1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions



Σχετικά έγγραφα
1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 8: Δημοπρασίες. Ε. Μαρκάκης. Επικ. Καθηγητής

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016

2 Πώς πουλάει διαφημιστικό χώρο η Google;

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

* * * ( ) mod p = (a p 1. 2 ) mod p.

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

μηχανισμούς; ΚΟΙΝΟΚΤΗΜΟΣΥΝΗ

Μέθοδος μέγιστης πιθανοφάνειας

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Προσεγγιστικοί Αλγόριθμοι

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

(Γραμμικές) Αναδρομικές Σχέσεις

Μονοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 10

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

(2β) Το Υπόδειγμα της Κυκλικής Πόλης ή Υπόδειγμα του Salop

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Notes. Notes. Notes. Notes

Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Αγορές: Αγορά είναι οτιδήποτε φέρνει σε επικοινωνία αγοραστές και πωλητές. Η αγορά έχει δύο πλευρές: αγοραστές (Ζήτηση) και πωλητές (Προσφορά).

Προσεγγιστικοί Αλγόριθμοι

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Αλγόριθμοι και Πολυπλοκότητα

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

Μέθοδος μέγιστης πιθανοφάνειας

#(A B) = (#A)(#B). = 2 6 = 1/3,

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

(Γραμμικές) Αναδρομικές Σχέσεις

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή

Σχεδίαση και Ανάλυση Αλγορίθμων

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

a = a a Z n. a = a mod n.

(Γραμμικές) Αναδρομικές Σχέσεις

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

x \ B T X. A = {(x, y) R 2 : x 0, y 0}

Αλγοριθμική Θεωρία Παιγνίων

IV. Συνέχεια Συνάρτησης. math-gr

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

Τμήμα Εφαρμοσμένης Πληροφορικής

Μονοπωλιακή Ισορροπία - Αν η αγορά του αγαθού Α είναι πλήρως ανταγωνιστική, τότε η ατομική επιχείρηση θεωρεί δεδομένη την τιμή (p) και, επομένως,

Υπολογιστικά & Διακριτά Μαθηματικά

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

Πρώτο πακέτο ασκήσεων

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Μαθηματικά Μοντέλα Ανταγωνισμού και ΣυνεργασίαςσεΕφοδιαστικέςΑλυσίδες

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

4.1 Ζήτηση εργασίας στο βραχυχρόνιο διάστημα - Ανταγωνιστικές αγορές

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

2. dim(p ) = n rank(a = )

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΟΙΚΟΝΟΜΙΚΗ (Μικροοικονομική) Mankiw Gregory N., Taylor Mark P. ΕΚΔΟΣΕΙΣ ΤΖΙΟΛΑ

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Υπολογιστικά & Διακριτά Μαθηματικά

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Αλγοριθμικές Τεχνικές

Μη γράφετε στο πίσω μέρος της σελίδας

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Transcript:

