ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών"

Transcript

1 ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή Γενικού Λυκείου Ημερησίου-Εσπερινού-Ομογενών 07-08

2 Πρόλογος Το παρόν αρχείο αποτελείται από όλα τα θέματα των Μαθηματικών Θετικής και Τεχνολογικής Κατεύθυνσης και Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής που δόθηκαν μέχρι σήμερα σε Πανελλαδικές Εξετάσεις των Ημερησίων και Εσπερινών (τακτικές και επαναληπτικές) Γενικών Λυκείων καθώς και στις εξετάσεις τέκνων Ελλήνων των Εξωτερικού. Είναι ιδιαίτερα σημαντικό να ξεχωρίσουμε ότι τα θέματα από το κεφάλαιο των Μιγαδικών Αριθμών καθώς και όσα σχετίζονται με τη συνάρτηση ολοκλήρωμα στο 3 ο Κεφάλαιο (Ολοκληρωτικός Λογισμός) είναι εκτός εξεταστέας ύλης από το 06. Εκτιμώ ότι αυτή η συλλογή θα οργανώσει και θα διευκολύνει την μελέτη των μαθητών και των έργο των διδασκόντων.

3 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A.. ίνονται οι µιγαδικοί αριθµοί z, z. Να αποδείξετε ότι: z z = z z.,5 Α.. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. Για κάθε µιγαδικό αριθµό z ισχύει: α. z = z z = β. z z γ. z = - z δ. z = z ε. i z = z Μονάδες 5 Β.. Αν z = 3+ 4i και z = - 3 i, να γράψετε στο τετράδιό σας τους αριθµούς της Στήλης Α και δίπλα σε κάθε αριθµό το γράµµα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα. ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

4 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ Στήλη Α Στήλη Β. z z α. 4. z β. 3. z γ z δ i z ε. στ. 5 ζ. 0,5 Β.. Αν για το µιγαδικό αριθµό z ισχύει z =, να δείξετε ότι z =. z Μονάδες 5 ΘΕΜΑ ο Έστω f µια πραγµατική συνάρτηση µε τύπο: α, 3 f() = -3 - e, > 3 3 α. Αν η f είναι συνεχής, να αποδείξετε ότι α = /9. Μονάδες 9 β. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης C f της συνάρτησης f στο σηµείο Α(4, f(4)). ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

5 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f, τον άξονα και τις ευθείες = και =. Μονάδες 9 ΘΕΜΑ 3ο Για µια συνάρτηση f, που είναι παραγωγίσιµη στο σύνολο των πραγµατικών αριθµών ΙR, ισχύει ότι: f 3 () + β f () + γ f() = όπου β, γ πραγµατικοί αριθµοί µε β < 3γ. για κάθε ΙR, α. Να δείξετε ότι η συνάρτηση f δεν έχει ακρότατα. Μονάδες 0 β. Να δείξετε ότι η συνάρτηση f είναι γνησίως αύξουσα. Μονάδες 8 γ. Να δείξετε ότι υπάρχει µοναδική ρίζα της εξίσωσης f() = 0 στο ανοικτό διάστηµα (0,). ΘΕΜΑ 4ο Έστω µια πραγµατική συνάρτηση f, συνεχής στο σύνολο των πραγµατικών αριθµών ΙR, για την οποία ισχύoυν οι σχέσεις: i) f() 0, για κάθε ΙR ii) f() = - 0 t f (t) dt, για κάθε ΙR. Έστω ακόµη g η συνάρτηση που ορίζεται από τον τύπο g() = -, για κάθε ΙR. f() ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

6 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ α. Να δείξετε ότι ισχύει f () = - f () Μονάδες 0 β. Να δείξετε ότι η συνάρτηση g είναι σταθερή. Μονάδες 4 γ. Να δείξετε ότι ο τύπος της συνάρτησης f είναι: f() =. + Μονάδες 4 δ. Να βρείτε το όριο lim ( f() ηµ). + Ο ΗΓΙΕΣ (για τους εξεταζόµενους). Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Τα θέµατα να µην τα αντιγράψετε στο τετράδιο. Τα σχήµατα που θα χρησιµοποιήσετε στο τετράδιο, µπορούν να γίνουν και µε µολύβι.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων µόλις σας παραδοθούν. Καµιά άλλη σηµείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα, τα οποία και θα καταστραφούν µετά το πέρας της εξέτασης. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε λύση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία () ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

7 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω f µια συνεχής συνάρτηση σ' ένα διάστηµα [α, β]. Αν G είναι µια παράγουσα της f στο [α, β], τότε να δείξετε ότι β f(t) dt α = G(β) G(α). Μονάδες Β.. Έστω η συνάρτηση f() = ηµ. Να δείξετε ότι η f είναι παραγωγίσιµη στο ΙR και ισχύει f () = συν. Μονάδες 8 Β.. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν η συνάρτηση f είναι ορισµένη στο [α,β] και συνεχής στο (α,β], τότε η f παίρνει πάντοτε στο [α,β] µία µέγιστη τιµή. Μονάδα β. Κάθε συνάρτηση, που είναι - στο πεδίο ορισµού της, είναι γνησίως µονότονη. Μονάδα ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

