ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ



Σχετικά έγγραφα
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

A ένα σημείο της C. Τι

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ,

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

f(x ) 0 O) = 0, τότε το x

G(x) = G(x) = ΘΕΜΑ 1o

f (x) g (x) για κάθε εσωτερικό σημείο x του Δ,

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

f(x ) 0 O) = 0, τότε το x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΘΕΣΣΑΛΙΑΣ

α,β,γ και α 0 στο σύνολο των μιγαδικών

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Παράρτημα Χίου ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

β. Αν f (x) 0 σε κάθε εσωτερικό σημείο x του Δ, τι συμπεραίνετε για τη μονοτονία της συνάρτησης f ; Μονάδες 4,5

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε.

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

P(A ) = 1 P(A). Μονάδες 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

(f(x) + g(x)) = f (x) + g (x).

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( )

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Transcript:

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α A. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο x στο οποίο, όμως, η f είναι συνεχής. Αν η f(x) διατηρεί πρόσημο στο (α, x ) (x,β), τότε να αποδείξετε ότι το f(x ) (α, β) δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο A. Να διατυπώσετε το θεώρημα του Bolzano. A3. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Τι ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ ; A4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Η εξίσωση z z = ρ, ρ > παριστάνει κύκλο με κέντρο το σημείο Κ(z ) και ακτίνα ρ, όπου z, z μιγαδικοί αριθμοί. β) Έστω μια συνάρτηση f που είναι ορισμένη σε ένα σύνολο της μορφής (α, x ) (x,β). Ισχύει η ισοδυναμία lim f ( x) = lim f ( x) lim f ( x = ) = + x x x x x x ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Αν είναι < α <, τότε x x lim α = δ) Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ και δυο φορές παραγωγίσιμη στο εσωτερικό του Δ. Αν η f είναι κυρτή στο Δ, τότε υποχρεωτικά f(x) > για κάθε εσωτερικό σημείο του Δ. g(x) ε) ( f(t) dt) = ( ) α f g(x) g(x) με την προϋπόθεση ότι τα χρησιμοποιούμενα σύμβολα έχουν νόημα. Μονάδες ΘΕΜΑ Β Θεωρούμε τους μιγαδικούς αριθμούς z,w για τους οποίους ισχύουν: z i i w =, z z + i w φανταστικός B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών z, είναι ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ =, εκτός από το σημείο M, του κύκλου. Μονάδες B. Από τους παραπάνω μιγαδικούς αριθμούς z, του ερωτήματος Β, να βρείτε εκείνους για τους οποίους ισχύει w = Μονάδες 8 B3. Αν είναι z =, τότε να αποδείξετε ότι 4 7 w + i w = ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Γ Δίνεται η συνάρτηση ( ) f x nx x e, αν x > =, αν x = Γ. Να εξετάσετε αν η συνάρτηση f είναι συνεχής στο σημείο x = Γ. Να βρείτε το σύνολο τιμών της συνάρτησης f Γ3. i) Να αποδείξετε ότι, για x >, ισχύει η ισοδυναμία 4 x f(x) f(4) x 4 = = ii) Nα αποδείξετε ότι η εξίσωση 4 x x 4, x = >, έχει ακριβώς δύο ρίζες, τις x = και x = 4 (μονάδες 6) Μονάδες 8 Γ4. Να αποδείξετε ότι υπάρχει ένα, τουλάχιστον, ξ (, 4) τέτοιο, ώστε ξ ( ) ( ) f(ξ) f(t) dt = f ξ f(ξ) Μονάδες 6 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Δ Έστω η παραγωγίσιμη συνάρτηση f: A, A = (, + ) με σύνολο τιμών f(a)=, τέτοια, ώστε f(x) ( ) e f (x) f(x) + 3 = x, για κάθε x (, + ) Δ. Nα αποδείξετε ότι η συνάρτηση f αντιστρέφεται (μονάδες 4) και να βρείτε την αντίστροφη συνάρτηση Για τα ερωτήματα Δ και Δ3, δίνεται ότι e της f (μονάδες 3) x f (x) (x x 3), x = + Δ. Να μελετήσετε τη συνάρτηση ως προς την κυρτότητα. (μονάδες 3) Στη συνέχεια, να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης παράστασης της ευθεία x = (μονάδες 6), την εφαπτομένη της γραφικής στο σημείο που αυτή τέμνει τον άξονα yy, και την Μονάδες 9 Δ3. Για κάθε x θεωρούμε τα σημεία A ( x, f (x)), B( f (x), x) των γραφικών παραστάσεων των συναρτήσεων και f αντίστοιχα. i) Να αποδείξετε ότι, για κάθε x, το γινόμενο των συντελεστών διεύθυνσης των εφαπτομένων των γραφικών παραστάσεων των συναρτήσεων και f στα σημεία A και B αντίστοιχα, είναι ίσο με (μονάδες 3) ii) Να βρείτε για ποια τιμή του x η απόσταση των σημείων A, B γίνεται ελάχιστη, και να βρείτε την ελάχιστη απόστασή τους. (μονάδες 6) Μονάδες 9 ΤΕΛΟΣ 4ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα Ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και μόνο για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Ώρα δυνατής αποχώρησης: 8: ΣΑΣ ΕΥΧΟΜΑΣΤΕ KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