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions Στην πρώτη διάλεξη που κάναμε για δημοπρασίες, ξεκινήσαμε με την περίπτωση που έχουμε προς πώληση μόνο ένα αγαθό. Έστω τώρα ότι ο δημοπράτης έχει ένα σύνολο από m αγαθά, ας πούμε M = {1, 2,..., m}, που θα θελε να πουλήσει με μια δημοπρασία. Υπάρχει πληθώρα από εφαρμογές με ένα τέτοιο σενάριο, π.χ., τα αγαθά αυτά μπορεί να αντιστοιχούν σε συχνότητες τηλεπικοινωνιών, σε δρομολόγια λεωφορείων, κτλ. Στις δημοπρασίες ενός αγαθού, οι συμμετέχοντες είχαν απλά μια αξία v i για την απόκτηση του αγαθού. Τώρα στην περίπτωση που μελετάμε, θεωρούμε ότι κάθε παίκτης i έχει μια συνάρτηση αποτίμησης (ή συνάρτηση ωφέλειας), η οποία ορίζεται στο δυναμοσύνολο του M, v i : 2 M R. Αυτό σημαίνει ότι για κάθε υποσύνολο S M, η τιμή v i (S) καθορίζει την αξία/ωφέλεια που έχει το υποσύνολο S για τον παίκτη i, και συνεπώς και τη μέγιστη τιμή που θα ήταν διατεθειμένος να πληρώσει ο παίκτης i αν ο δημοπράτης του έδινε το σύνολο S. Οι συναρτήσεις αυτές είτε μπορεί να δίνονται στον δημοπράτη, αν μπορούν να περιγραφούν με κάποιον εύσχημο τρόπο, είτε μπορεί ο δημοπράτης να τις μαθαίνει (ή να τις προσεγγίζει) μέσα απο ερωτήσεις (queries) προς τους bidders για προσφορές σε συγκεκριμένα υποσύνολα. Δεν θα μας απασχολήσει περαιτέρω εδώ το πώς θα μπορούσε ο δημοπράτης να μάθει τις συναρτήσεις αυτές. Το πρόβλημα που έχει να λύσει ο δημοπράτης σε ένα τόσο πολύπλοκο εκ πρώτης όψεως σενάριο είναι διπλό. Συγκεκριμένα, πρέπει να αποφασίσει πώς θα λύσει τα εξής 2 πρόβλήματα: 1. Ανάθεση αγαθών. Καταρχήν βλέποντας τις συναρτήσεις ωφέλειας των παικτών, θα πρέπει να κάνει μια ανάθεση των αγαθών. Μια ανάθεση είναι μια διαμέριση των αγαθών, έστω S = (S 1, S 2,..., S n ), όπου S i είναι το υποσύνολο που παίρνει ο παίκτης i. Αφού πρόκειται για διαμέριση, θα πρέπει να ισχύει ότι S i S j = (δεν υπάρχουν επικαλύψεις), και i S i = M (ανατίθενται όλα τα αγαθά). 2. Χρέωση. Πρέπει να κοινοποιηθεί σε κάθε παίκτη τι ποσό πρέπει να πληρώσει για τα αγαθά που του ανατίθενται. Με ένα μόνο αγαθό, οι συνήθεις κανόνες είναι είτε η χρέωση 1ης τιμής ή η χρέωση της 2η υψηλότερης προσφοράς. Όταν έχουμε πολλά αγαθά όμως, δεν είναι προφανές τι θα αποτελούσε μια αποτελεσματική πληρωμή για κάθε παίκτη. 1

Η δυσκολία που διαφαίνεται στα παραπάνω, καθώς και η ολοένα αυξανόμενη χρήση τέτοιων δημοπρασιών σε ποικίλες εφαρμογές έχουν καταστήσει τις συνδυαστικές δημοπρασίες ένα πολύ ενεργό ερευνητικό πεδίο κυρίως τα τελευταία 15 χρόνια. 2 Ο Μηχανισμός VCG Στη συνέχεια περιγράφουμε έναν φιλαλήθη μηχανισμό που αποτελεί γενίκευση της δημοπρασίας Vickrey για ένα αγαθό. Αναφέρεται συνήθως στην βιβλιογραφία ως VCG προς τιμήν των Vickrey, Clarke, Groves. Η ιδέα είναι ότι όπως ακριβώς στη δημοπρασία 2ης τιμής κάνουμε μια μικρή έκπτωση στον νικητή, έτσι και τώρα πάλι θα προσφέρουμε μια τιμή που είναι μικρότερη ή το πολύ ίση με την ωφέλεια που δηλώνει ο παίκτης για τα αντικείμενα που του ανατίθενται. Για να γίνει αυτό ο μηχανισμός VCG στηρίζεται στην επίλυση του προβλήματος μεγιστοποίησης του κοινωνικού οφέλους. Ορισμός 1. Για μια ανάθεση αγαθών S = (S 1, S 2,..., S n ) στους n παίκτες, το κοινωνικό όφελος που παράγεται είναι η συνολική αξία που έχουν τα αγαθά για τους παίκτες, είναι δηλαδή ίσο με: n SW (S) = v i (S i ) i=1 Το Πρόβλημα Βελτιστοποίησης του Κοινωνικού Οφέλους - The Social Welfare Maximization (SWM) problem: Δεδομένων n παικτών, m αντικειμένων, και των συναρτήσεων ωφέλειας v 1 ( ), v 2 ( ),..., v n ( ) των n παικτών, βρες μια ανάθεση των αντικειμένων, έστω S = (S 1, S 2,..., S n), η οποία μεγιστοποιεί το παραγόμενο κοινωνικό όφελος, δηλαδή: SW (S ) SW (S), για καθε άλλη πιθανή ανάθεση S Δεδομένου ενός αλγορίθμου που λύνει το SWM πρόβλημα, μπορούμε να ορίσουμε τον μηχανισμό VCG, ως εξής: Ο μηχανισμός VCG: 1. Λύσε το SWM πρόβλημα και έστω S = (S 1, S 2,..., S n) η βέλτιστη διαμέριση. 2. Ανάθεση: για i = 1,..., n, ο παίκτης i λαμβάνει το σύνολο S i. 3. Πληρωμές: Κάθε παίκτης πληρώνει την ζημιά που προκαλεί στο κοινωνικό όφελος των υπολοίπων, δηλαδή η πληρωμή p i του παίκτη i, ισούται με: p i = SW i j i v j (S j ) (1) όπου SW i είναι το μέγιστο κοινωνικό όφελος που μπορούν να πετύχουν όλοι οι παίκτες μαζί χωρίς την παρουσία του παίκτη i, είναι δηλαδή το μέγιστο κοινωνικό όφελος ως προς όλες τις διαμερίσεις των αγαθών στους n 1 παίκτες εκτός του i. 2