8 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. Αν υπάρχει το όριο της συνάρτησης f στο 0 και lim f() = 0, τότε 0 lim 0 f() = 0. Μονάδα δ. Αν η συνάρτηση f είναι παραγωγίσιµη στο ΙR, τότε f()d = f() f ()d. Μονάδα ε. Αν lim f() > 0, τότε f() > 0 κοντά στο 0 0. Μονάδα ΘΕΜΑ ο Έστω z ένας µιγαδικός αριθµός και f(ν) = i ν z, α. Να δείξετε ότι f(3) + f(8) + f(3) + f(8) = 0. β. Αν z = ρ και Arg(z) = θ, να δείξετε ότι ν IN*. f(3) = ρ π π συν + θ + iηµ + θ. Μονάδες 8 γ. Αν z = και Arg(z) = 3 π, να βρεθεί το εµβαδόν του τριγώνου µε κορυφές τα σηµεία του µιγαδικού επιπέδου που είναι εικόνες των µιγαδικών αριθµών 0, z και f(3). Μονάδες 0 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

9 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΘΕΜΑ 3ο Έστω οι συναρτήσεις f, g µε πεδίο ορισµού το ΙR. ίνεται ότι η συνάρτηση της σύνθεσης fog είναι -. α. Να δείξετε ότι η g είναι -. β. Να δείξετε ότι η εξίσωση: g(f() ) = g(f() + -) έχει ακριβώς δύο θετικές και µία αρνητική ρίζα. Μονάδες 8 ΘΕΜΑ 4ο α. Έστω δύο συναρτήσεις h, g συνεχείς στο [α, β]. Να αποδείξετε ότι αν h() > g() για κάθε [α, β], τότε β β και h()d > g()d. α α Μονάδες β. ίνεται η παραγωγίσιµη στο ΙR συνάρτηση f, που ικανοποιεί τις σχέσεις: f() e f () =, ΙR και f(0) = 0. ι) Να εκφραστεί η f ως συνάρτηση της f. Μονάδες 5 ιι) Να δείξετε ότι < f() < f (), για κάθε > 0. Μονάδες ιιι) Αν Ε είναι το εµβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της f, τις ευθείες = 0, = και τον άξονα, να δείξετε ότι < E < f(). 4 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

10 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ Ο ΗΓΙΕΣ (για τους εξεταζόµενους). Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Τα θέµατα να µην τα αντιγράψετε στο τετράδιο. Τα σχήµατα που θα χρησιµοποιήσετε στο τετράδιο, µπορούν να γίνουν και µε µολύβι.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων µόλις σας παραδοθούν. Καµιά άλλη σηµείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα, τα οποία και θα καταστραφούν µετά το πέρας της εξέτασης. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε λύση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μιάµιση ( /) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

11 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 8 ΙΟΥΛΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µία παράγουσα της f στο, να αποδείξετε ότι: α. όλες οι συναρτήσεις της µορφής G() = F () + c, c ΙR είναι παράγουσες της f στο και β. κάθε άλλη παράγουσα G της f στο παίρνει τη µορφή G() = F () + c, c ΙR. Μονάδες 0 Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν z, z είναι µιγαδικοί αριθµοί, τότε ισχύει πάντα z z + z z z. z + Μονάδες β. Έστω µία συνάρτηση f παραγωγίσιµη σ' ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του 0, στο οποίο όµως η f είναι συνεχής. Αν f () > 0 στο (α, 0 ) και f () < 0 στο ( 0, β), τότε το f ( 0 ) είναι τοπικό ελάχιστο της f. Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

12 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. Μία συνάρτηση f : Α ΙR είναι συνάρτηση, αν και µόνο αν για οποιαδήποτε, A ισχύει η συνεπαγωγή: αν =, τότε f( ) = f( ). Μονάδες δ. Αν f, g είναι δύο συναρτήσεις µε συνεχή πρώτη παράγωγο, τότε ισχύει: f() g () d = f() g() f () g() d. Μονάδες Γ. Πότε µία ευθεία = 0 λέγεται κατακόρυφη ασύµπτωτη της γραφικής παράστασης µιας συνάρτησης f ; ΘΕΜΑ ο α. Να περιγράψετε γεωµετρικά το σύνολο (Σ) των εικόνων των µιγαδικών αριθµών z που ικανοποιούν τις σχέσεις: z = και Ιm (z) 0. Μονάδες β. Να αποδείξετε ότι, αν η εικόνα του µιγαδικού αριθµού z κινείται στο σύνολο (Σ), τότε η εικόνα του µιγαδικού 4 αριθµού w = z + κινείται σε ευθύγραµµο τµήµα z το οποίο βρίσκεται στον άξονα. Μονάδες 3 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

