Dispersive estimates for rotating fluids and stably stratified fluids

Σχετικά έγγραφα
L p approach to free boundary problems of the Navier-Stokes equation

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Orthogonal systems and semigroups

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

On a free boundary problem of magnetohydrodynamics in multi-connected domains

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

D Alembert s Solution to the Wave Equation

Single-value extension property for anti-diagonal operator matrices and their square

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Prey-Taxis Holling-Tanner

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Eulerian Simulation of Large Deformations

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR 2D SHALLOW WATER EQUATIONS WITH ITS DEGENERATE VISCOSITY

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Journal of Differential Equations

A thermodynamic characterization of some regularity structures near the subcriticality threshold

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Θέματα Αρμονικής Ανάλυσης

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Θέματα Αρμονικής Ανάλυσης

Discriminantal arrangement

Heisenberg Uniqueness pairs

REMARK ON WELL-POSEDNESS FOR THE FOURTH ORDER NONLINEAR SCHRÖDINGER TYPE EQUATION

Second Order Partial Differential Equations

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Reminders: linear functions

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Fundamentals of Signals, Systems and Filtering

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

REMARK ON THE OPTIMAL REGULARITY FOR EQUATIONS OF WAVE MAPS TYPE

Ultra-analytic effect of Cauchy problem for a class of kinetic equations

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

n+1 v x x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

Markov chains model reduction

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B26:

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

W, W, W(r) = (1/4)(r 2 1), W (r) = r 3 r

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

X g 1990 g PSRB

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solutions - Chapter 4

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Θέματα Αρμονικής Ανάλυσης

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

SPECIAL FUNCTIONS and POLYNOMIALS

High order interpolation function for surface contact problem

100x W=0.1 W=

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

LOW REGULARITY SOLUTIONS OF THE CHERN-SIMONS-HIGGS EQUATIONS IN THE LORENTZ GAUGE

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

An Essay on A Statistical Theory of Turbulence

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Numerical Analysis FMN011

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Lecture 21: Scattering and FGR

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Θέματα Αρμονικής Ανάλυσης

DERIVATION OF THE REYNOLDS TYPE EQUATION WITH MEMORY EFFECTS, GOVERNING TRANSIENT FLOW OF LUBRICANT. Antonija Duvnjak University of Zagreb, Croatia

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

A General Note on δ-quasi Monotone and Increasing Sequence

Ψηφιακή Επεξεργασία Φωνής

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Θέματα Αρμονικής Ανάλυσης

Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

A Lambda Model Characterizing Computational Behaviours of Terms

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

On Lie Reduction of the MHD Equations to Ordinary Differential Equations

C-19 (B) Development of stochastic numerics and probability theory via lacunary series (FUKUYAMA KATUSI)

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Research on real-time inverse kinematics algorithms for 6R robots

Lecture 12: Pseudo likelihood approach

Oscillatory Gap Damping

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

LTI Systems (1A) Young Won Lim 3/21/15

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Durbin-Levinson recursive method

The Pohozaev identity for the fractional Laplacian

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Transcript:

特別講演 17 : msjmeeting-17sep-5i4 Dispersive estimates for rotating fluids and stably stratified fluids ( ) 1. Navier-Stokes (1.1) Boussinesq (1.) t v + (v )v = v q t >, x R, v = t >, x R, t v + (v )v = v q + ηe t >, x R, t η + (v )η = η t >, x R, v = t >, x R. (1.1) (1.) v = (v 1 (t, x), v (t, x), v (t, x)) T, q = q(t, x), η = η(t, x) e = (,, 1) T (1.1), (1.) (1.1) ( ) (v Ω, q Ω ) v Ω (x) = Ωe x, q Ω (x) = Ω (x 1 + x ). Ω R \ } q Ω O(t) cos t sin t O(t) = sin t cos t 1 (1.1) (v, q) u(t, x) = O(Ωt) T v(t, O(Ωt)x) v Ω (x), p(t, x) = q(t, O(Ωt)x) q Ω (x) (v Ω, q Ω ) (u, p) (u, p) Coriolis Navier-Stokes t u + (u )u = u Ωe u p t >, x R, u = t >, x R. (1.) ( :15H546) 819-95 744 e-mail: takada@math.kyushu-u.ac.jp