Είναι εύκολο να δούμε ότι η δημοπρασία αυτή είναι γενίκευση της δημοπρασίας του Vickrey για ένα αγαθό που είδαμε στο μάθημα. Με ενα αγαθό, έστω ότι ο παίκτης 1 έχει την υψηλότερη προσφορά. Τότε η βέλτιστη ανάθεση είναι να πάρει το αγαθό ο παίκτης 1, και οι υπόλοιποι παίκτες να μην πάρουν τίποτα, άρα S2 = S 3 =... = S n =. Επομένως έτσι έχουμε ότι j 1 v j(sj ) = 0. Επίσης, χωρίς την παρουσία του παίκτη 1, το βέλτιστο κοινωνικό όφελος είναι v 2, αφού τότε θα το έπαιρνε ο παίκτης με την δεύτερη υψηλότερη προσφορά. Άρα SW 1 = v 2. Εφαρμόζοντας την φόρμουλα (1), παίρνουμε ότι ο παίκτης 1 πληρώνει p 1 = v 2 0 = v 2. Ομοίως μπορούμε να δούμε ότι για όλους τους υπόλοιπους παίκτες θα ισχύει ότι p 2 =... = p n = 0. Επομένως καταλήξαμε ακριβώς στην δημοπρασία Vickrey της 2ης τιμής. Το γεγονός ότι βάζουμε τους παίκτες να πληρώνουν την ζημιά που προκαλούν στο κοινωνικό όφελος των υπολοίπων, σημαίνει ότι η πληρωμή δεν εξαρτάται από το τι έχει δηλώσει ο παίκτης i. Η δήλωση του παίκτη i καθορίζει τι αγαθά θα πάρει αλλά όχι την τιμή που πρέπει να πληρώσει. Αυτό τελικά σημαίνει ότι κανένας παίκτης δεν έχει κίνητρο να κάνει ψευδείς δηλώσεις για τις προτιμήσεις του. Επομένως έχουμε το εξής σημαντικό θεώρημα: Θεώρημα 1. Για οποιεσδήποτε συναρτήσεις ωφέλειας, ο μηχανισμός VCG είναι φιλαλήθης, δηλαδή είναι κυρίαρχη στρατηγική για κάθε παίκτη να δηλώσει τις αληθινές του προτιμήσεις. 3 Κάποιες Κατηγορίες Συναρτήσεων Ωφέλειας Στην πράξη είναι εύλογο σε κάποιες εφαρμογές να παρατηρείται ότι οι παίκτες εμφανίζουν συμπεριφορές που μπορούν να μοντελοποιηθούν με κάποιες ειδικές κατηγορίες συναρτήσεων. Στη συνέχεια παραθέτουμε κάποια παραδείγματα. Στην πρώτη κατηγορία παρακάτω μπορούμε να έχουμε πολυωνυμική υλοποίηση του VCG, ενώ στις επόμενες κατηγορίες ο VCG απαιτεί εκθετικό χρόνο. 3.1 Προσθετικές Συναρτήσεις Όταν τα προς πώληση αγαθά είναι ανεξάρτητα μεταξύ τους (μη σχετιζόμενα το ένα με το άλλο), τότε είναι εύλογο να υποθέσουμε ότι η αξία ενός παίκτη για ένα σύνολο αγαθών είναι απλά το άθροισμα της αξίας που έχει για το κάθε αγαθό χωριστά, δηλαδή: v i (S) = j S v i ({j}) S M (2) Σε μια τέτοια περίπτωση, αρκεί να ξέρουμε για κάθε παίκτη i την ωφέλεια του για κάθε αγαθό j. Αν γνωρίζουμε δηλαδή την ποσότητα v i ({j}), για κάθε i και j, τότε μπορούμε να προσδιορίσουμε την ωφέλεια σε κάθε υποσύνολο. Επομένως η είσοδος στο πρόβλημα μας θα μπορούσε να αναπαρασταθεί με ένα n m πίνακα, όπου οι πάικτες αντιστοιχούν στις γραμμές και τα αγαθά αντιστοιχούν στις στήλες. Ας θεωρήσουμε το εξής παράδειγμα: 3