13 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΘΕΜΑ 3ο ίνεται η συνάρτηση f() = +. α. Να αποδείξετε ότι lim f() = 0 +. Μονάδες 5 β. Να βρείτε την πλάγια ασύµπτωτη της γραφικής παράστασης της f, όταν το τείνει στο. γ. Να αποδείξετε ότι f () + + f() = 0. δ. Να αποδείξετε ότι d = ln ( ) Μονάδες 8 ΘΕΜΑ 4ο ίνεται µια συνάρτηση f ορισµένη στο IR µε συνεχή πρώτη παράγωγο, για την οποία ισχύουν οι σχέσεις: f() = f( ) και f () 0 για κάθε IR. α. Να αποδείξετε ότι η f είναι γνησίως µονότονη. Μονάδες 8 β. Να αποδείξετε ότι η εξίσωση f() = 0 έχει µοναδική ρίζα. γ. Έστω η συνάρτηση f() g() =. f () Μονάδες 8 Να αποδείξετε ότι η εφαπτοµένη της γραφικής παράστασης της g στο σηµείο στο οποίο αυτή τέµνει τον άξονα, σχηµατίζει µε αυτόν γωνία 45 ο. Μονάδες 9 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

14 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ Ο ΗΓΙΕΣ (για τους εξεταζόµενους). Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Τα θέµατα δεν θα τα αντιγράψετε στο τετράδιο.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μετά τη 0.00η πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

15 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΜΑΪΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο 0, τότε είναι και συνεχής στο σηµείο αυτό. Μονάδες 8 Β. Τι σηµαίνει γεωµετρικά το Θεώρηµα Μέσης Τιµής του ιαφορικού Λογισµού; Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν z ένας µιγαδικός αριθµός και τότε ισχύει z = z = z. _ z ο συζυγής του, Μονάδες β. Έστω µία συνάρτηση f συνεχής σε ένα διάστηµα και δύο φορές παραγωγίσιµη στο εσωτερικό του. Αν f ()>0 για κάθε εσωτερικό σηµείο του, τότε η f είναι κυρτή στο. Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

16 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. Για κάθε συνάρτηση f, παραγωγίσιµη σε ένα διάστηµα, ισχύει f ()d = f() + c, c IR. Μονάδες δ. Αν µια συνάρτηση f είναι κυρτή σε ένα διάστηµα, τότε η εφαπτοµένη της γραφικής παράστασης της f σε κάθε σηµείο του βρίσκεται «πάνω» από τη γραφική της παράσταση. Μονάδες ε. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και 0 ένα εσωτερικό σηµείο του. Αν η f είναι παραγωγίσιµη στο 0 και f ( 0 )=0, τότε η f παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο 0. ΘΕΜΑ ο ίνονται οι µιγαδικοί αριθµοί Μονάδες z=α+βi, όπου α,β IR και w=3z i _ z +4, όπου _ z είναι ο συζυγής του z. α. Να αποδείξετε ότι Re(w)=3α β+4 Ιm(w)=3β α. β. Να αποδείξετε ότι, αν οι εικόνες του w στο µιγαδικό επίπεδο κινούνται στην ευθεία µε εξίσωση y=, τότε οι εικόνες του z κινούνται στην ευθεία µε εξίσωση y=. Μονάδες 9 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

17 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. Να βρείτε ποιος από τους µιγαδικούς αριθµούς z, οι εικόνες των οποίων κινούνται στην ευθεία µε εξίσωση y=, έχει το ελάχιστο µέτρο. Μονάδες 0 ΘΕΜΑ 3ο Έστω η συνάρτηση f() = α. Να µελετήσετε την f ως προς την µονοτονία και τα κοίλα και να αποδείξετε ότι η f έχει αντίστροφη συνάρτηση. β. Να αποδείξετε ότι f(e ) f(+) για κάθε IR. γ. Να αποδείξετε ότι η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο (0,0) είναι ο άξονας συµµετρίας των γραφικών παραστάσεων της f και της f. Μονάδες 5 δ. Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της f, τον άξονα των και την ευθεία µε εξίσωση =3. Μονάδες 8 ΘΕΜΑ 4ο Έστω µια συνάρτηση f συνεχής σ ένα διάστηµα [α,β] που έχει συνεχή δεύτερη παράγωγο στο (α,β). Αν ισχύει f(α) = f(β) = 0 και υπάρχουν αριθµοί γ (α,β), δ (α,β), έτσι ώστε f(γ) f(δ)<0, να αποδείξετε ότι: ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

18 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ α. Υπάρχει µία τουλάχιστον ρίζα της εξίσωσης f()=0 στο διάστηµα (α,β). Μονάδες 8 β. Υπάρχουν σηµεία ξ, ξ (α,β) τέτοια ώστε f (ξ )<0 και f (ξ )>0. Μονάδες 9 γ. Υπάρχει ένα τουλάχιστον σηµείο καµπής της γραφικής παράστασης της f. Μονάδες 8 Ο ΗΓΙΕΣ (για τους εξεταζόµενους). Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Τα θέµατα δεν θα τα αντιγράψετε στο τετράδιο.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μετά την 0.30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

19 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 5 ΙΟΥΛΙΟΥ 004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η f είναι συνεχής στο και f () = 0 για κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι σταθερή σε όλο το διάστηµα. Μονάδες 9 Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν µία συνάρτηση f είναι συνεχής σ ένα σηµείο 0 του πεδίου ορισµού της, τότε είναι και παραγωγίσιµη στο σηµείο αυτό. Μονάδες β. Το µέτρο της διαφοράς δύο µιγαδικών είναι ίσο µε την απόσταση των εικόνων τους. Μονάδες γ. Αν f, g είναι δύο συναρτήσεις µε πεδίο ορισµού IR και ορίζονται οι συνθέσεις fog και gof, τότε αυτές οι συνθέσεις είναι υποχρεωτικά ίσες. Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