(1.) (1.) q s = η s (v s, η s, q s ) v s, η s (x ) = a + bx, q s (x ) = c + ax + b x (a, b, c R). b = η s > N = b (1.) (η, q) (η s, q s ) θ(t, x) = η(t, x) η s (x ), p(t, x) = q(t, x) q s (x ) (v, θ, p) t v + (v )v = v p + θe t >, x R, t θ + (v )θ = θ N v t >, x R, v = t >, x R. (1.4) (1.), (1.4) Coriolis Ωe u (θe, N v ) T Helmholtz ( ) (δ jk + R j R k ) P = (δ jk + R j R k ) 1 j,k P = 1 j,k 1 R j = xj ( ) 1/ Riesz Coriolis J r, J s 1 J r = 1, J s = 1 1 (1.4) u = (v, θ/n) T = (, ) T Helmholtz (1.), (1.4) Ω 1 : t u u + ΩPJ r Pu + P(u u) =, u =, (1.5) u(, x) = u (x), t u u + NPJ s Pu + P(u u) =, u =, u(, x) = u (x) = (v (x), θ (x)/n). (1.6) PJ r P PJ s P [ ] σ PJ r P = ±ip r (ξ), }, p r (ξ) = ξ ξ, [ ] σ PJ s P = ±ip s (ξ),, }, p s (ξ) = ξ h ξ, ξ h = (ξ 1, ξ )

+ ΩPJ r P + NPJ s P e t( ΩPJ rp) u = 1 et e iωtp r(d) (I + R)u + 1 et e iωtp r(d) (I R)u e t( NPJsP) u = e t e intps(d) P + u + e t e intps(d) P u + e t P u. I R R R = R R 1, Pj u (ξ) = û (ξ), a j (ξ) C 4 a j (ξ) (j = ±, ), R R 1 a + (ξ) = 1 ξh ξ iξ 1 ξ iξ ξ i ξ h ξ h ξ, a (ξ) = a + (ξ), a (ξ) = 1 ξ h ξ ξ 1 (1.7) a ± (ξ), a (ξ)} PJ s P ±ip s (ξ), } e ±iωtpr(d) e ±intps(d) Fourier e ±iωtpr(d) f(x) = e ix ξ±iωtpr(ξ) f(ξ) dξ, pr (ξ) = ξ R ξ, (1.8) e ±intps(d) f(x) =. R e ix ξ±intp s(ξ) f(ξ) dξ, ps (ξ) = ξ h ξ. (1.9) Coriolis Navier-Stokes (1.5) Babin- Mahalov-Nicolaenko [1] T (1.5) u H s (T ) (s > 1/) Ω = Ω (u ) Ω Ω (1.5) u C([, ); H s (T )) L (, ; H s+1 (T )) Resonant Kishimoto-Yoneda [15] R Chemin- Desjardins-Gallagher-Grenier [5] u Ḣ 1 (R ) Coriolis u Ḣs (R ) (1/ < s < /4) Ω u H s [11] Ω R Giga-Inui-Mahalov-Saal [8], Hieber-Shibata [9], Konieczny-Yoneda [18], Ito-Kato [14] [1] Navier-Stokes Sawada [1], Giga-Inui-Mahalov-Matsui [7] u Ḣs (R ) (1/ < s < 5/4) [1] [1] T Ω

Boussinesq (1.6) Charve [,4] (1.6) Coriolis Ωe v [,4] (1.7) u = u = P + u +P u +P u P ± u Ḣ 1 (R ), P u H 1 +ε (R ) (ε > ) u N = N (u ) Ω = Ω (u ) N N Ω Ω (1.6) u L (, ; Ḣ 1 (R )) L (, ; Ḣ (R )) Koba-Mahalov-Yoneda [16] N Ω u Ḣ 1 (R ) Ibrahim-Yoneda [1] Babin-Mahalov-Nicolaenko [] (1.8), (1.9) p r (ξ) p s (ξ) Littlewood-Paley U r ± (t)f(x) = e ix ξ±itpr(ξ) ψ(ξ) f(ξ) dξ, p r (ξ) = ξ R ξ, (.1) U s ± (t)f(x) = R e ix ξ±itps(ξ) ψ(ξ) f(ξ) dξ, p s (ξ) = ξ h ξ, (t, x) R1+. (.) ψ S (R ) supp ψ ξ } ψ(ξ) = 1 ( 1 ξ ) Dutrifoy [6] [1] U ± r (t) U ± r (t)f L C log(e + t ) 1 + t } 1 fl 1.1. C = C(ψ) U r ± (t)f L C(1 + t ) 1 f L 1 t R f L 1 (R ) 1 U s ± (t).. C = C(ψ) U ± s (t)f L C(1 + t ) 1 fl 1 t R f L 1 (R ) 1/ Coriolis Navier- Stokes (1.5).1 [11] u Ḣs (R ), 1/ < s < /4