48 41 11 0 35 10 50 5 45 20 10 25 Πίνακας 1: Παράδειγμα αναπαράστασης προσθετικών συναρτήσεων ωφέλειας με 3 παίκτες και 4 αντικείμενα. Εδώ έχουμε 3 παίκτες και 4 αγαθά. Ο παίκτης 1 βλέπουμε ότι δεν έχει ωφέλεια για το αγαθό 4, ενώ π.χ. για το σύνολο {2, 3} η ωφέλειά του είναι 41 + 11 = 52. Πάμε τώρα να εφαρμόσουμε τον μηχανισμό VCG. Το πρώτο βήμα είναι να λύσουμε το SWM πρόβλημα. Εδώ επειδή οι συναρτήσεις είναι προσθετικές, η μεγιστοποίηση του κοινωνικού οφέλους επιτυγχάνεται όταν δώσουμε το κάθε αγαθό σε αυτόν που το θέλει περισσότερο. Επομένως η βέλτιστη ανάθεση είναι η S = (S1, S 2, S 3 ), όπου S 1 = {1, 2}, S 2 = {3}, S3 = {4}. Δηλαδή, ο παίκτης 1 παίρνει το πρώτο και το 2ο αγαθό, αφού αυτός έχει τη μεγαλύτερη αξία για αυτά, ο παίκτης 2 παίρνει το 3ο αγαθό και ο παίκτης 3 παίρνει το 4ο. Το βέλτιστο κοινωνικό όφελος είναι SW = 48 + 41 + 50 + 25 = 164. Για να δούμε και τι πληρώνει ο κάθε παίκτης, θα εφαρμόσουμε τη φόρμουλα (1). Για να γίνει αυτό θα πρέπει να υπολογίσουμε και το βέλτιστο κοινωνικό όφελος όταν απουσιάζει καθένας από τους παίκτες. Π.χ., για τον παίκτη 1, όταν δεν είναι παρών, (σκεφτείτε αν δεν υπήρχε η πρώτη γραμμή), τότε το βέλτιστο κοινωνικό όφελος θα ήταν SW 1 = 45 + 20 + 50 + 25 = 140. Άρα η (1) μας δίνει ότι η πληρωμή του 1 θα είναι p 1 = SW 1 j 1 v j (S j ) = 140 (v 2 (S 2) + v 3 (S 3)) = 140 (50 + 25) = 65 Ομοίως για τον παίκτη 2, βρίσκουμε πρώτα το βέλτιστο όφελος αν δεν είναι παρών (αν σβήσουμε την 2η γραμμή), το οποίο είναι: SW 2 = 48+41+11+25 = 125. Και στη συνέχεια, εφαρμόζοντας την (1), έχουμε: p 2 = SW 2 v j (Sj ) = 125 (v 1 (S1) + v 3 (S3)) = 125 (89 + 25) = 11 j 2 Τέλος με τον ίδιο τρόπο μπορούμε να δούμε ότι για τον παίκτη 3, p 3 = 5. Παρατηρούμε τώρα ότι οι πληρωμές των παικτών συμπίπτουν με τις πληρωμές που θα προέκυπταν αν τρέχαμε τη δημοπρασία Vickrey για κάθε αγαθό χωριστά και χρεώναμε την δευτερη υψηλότερη προσφορά. Αυτό φυσικά δεν είναι τυχαίο και είναι απόροια του γεγονότος ότι έχουμε υποθέσει προσθετικές συναρτήσεις ωφέλειας. Δεν ισχύει για μη προσθετικές συναρτήσεις. Θεώρημα 2. Όταν οι παίκτες έχουν προσθετικές συναρτήσεις ωφέλειας σε m αντικείμενα, ο μηχανισμός VCG ταυτίζεται με την εκτέλεση m ανεξάρτητων δημοπρασιών Vickrey, και επομένως μπορεί να υλοποιηθεί σε πολυωνυμικό χρόνο. 4