20 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ δ. Οι γραφικές παραστάσεις C και C των συναρτήσεων f και f είναι συµµετρικές ως προς την ευθεία y = που διχοτοµεί τις γωνίες Oy και Oy. ε. Αν υπάρχει το όριο της f στο 0, τότε lim 0 k Μονάδες f() = lim f(), εφόσον f() 0 κοντά στο k 0 0, µε k ΙΝ και k. Μονάδες Γ. Να ορίσετε πότε λέµε ότι µια συνάρτηση f είναι συνεχής σε ένα ανοικτό διάστηµα (α, β) και πότε σε ένα κλειστό διάστηµα [α, β]. ΘΕΜΑ ο Θεωρούµε τη συνάρτηση f: IR IR µ ε f() = + m 4 5, όπου m IR, m > 0. α. Να βρείτε τον m ώστε f() 0 για κάθε IR. Μονάδες 3 β. Αν m = 0, να υπολογισθεί το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της f, τον άξονα και τις ευθείες = 0 και =. Μονάδες ΘΕΜΑ 3ο ίνεται µια συνάρτηση f: [α, β] IR συνεχής στο διάστηµα [α, β] µε f() 0 για κάθε [α, β] και µιγαδικός αριθµός z µε Re(z) 0, Ιm(z) 0 και Re(z) > Im(z). ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

21 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ Αν z + z α. z = = f(α) και z + = f (β), να αποδείξετε ότι: z Μονάδες β. f (β) < f (α) Μονάδες 5 γ. η εξίσωση 3 f(α) + f(β) = 0 έχει τουλάχιστον µία ρίζα στο διάστηµα (, ). Μονάδες 9 ΘΕΜΑ 4ο Έστω συνάρτηση f συνεχής στο [0, + ) IR τέτοια, ώστε = + f() f(t) dt. 0 α. Να αποδείξετε ότι η f είναι παραγωγίσιµη στο (0, + ). β. Να αποδείξετε ότι f() = e ( + ). γ. Να αποδείξετε ότι η f() έχει µοναδική ρίζα στο [0, + ). Μονάδες 5 δ. Να βρείτε τα όρια lim f() + και lim f(). ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

22 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ Ο ΗΓΙΕΣ (για τους εξεταζοµένους). Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Να µην αντιγράψετε τα θέµατα στο τετράδιο.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων, αµέσως µόλις σας παραδοθούν. Καµιά άλλη σηµείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα, τα οποία και θα καταστραφούν µετά το πέρας της εξέτασης. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε λύση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: 0:00. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

23 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΜΑΪΟΥ 004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: TEΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω µια συνάρτηση f ορισµένη σ' ένα διάστηµα και 0 ένα εσωτερικό σηµείο του. Αν η f παρουσιάζει τοπικό ακρότατο στο 0 και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε ότι f ( 0 )=0 Μονάδες 0 Β. Πότε µια συνάρτηση f λέµε ότι είναι παραγωγίσιµη σε ένα σηµείο 0 του πεδίου ορισµού της; Μονάδες 5 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Η διανυσµατική ακτίνα του αθροίσµατος δύο µιγαδικών αριθµών είναι το άθροισµα των διανυσµατικών ακτίνων τους. β. lim f() = 0 Μονάδες, αν και µόνο αν lim f() = lim f() = Μονάδες γ. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο 0, τότε η συνάρτηση f g είναι παραγωγίσιµη στο 0 και ισχύει: (f g) ( 0 ) = f ( 0 ) g ( 0 ) Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

24 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΘΕΜΑ ο δ. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f ()>0 σε κάθε εσωτερικό σηµείο του, τότε η f είναι γνησίως φθίνουσα σε όλο το. Μονάδες ε. Έστω f µια συνεχής συνάρτηση σ ένα διάστηµα [α,β]. Αν G είναι µια παράγουσα της f στο [α,β], τότε β α f(t)dt = G(β) G(α) ίνεται η συνάρτηση f µε τύπο f()= ln. Μονάδες α. Να βρείτε το πεδίο ορισµού της συνάρτησης f, να µελετήσετε την µονοτονία της και να βρείτε τα ακρότατα. Μονάδες 0 β. Να µελετήσετε την f ως προς την κυρτότητα και να βρείτε τα σηµεία καµπής. Μονάδες 8 γ. Να βρείτε το σύνολο τιµών της f. ΘΕΜΑ 3ο ίνεται η συνάρτηση g()=e f(), όπου f συνάρτηση παραγωγίσιµη στο IR και f(0)=f( 3 )=0. α. Να αποδείξετε ότι υπάρχει ένα τουλάχιστο ξ (0, 3 ) τέτοιο ώστε f (ξ)= f(ξ). Μονάδες 8 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