.. (s, p, q) 1 < s < 9 1, 1 + s 9 1 p < 7 1 s 6, max, 1 p + s 1 } < 1 q < 5 8 p + s 4, 4 p 1 q < 5 4 5 p. δ = δ(s, p, q) u Ḣs δ Ω 1 (s 1 ) (.) Ω R \ } u Ḣs (R ) ( u = ) (1.5) u C([, ); Ḣs (R )) L q (, ; Ẇ s,p (R )).4.. (.) u Ḣs (R ) Ω = ( ) δ 1 s 1/ u Ḣs Ω Ω (1.5) u.1 [11] s < /4 s < 9/1 Boussinesq (1.6).5. 1/ < s 5/8 δ 1 = δ 1 (s) δ P + u Ḣs + P u Ḣs δ 1 N 1 (s 1 ), P u Ḣ 1 δ (.4) N > u Ḣ 1 (R ) Ḣs (R ) ( u = ) (1.6) u C([, ); Ḣ 1 (R )) L 4 (, ; Ẇ 1, (R )).6..5 (.4) (v, θ ) ( h ) 1 ( ) 1 xj x v,j Ḣs δ 1N 1 (s 1 ) (j = 1, ), ( h ) 1 ( ) 1 v, δ Ḣs 1N 1 (s 1 ), θ Ḣs δ 1N 1 (s 1 )+1, ( h ) 1 ( x1 v, x v,1 ) Ḣ 1 δ. δ 1 = δ 1(s) δ 1 N > (1.6) θ Ḣs -..1,. p r (ξ) = ξ / ξ ξ } p s (ξ) = ξ h / ξ ξ h = }.1 p r (ξ) C ( ξ }) Littman

.1 ([], [, Corollary., page 4]). ψ C (R d ) p C (supp ψ; R) supp ψ rank p(ξ) k C = C(d, ψ, p) e ix ξ+itp(ξ) ψ(ξ) dξ C(1 + k t ) R d (t, x) R 1+d.1.1 ξ } rank p r (ξ) p r (ξ) = 1 ξ (ξ1 ξ ) ξ 1 ξ ξ ξ 1 (ξ ξ ) ξ 5 ξ 1 ξ ξ ξ (ξ ξ ) ξ (ξ ξ ) ξ 1 (ξ ξ ) ξ (ξ ξ ) ξ ξ h det p r (ξ) = (ξ 1 + ξ)ξ p ξ 9 r (ξ) ξ h = } ξ = } p r (, ξ ) = 1 ξ 5 ξ ξ, p r (ξ h, ) = 1 ξ h ξ 1 ξ ξ 1 ξ rank p r (ξ) p s (ξ) = ξ h / ξ ξ h = }.1 det p s (ξ) = ξ4 ξ 9 ξ h ξ h = } ξ = } Littlewood-Paley ψ h S (R ), ψ S (R) supp ψ h 1 ξ h }, supp ψ 1 ξ } ψ ( k ξ ) = 1 (ξ h, ξ ) j Z ψ h ( j ξ h ) = k Z U s ± (t) U s ± (t)f(x) = e ix ξ±itps(ξ) ψ h ( j ξ h )ψ ( k ξ )ψ(ξ) f(ξ) dξ j,k Z R ( = + + ) e ix ξ±itps(ξ) ψ h ( j ξ h )ψ ( k ξ )ψ(ξ) f(ξ) dξ j, k j, R k 4 k, j 4 =: I 1 (t, x) + I (t, x) + I (t, x). I 1 (det p s (ξ) ) I I I ξ = } k k N e ix ξ±itps(ξ) ψ h (ξ h )ψ ( k ξ ) dξ C(1 + 1 t ) R k k