3.2 Υποπροσθετικές (Subadditive) και Submodular Συναρτήσεις Όταν υπάρχει κάποια συσχέτιση μεταξυ των αγαθών, η υπόθεση για προσθετικές συναρτήσεις δεν είναι εφαρμόσιμη. Σκεφτειτε το ενδεχόμενο τα αγαθά να είναι όλα παρόμοια μεταξύ τους και εσείς να ενδιαφέρεστε να αποκτήσετε μόνο ένα από αυτα. Για παράδειγμα, αν υπάρχουν 10 laptops προς πώληση, εσείς μπορεί να επιθυμείτε να αποκτήσετε μόνο ένα από αυτά. Σε μια τέτοια περίπτωση, η ωφέλειά σας για 2 laptops μπορεί να είναι σχεδόν ίδια με την ωφέλεια που έχετε για ένα laptop, αφού το δεύτερο μπορεί να μην το χρησιμοποιήσετε καν. Επομένως, σε τέτοια σενάρια, η συνάρτηση ωφέλειας παρουσιάζει υποπροσθετική συμπεριφορά. Ορισμός 2. Μια συνάρτηση ωφέλειας για έναν παίκτη i είναι υποπροσθετική (subadditive) αν για οποιαδήποτε δύο ξένα υποσύνολα αντικειμένων S, T, S T =, ισχύει ότι v i (S T ) v i (S) + v i (T ) (3) Παρατηρήστε τη διαφορά μεταξύ της (2) και της (3). Παρατηρήστε επίσης ότι οι προσθετικές συναρτήσεις είναι μια ειδική κατηγορία υποπροσθετικών συναρτήσεων όπου ισχύει η ισότητα στην (3) για όλα τα υποσύνολα. Μια κατηγορία υποπροσθετικών συναρτήσεων που χρησιμοποιούνται ευρέως και παρουσιάζουν ιδιαίτερο ενδιαφέρον είναι οι submodular συναρτήσεις. Οι συναρτήσεις αυτές προσπαθούν να μοντελοποιήσουν το γεγονός ότι όσο συνεχίζουμε να δίνουμε αγαθά σε κάποιον παίκτη, επέρχεται ένας κορεσμός στην ωφέλειά του. Η αύξηση της ωφέλειας από την απόκτηση νέων αγαθών είναι μικρή όταν ο παίκτης έχει ήδη στην κατοχή του κι άλλα αγαθά. Έχουμε λοιπόν μια μονότονη (φθίνουσα) συμπεριφορά στην αύξηση της ωφέλειας. Οι submodular συναρτήσεις είναι ουσιαστικά το ανάλογο των κοίλων συναρτήσεων, αλλά σε διακριτά σενάρια με μη διαιρετά αγαθά και ορίζονται ως εξής: Ορισμός 3. Μια συνάρτηση ωφέλειας για έναν παίκτη i είναι submodular αν για οποιαδήποτε δύο υποσύνολα αντικειμένων S, T, με S T, και για κάθε αντικείμενο j T, ισχύει ότι v i (T {j}) v i (T ) v i (S {j}) v i (S) (4) Ο παραπανω ορισμός μας λέει ότι η αύξηση της ωφέλειας που προκαλεί η προσθήκη του αγαθού j στον παίκτη i είναι μεγαλύτερη όταν προσθέτουμε το j σε ένα σύνολο αγαθών S, από ότι όταν το προσθέτουμε σε ένα μεγαλύτερο σύνολο του S (το T ). Πάρα πολλά μικροοοκονομικά μοντέλα στηρίζονται στην υπόθεση ότι οι εμπλεκόμενοι παίκτες έχουν submodular συμπεριφορά. Όταν έχουμε submodular ή subadditive συναρτήσεις, ο μηχανισμός VCG εξακολουθεί να είναι ένας φιλαλήθης μηχανισμός. Όμως η υλοποίηση του είναι αρκετά πιο πολύπλοκη. Συγκεκριμένα το SWM πρόβλημα είναι πλέον NP-hard. Επομένως σε αντίθεση με τις προσθετικές συναρτήσεις, τώρα δεν μπορούμε να έχουμε εκτέλεση του VCG σε πολυωνυμικό χρόνο. Το πρόβλημα έγκειται στο ότι δεν αρκεί να κάνουμε αυτό που κάναμε με τις προσθετικές συναρτήσεις, δηλαδή να δίνουμε μεμονωμένα το κάθε αγαθό στον παίκτη που το θέλει περισσότερο, καθώς τώρα η ωφέλεια ενός παίκτη για ένα αγαθό είναι συσχετισμένη 5