25 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ β. Εάν f()= 3, να υπολογίσετε το ολοκλήρωµα I(α)= γ. Να βρείτε το όριο lim I(α) 0 g() d, α IR α α - Μονάδες 8 Μονάδες 9 ΘΕΜΑ 4ο Έστω η συνεχής συνάρτηση f: IR IR τέτοια ώστε f()=. Αν για κάθε IR, ισχύει 3 g()= z f(t)dt 3 z + ( ) 0, z όπου z=α+βi C, µε α, β IR *, τότε: α. Να αποδείξετε ότι η συνάρτηση g είναι παραγωγίσιµη στο IR και να βρείτε τη g. Μονάδες 5 β. Nα αποδείξετε ότι z = z + z Μονάδες 8 γ. Με δεδοµένη τη σχέση του ερωτήµατος β να αποδείξετε ότι Re(z ) = δ. Aν επιπλέον f()=α>0, f(3)=β και α>β, να αποδείξετε ότι υπάρχει 0 (,3) τέτοιο ώστε f( 0 )=0. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

26 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ Ο ΗΓΙΕΣ (για τους εξεταζοµένους). Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Να µην αντιγράψετε τα θέµατα στο τετράδιο. Τα σχήµατα που θα χρησιµοποιήσετε στο τετράδιο µπορούν να γίνουν και µε µολύβι.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων, αµέσως µόλις σας παραδοθούν. Καµιά άλλη σηµείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα, τα οποία και θα καταστραφούν µετά το πέρας της εξέτασης. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε λύση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: µετά τη 0:30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

27 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΛΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) A. Έστω η συνάρτηση f με f () =. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο (0,+ ) και ισχύει: f () =. Μονάδες 9 Α. Πότε μια συνάρτηση f:a IR λέγεται - ; Μονάδες 4 B. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. Τα εσωτερικά σημεία του διαστήματος, στα οποία η f δεν παραγωγίζεται ή η παράγωγός της είναι ίση με το 0, λέγονται κρίσιμα σημεία της f στο διάστημα. Μονάδες β. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (α,β) με εξαίρεση ίσως ένα σημείο του o. Αν η f είναι κυρτή στο (α, o ) και κοίλη στο ( o,β) ή αντιστρόφως, τότε το σημείο Α (,f( )) o o είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της f. Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

28 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. Το μέτρο της διαφοράς δύο μιγαδικών αριθμών είναι ίσο με την απόσταση των εικόνων τους. Μονάδες δ. Αν για δύο συναρτήσεις f,g ορίζονται οι fog και gof, τότε είναι υποχρεωτικά fog gof. Μονάδες ε. Οι εικόνες δύο συζυγών μιγαδικών αριθμών είναι σημεία συμμετρικά ως προς τον άξονα. z, z Μονάδες στ. Αν η συνάρτηση f έχει παράγουσα σε ένα διάστημα και λ IR *, τότε ισχύει: λf ()d = λ f() d. Μονάδες ΘΕΜΑ ο α. Αν z, z είναι μιγαδικοί αριθμοί για τους οποίους ισχύει z +z =4+4i και z z = 5 + 5i, να βρείτε τους z, z. Μονάδες 0 β. Aν για τους μιγαδικούς αριθμούς z,w ισχύουν z 3i και w 3 i : i. να δείξετε ότι υπάρχουν μοναδικοί μιγαδικοί αριθμοί z, w έτσι, ώστε z=w και Μονάδες 0 ii. να βρείτε τη μέγιστη τιμή του z w. Μονάδες 5 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

29 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΘΕΜΑ 3 ο ίνεται η συνάρτηση f, η οποία είναι παραγωγίσιμη στο IR με f () 0 για κάθε IR. α. Να δείξετε ότι η f είναι -. β. Αν η γραφική παράσταση C f της f διέρχεται από τα σημεία Α(,005) και Β(-,), να λύσετε την εξίσωση f ( 004+ f( 8) ) =. Μονάδες 9 γ. Να δείξετε ότι υπάρχει τουλάχιστον ένα σημείο Μ της C f, στο οποίο η εφαπτομένη της C f είναι κάθετη στην ευθεία (ε): y = Μονάδες 9 ΘΕΜΑ 4 ο ίνεται η συνεχής συνάρτηση f: IR IR, για την οποία ισχύει f() lim 0 = 005. α. Να δείξετε ότι: i. f(0)=0 ii. f (0)=. Μονάδες 4 Μονάδες 4 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

30 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ β. Να βρείτε το λ IR έτσι, ώστε: ( f() ) ( f() ) + λ lim 0 + Γ ΤΑΞΗ = 3. γ. Αν επιπλέον η f είναι παραγωγίσιμη με συνεχή παράγωγο στο IR και f ()>f() για κάθε IR, να δείξετε ότι: i. f()>0 για κάθε 0. ii. f()d < f(). 0 Μονάδες 4 Ο ΗΓΙΕΣ (για τους εξεταζομένους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο επάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα, τα οποία και θα καταστραφούν μετά το πέρας της εξέτασης. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε λύση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: μετά τη 0.30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