ξ k ξ e ix ξ±itps(ξ) ψ h (ξ h )ψ ( k ξ ) dξ = k R R e i(x h, k x ) ξ±itp s (ξ h, k ξ ) ψ h (ξ h )ψ (ξ ) dξ p s (ξ h, k ξ ) Taylor k 1 p s (ξ h, k ξ ) } ( ) 1 } = 1 k 1 + k ξ = 1 ξ ξ h ξ h + E k(ξ), E k C N (supp ψ h ψ ) C N k (N N }) p (ξ) = 1 ξ h supp ψ h ψ ξ det p (ξ) = ξ4 ξ h 1 k N e ix ξ±itps(ξ) ψ h (ξ h )ψ ( k ξ ) dξ k k R = k e k k R i(x h, k x ) ξ±itp s (ξ h, k ξ ) ψ h (ξ h )ψ (ξ ) dξ = k e ±it e k k R i(x h, k x ) ξ i k t k 1 p s (ξ h, k ξ )} ψh (ξ h )ψ (ξ ) dξ = k e k k R i(x h, k x ) ξ i k tp (ξ)+e k (ξ)} ψ h (ξ h )ψ (ξ ) dξ C } k min 1, (1 + k t ) k k C } min k, k (1 + t ) k k C(1 + t ) 1 I (t, x) j N e ix ξ±itps(ξ) ψ h ( j ξ h )ψ (ξ ) dξ C(1 + t ) R j j I 1 (t, x) det p s (ξ) (1 + t ). Youngwoo Koh Kongju National University Sanghyuk Lee Seoul National University [17, 19]

[1] A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J. 48 (1999), 11 1176. [] A. Babin, A. Mahalov, and B Nicolaenko, Fast singular oscillating limits and global regularity for the D primitive equations of geophysics, MAN Math. Model. Numer. Anal. 4 (), 1. [] F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Comm. Partial Differential Equations 9 (4), 1919 194. [4], Global well-posedness for the primitive equations with less regular initial data, Ann. Fac. Sci. Toulouse Math. (6) 17 (8), 1 8. [5] J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical geophysics, The Clarendon Press Oxford University Press, Oxford, 6. [6] A. Dutrifoy, Examples of dispersive effects in non-viscous rotating fluids, J. Math. Pures Appl. (9) 84 (5), 1 56. [7] Y. Giga, K. Inui, A. Mahalov, and S. Matsui, Navier-Stokes equations in a rotating frame in R with initial data nondecreasing at infinity, Hokkaido Math. J. 5 (6), 1 64. [8] Y. Giga, K. Inui, A. Mahalov, and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J. 57 (8), 775 791. [9] M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z. 65 (1), 481 491. [1] S. Ibrahim and T. Yoneda, Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data, J. Math. Sci. Univ. Tokyo (1), 1 5. [11] T. Iwabuchi and R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann. 57 (1), 77 741. [1], Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal. 67 (14), 11 17. [1], Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework, Funkcial. Ekvac. 58 (15), 65 85. [14] H. Ito and J. Kato, A remark on a priori estimate for the Navier-Stokes equations with the Coriolis force. arxiv:151.1814. [15] N. Kishimoto and T. Yoneda, Global solvability of the rotating Navier-Stokes equations with fractional Laplacian in a periodic domain. arxiv:17.744. [16] H. Koba, A. Mahalov, and T. Yoneda, Global well-posedness of the rotating Navier-Stokes- Boussinesq equations with stratification effects, Adv. Math. Sci. Appl. (1), 61 9. [17] Y. Koh, S. Lee, and R. Takada, Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Differential Equations 19 (14), 857 878. [18] P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier- Stokes equations, J. Differential Equations 5 (11), 859 87. [19] S. Lee and R. Takada, Dispersive estimates for the stably stratified Boussinesq equations. to appear in Indiana Univ. Math. J. [] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (196), 766 77. [1] O. Sawada, The Navier-Stokes flow with linearly growing initial velocity in the whole space, Bol. Soc. Parana. Mat. () (4), 75 96. [] E. M. Stein and R. Shakarchi, Functional analysis, Princeton Lectures in Analysis, vol. 4, Princeton University Press, Princeton, NJ, 11. Introduction to further topics in analysis.