 σ [nb] R = σ L / σ T 8 6 4 - - b) σ T σ L γ p ρ Y H HERA- prel. H SV E665 NMC γ p φ Y - QM ρ /M V M H HERA- prel. H SV γ p J/Ψ Y H.M /M [GeV ] ρ V. MRT(CTEQ6M) MRT(MRST) MRT(H QCD Fit) H [GeV ] CLAS workshop Feb. 9 - L.Favart p.5/8

H H HERA II e - p H HERA I GPD model S( ) b 8 6 4 σdv CS Q 4 b( ) ( + ρ ) S = H HERA II e - p H HERA I GPD model GPD model (only kinematical skewing) 6 5 R( ) 4 3 R = Im A(γ Im A(γ p γ p) p γp) 4 π σdv CS b( ) = [GeV ] σt (γ p X) ( + ρ ) σt (γ p X) CLAS workshop Feb. 9 - L.Favart p.6/8

e e + pb BCA σ(e+ p) σ(e p) σ(e + p) + σ(e p) p cos(φ) H data (prelim.) p cos(φ bel. ) H DVCS Analysis HERA II H.3 ) -. + σ. - σ - )/(σ + -. -. -.3 4 6 8 4 6 8 Φ bel. (degrees) BCA = (σ + φ.5 < t < CLAS workshop Feb. 9 - L.Favart p.7/8

ρ, φ, J/ψ, Υ, γ, W, t t W L/T CLAS workshop Feb. 9 - L.Favart p.8/8

CLAS workshop Feb. 9 - L.Favart p.9/8

% $ " $ '. kt "!#! F σq q p ' * ) ' ( ( &' & %-,!$! +! kt kt F(x, κ) kt σq q p σq q p = 4π/3 d κ/κ 4 F(x, κ) αs(µ ) [ exp(i κ r)] ) )) / ( A = 9 µ = A/(z( z) + m q ) σq q p π /3 r αs(µ ) G(x, µ ) σt ( + M V ) 4 [αs(µ ) G(x, µ )] σl /M V (Q + M V ) 4 [αs(µ ) G(x, µ )] CLAS workshop Feb. 9 - L.Favart p.3/8

% -, $, $ )) W )) +, "! Q / ) Hij / W dz dx f i/p (x, x x, t, µ) A γ ( ) p V p = i,j (z, µ) Hij( x /x,, z, µ) Ψ V j x x x f i/p Ψ V j Hij γt γl ' ) %! CLAS workshop Feb. 9 - L.Favart p.3/8

± T / T T / T T / T T / T r 4 = B (ε + β ) Re r 4 = B/ (εδ + βα βη) r 4 = B (αη εδ ) r = B β r = B αη Re r = B/ β(η α) r = B/ (α + η ) Im r = B/ β(α + η) Im r = B/ (η α ) r 5 = B β r 5 = B/ δ(α η) Re r 5 = B/( ) (βδ + α η) r 5 = B/ δ(η α) Im r 6 = B/( ) (α + η) Im r 6 = B/ δ(α + η) α = T / T β = T / T δ = T / T η = T / T B = = R N T +εn L +εr N T = α + β + η N L = + δ CLAS workshop Feb. 9 - L.Favart p.3/8

$ α IP ] p) [µb/gev dσ/dt (γp ρ ρ - H PRELIMINARY ρ Elastic Photoproduction -t [GeV ] 3 4 5 6 7 H PRELIMINARY.,..35,..69.3.89.6.38.58 H 5 Preliminary H 5 fit 94 94 LPS 95 W [GeV] dσ dt (W ) eb t W 4(α IP (t) ) α IP [GeV ] W W δ α IP (t) = + δ/4 α IP (t) α IP (t) = α IP () + α IP t.4. γ p ρ p H HERA- prel. H HERA- prel. γ p φ p t α(t)..5..5. H 5 Preliminary H 5 fit Zeus 95 Zeus 95 fit Donnachie-Landshoff γ p J/ψ p H -. 4 6 8 4 6 8.95.9 Elastic ρ Photoproduction α IP +M [GeV ] p p -. -. -.8 -.6 -.4 -. -.. t [GeV ] IP CLAS workshop Feb. 9 - L.Favart p.33/8

Events/(.3 GeV) 6 4 pb -.5.6.7.8.9...3.4 M ππ (GeV) CLAS workshop Feb. 9 - L.Favart p.34/8