31 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α, β]. Αν η f είναι συνεχής στο [α, β] και f(α) f(β) δείξτε ότι για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένας, τουλάχιστον 0 (α, β) τέτοιος, ώστε f( 0 ) = η. Μονάδες 9 Α. Πότε η ευθεία y = λ + β λέγεται ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης f στο + ; Μονάδες 4 B. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. Αν η f είναι συνεχής στο [α, β] με f(α) < 0 και υπάρχει ξ (α, β) ώστε f(ξ) = 0, τότε κατ ανάγκη f(β) > 0. Μονάδες β. Αν υπάρχει το lim ( f() + g() ) υπάρχουν τα lim 0 0 f() και, τότε κατ ανάγκη lim 0 g(). Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

32 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. Αν η f έχει αντίστροφη συνάρτηση f και η γραφική παράσταση της f έχει κοινό σημείο Α με την ευθεία y =, τότε το σημείο Α ανήκει και στη γραφική παράσταση της f. Μονάδες δ. Αν lim f() = 0 και f() > 0 κοντά στο 0, τότε lim 0 0 f() = +. Μονάδες ε. Αν η f είναι μια συνεχής συνάρτηση σε ένα διάστημα και α είναι ένα σημείο του, τότε ισχύει ( f(t)dt ) = f() - f(α) για κάθε. α Μονάδες στ. Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα και δε μηδενίζεται σ αυτό, τότε αυτή ή είναι θετική για κάθε ή είναι αρνητική για κάθε, δηλαδή διατηρεί πρόσημο στο διάστημα. Μονάδες ΘΕΜΑ ο ίνονται οι μιγαδικοί αριθμοί z, z, z 3 με z = z = z 3 = 3. α. είξτε ότι: 9 z = z. β. είξτε ότι ο αριθμός z z + z z είναι πραγματικός. Μονάδες 9 γ. είξτε ότι: z + z + z 3 = z z + z z 3 + z 3 z. 3 Μονάδες 9 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

33 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 3 ο ίνεται η συνάρτηση f με τύπο f() = e λ, λ > 0. α. είξτε ότι η f είναι γνησίως αύξουσα. Γ ΤΑΞΗ Μονάδες 3 β. είξτε ότι η εξίσωση της εφαπτομένης της γραφικής παράστασης της f, η οποία διέρχεται από την αρχή των αξόνων, είναι η y = λe. Βρείτε τις συντεταγμένες του σημείου επαφής Μ. γ. είξτε ότι το εμβαδόν Ε(λ) του χωρίου, το οποίο περικλείεται μεταξύ της γραφικής παράστασης της f, της εφαπτομένης της στο σημείο Μ και του άξονα y y, είναι e - Ε(λ) =. λ δ. Υπολογίστε το ΘΕΜΑ 4 ο lim λ + + λ Ε(λ) ημλ. Μονάδες 8 Έστω μια συνάρτηση f παραγωγίσιμη στο IR τέτοια, ώστε να ισχύει η σχέση f () = e f() για κάθε IR και f(0) = 0. α. Να δειχθεί ότι: e f() ln + =. β. Nα βρεθεί το: lim 0 0 f( - t) dt ημ. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

34 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ γ. ίδονται οι συναρτήσεις: h() = 005 t f(t)dt και g() = είξτε ότι h() = g() για κάθε IR. δ. είξτε ότι η εξίσωση μία λύση στο (0, ). 005 t f(t)dt = έχει ακριβώς 008 Ο ΗΓΙΕΣ (για τους εξεταζομένους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα, τα οποία και θα καταστραφούν μετά το πέρας της εξέτασης. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε λύση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: μετά τη 0:30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

35 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΛΙΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Να αποδείξετε ότι: (συν) = ημ, IR. Μονάδες 0 Α. Έστω f μία συνάρτηση ορισμένη σε ένα διάστημα. Τι ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο ; Μονάδες 5 B. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. Αν z, z είναι μιγαδικοί αριθμοί, τότε ισχύει: z +. z z z Μονάδες β. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο o και g( o ) 0, τότε η συνάρτηση g f είναι παραγωγίσιμη στο o και ισχύει: f g (o) = f( o ) g ( γ. Για κάθε 0 ισχύει [ ] o ) f ( [ g( )] o l n =. o ) g( o ). Μονάδες Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

36 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ δ. Μια συνάρτηση f:α IR είναι, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f()=y έχει ακριβώς μία λύση ως προς. Μονάδες ε. Έστω f μία συνεχής συνάρτηση σε ένα διάστημα [α,β]. Αν G είναι μία παράγουσα της f στο [α,β], β α τότε f(t)dt = G(α) G(β). Μονάδες ΘΕΜΑ ο ίνεται η συνάρτηση + e f() =, IR. + + e α. Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία της στο IR. Μονάδες 9 β. Να υπολογίσετε το ολοκλήρωμα d. f() γ. Για κάθε <0 να αποδείξετε ότι: f(5 )+f(7 )<f(6 )+f(8 ). Μονάδες 9 ΘΕΜΑ 3ο Έστω οι μιγαδικοί αριθμοί z, που ικανοποιούν την ισότητα (4 z) 0 = z 0 και η συνάρτηση f με τύπο f() = ++α, α IR. α. Να αποδείξετε ότι οι εικόνες των μιγαδικών z ανήκουν στην ευθεία =. ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