με τα υπόλοιπα αγαθά που έχει. Για το λόγο αυτό η ερευνητική δραστηριότητα έχει επικεντρωθεί στην εύρεση προσεγγιστικών αλγορίθμων για το κοινωνικό όφελος, αλγορίθμων δηλαδή που τρέχουν σε εύλογο χρονικό διάστημα και παράγουν λύσεις σχετικά κοντά στο βέλτιστο κοινωνικό όφελος. 3.3 Υπερπροσθετικές (Superadditive) Συναρτήσεις Σε αντίθεση με την προηγούμενη ενότητα, μπορεί να έχουμε και εφαρμογές όπου τα αγαθά εμφανίζουν έντονη συμπληρωματικότητα. Αυτό σημαίνει ότι θα θέλαμε να αποκτήσουμε κάποια αγαθά μαζί. Το πιο χαρακτηριστικό παράδειγμα συμπληρωματικών αγαθών είναι ένα αριστερό και ένα δεξιό παπούτσι. Θέλετε να τα έχετε και τα δύο, το ένα από αυτά μόνο του δεν έχει αξία. Άλλο παράδειγμα είναι τα δημητριακά και το γάλα. Όταν αγοράζετε δημητριακά θέλετε να αγοράσετε και γάλα γιατί σας ενδιαφέρει ο συνδυασμός και όχι να έχετε το ένα από αυτά τα αγαθά. Η ωφέλεια αν κάποιος σας έδινε μόνο δημητριακά είναι σχεδόν μηδενική. Οι δημοπρασίες για συχνότητες τηλεποικοινωνιών εμφανίζουν επίσης συμπληρωματικότητα, καθώς οι παίκτες μπορεί να ενδιαφέρονται για ένα συνεχόμενο φάσμα συχνοτήτων και όχι για μεμονωμένες συχνότητες. Σε τέτοιες περιπτώσεις η συνάρτηση ωφέλειας παρουσιάζει υπερπροσθετική συμπεριφορά. Ορισμός 4. Μια συνάρτηση ωφέλειας για έναν παίκτη i είναι υπερπροσθετική (superadditive) αν για οποιαδήποτε δύο ξένα υποσύνολα αντικειμένων S, T, S T =, ισχύει ότι v i (S T ) v i (S) + v i (T ) (5) Δυστυχώς και σε αυτή την περίπτωση, το SWM πρόβλημα είναι NP-hard. Επομένως και για αυτή την κλάση συναρτήσεων, το ενδιαφέρον επικεντρώνεται στην εύρεση γρήγορων προσεγγιστικών αλγορίθμων που να επιτυγχάνουν όσο το δυνατόν καλύτερη (κατά μέσο όρο) προσέγγιση του βέλτιστου κοινωνικού οφέλους. 6