37 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ β. Αν η εφαπτομένη (ε) της γραφικής παράστασης της συνάρτησης f στο σημείο τομής της με την ευθεία = τέμνει τον άξονα y y στο y o = 3, τότε i. να βρείτε το α και την εξίσωση της εφαπτομένης (ε). Μονάδες 9 ii. να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται μεταξύ της γραφικής παράστασης της συνάρτησης f, της εφαπτομένης (ε), του άξονα και 3 της ευθείας =. 5 Μονάδες 9 ΘΕΜΑ 4ο ίνεται η συνάρτηση f() = l n( + ) ( + ) ln με >0. α. i. Να αποδείξετε ότι: l n( + ) ln <, > 0. ii. Να αποδείξετε ότι η f είναι γνησίως φθίνουσα στο διάστημα (0,+ ). Μονάδες β. Να υπολογίσετε το lim ln(+ ). + Μονάδες 5 γ. Να αποδείξετε ότι υπάρχει μοναδικός αριθμός α (0,+ ) τέτοιος ώστε (α+) α = α α+. Μονάδες 8 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

38 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ (για τους εξεταζομένους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο. Τα σχήματα που θα χρησιμοποιήσετε στο τετράδιο μπορείτε να τα σχεδιάσετε και με μολύβι.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: μετά τη 0.30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

39 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα. Να αποδείξετε ότι: Αν f ()>0 σε κάθε εσωτερικό σημείο του, τότε η f είναι γνησίως αύξουσα σε όλο το. Αν f ()<0 σε κάθε εσωτερικό σημείο του, τότε η f είναι γνησίως φθίνουσα σε όλο το. Μονάδες 0 Α. Εστω μια συνάρτηση f συνεχής σ ένα διάστημα και παραγωγίσιμη στο εσωτερικό του. Πότε λέμε ότι η f στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο ; Μονάδες 5 B. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. Για κάθε μιγαδικό αριθμό z ισχύει β. Αν υπάρχει το lim f() 0, τότε στο 0. z = z. > () 0 0 Μονάδες f > κοντά Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

40 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. - Μονάδες δ. Ισχύει ο τύπος ( 3 ) = 3, για κάθε IR. Μονάδες ε. Ισχύει η σχέση β α f ()g ()d=[f()g()] β α β f α ()g()d, όπου f,g είναι συνεχείς συναρτήσεις στο [α,β]. Μονάδες ΘΕΜΑ ο Θεωρούμε τη συνάρτηση f() =+(-) με. α. Να αποδείξετε ότι η f είναι -. β. Να αποδείξετε ότι υπάρχει η αντίστροφη συνάρτηση f - της f και να βρείτε τον τύπο της. Μονάδες 8 γ. i. Να βρείτε τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων f και f - με την ευθεία y=. Μονάδες 4 ii. Να υπολογίσετε το εμβαδό του χωρίου που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f και f -. ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

41 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 3 ο ίνονται οι μιγαδικοί αριθμοί z,z,z3 με z = z = z3 = και + z + z 0. z 3 = α. Να αποδείξετε ότι: i. z z = z3 z = z z3. ( ii. z z 4 και Re z z ). Μονάδες 9 Μονάδες 8 β. Να βρείτε το γεωμετρικό τόπο των εικόνων των z,z,z 3 στο μιγαδικό επίπεδο, καθώς και το είδος του τριγώνου που αυτές σχηματίζουν. Μονάδες 8 ΘΕΜΑ 4 ο ίνεται η συνάρτηση f()= + ln. α. Να βρείτε το πεδίο ορισμού και το σύνολο τιμών της συνάρτησης f. Μονάδες 8 β. Nα αποδείξετε ότι η εξίσωση f()=0 έχει ακριβώς ρίζες στο πεδίο ορισμού της. Μονάδες 5 γ. Αν η εφαπτομένη της γραφικής παράστασης της συνάρτησης g()=ln στο σημείο Α(α,lnα) με α>0 και η εφαπτομένη της γραφικής παράστασης της συνάρτησης h()=e στο σημείο Β(β,e β ) με β IR ταυτίζονται, τότε να δείξετε ότι ο αριθμός α είναι ρίζα της εξίσωσης f()=0. Μονάδες 9 δ. Να αιτιολογήσετε ότι οι γραφικές παραστάσεις των συναρτήσεων g και h έχουν ακριβώς δύο κοινές εφαπτόμενες. Μονάδες 3 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

42 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ (για τους εξεταζομένους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο. Τα σχήματα που θα χρησιμοποιήσετε στο τετράδιο μπορείτε να τα σχεδιάσετε και με μολύβι.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: μετά τη 0.30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

43 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Να αποδείξετε ότι αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 0 Α. Τι σημαίνει γεωμετρικά το θεώρημα Rolle του ιαφορικού Λογισμού; Μονάδες 5 B. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Η εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς συνάρτησης f είναι διάστημα. Μονάδες β. Αν f, g, g είναι συνεχείς συναρτήσεις στο διάστημα [α,β], τότε β α f ()g ()d = β α f ()d β α g () d. Μονάδες γ. Αν f είναι μία συνεχής συνάρτηση σε ένα διάστημα και α είναι ένα σημείο του, τότε f (t)dt α = f() για κάθε. Μονάδες ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

44 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ δ. Αν μια συνάρτηση f είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα (α,β), τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα (Α,Β) όπου Α= lim f () και Β= lim f (). + α β Μονάδες ε. Έστω δύο συναρτήσεις f, g ορισμένες σε ένα διάστημα. Αν οι f, g είναι συνεχείς στο και f () = g () για κάθε εσωτερικό σημείο του, τότε ισχύει f() = g() για κάθε. Μονάδες ΘΕΜΑ ο ίνεται η συνάρτηση ημ3, f () = + α + βσυν, α. Να αποδειχθεί ότι lim f () = 3. 0 < 0 0. Μονάδες 8 π β. Αν f = π και η συνάρτηση f είναι συνεχής στο σημείο 0 =0, να αποδειχθεί ότι α = β = 3. Μονάδες 9 γ. Αν α = β = 3, να υπολογισθεί το ολοκλήρωμα π f ()d. 0 Μονάδες 8 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

45 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 3ο ίνεται η συνάρτηση f() = e e ln, > 0. α. Να αποδειχθεί ότι η συνάρτηση f() είναι γνησίως αύξουσα στο διάστημα (, + ). β. Να αποδειχθεί ότι ισχύει f() e για κάθε > 0. γ. Να αποδειχθεί ότι η εξίσωση f (t)dt = f (t)dt f (t)dt έχει ακριβώς μία ρίζα στο διάστημα (0, + ). Μονάδες 0 Μονάδες 8 ΘΕΜΑ 4ο ίνονται οι μιγαδικοί αριθμοί z = α+βi και z =, όπου + α, β IR με β 0. ίνεται επίσης ότι z z IR. α. Να αποδειχθεί ότι z z =. Μονάδες 9 β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων του z στο μιγαδικό επίπεδο. γ. Αν ο αριθμός z είναι φανταστικός και αβ>0, να υπολογισθεί ο z και να δειχθεί ότι 0 0 (z + + i) (z + i) = 0. z z Μονάδες 0 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

46 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ (για τους εξεταζόμενους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: μετά τη 0.00 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

47 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ o A. Αν z, z είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι: z z = z z. Μονάδες 8 Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 B. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Αν f συνάρτηση συνεχής στο διάστημα [α,β] και για κάθε [ α, β] ισχύει f() 0 τότε f() d > 0. α β Μονάδες β. Έστω f μια συνάρτηση συνεχής σε ένα διάστημα και παραγωγίσιμη σε κάθε εσωτερικό σημείο του. Αν η συνάρτηση f είναι γνησίως αύξουσα στο τότε f () > 0 σε κάθε εσωτερικό σημείο του. ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ Μονάδες

48 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ ο γ. Αν η συνάρτηση f είναι συνεχής στο 0 και η συνάρτηση g είναι συνεχής στο 0, τότε η σύνθεσή τους gof είναι συνεχής στο 0. Μονάδες δ. Αν f είναι μια συνεχής συνάρτηση σε ένα διάστημα και α είναι ένα σημείο του, τότε g() ( f(t) dt) = f ( g() ) g () α με την προϋπόθεση ότι τα χρησιμοποιούμενα σύμβολα έχουν νόημα. Μονάδες ε. Αν α > τότε lim α = 0. ίνεται ο μιγαδικός αριθμός + αi z = με α IR. α + i Μονάδες α. Να αποδειχθεί ότι η εικόνα του μιγαδικού z ανήκει στον κύκλο με κέντρο Ο(0,0) και ακτίνα ρ =. Μονάδες 9 β. Έστω z, z οι μιγαδικοί που προκύπτουν από τον τύπο z = α + + αi i για α = 0 και α = αντίστοιχα. i. Να βρεθεί η απόσταση των εικόνων των μιγαδικών αριθμών z και z. Μονάδες 8 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

49 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ii. Να αποδειχθεί ότι ισχύει: ν (z) = ( z ) ν για κάθε φυσικό αριθμό ν. Μονάδες 8 ΘΕΜΑ 3 ο ίνεται η συνάρτηση: f() = 3 3 ημ θ π όπου θ IR μια σταθερά με θ κπ +, κ Z. α. Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β. Να αποδειχθεί ότι η εξίσωση f() = 0 έχει ακριβώς τρεις πραγματικές ρίζες. Μονάδες 8 γ. Αν, είναι οι θέσεις των τοπικών ακροτάτων και 3 η θέση του σημείου καμπής της f, να αποδειχθεί ότι τα σημεία Α(, f( )), B(, f( )) και Γ( 3, f( 3 )) βρίσκονται στην ευθεία y = ημ θ. Μονάδες 3 δ. Να υπολογισθεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f και την ευθεία y = ημ θ. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

50 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 4 ο Έστω f μια συνεχής και γνησίως αύξουσα συνάρτηση στο διάστημα [0, ] για την οποία ισχύει f(0) > 0. ίνεται επίσης συνάρτηση g συνεχής στο διάστημα [0, ] για την οποία ισχύει g() > 0 για κάθε [0, ]. Ορίζουμε τις συναρτήσεις: F() = f(t) g(t) dt, [0, ], 0 G() = g(t) dt, [ 0, ]. 0 α. Να δειχθεί ότι F() > 0 για κάθε στο διάστημα (0, ]. Μονάδες 8 β. Nα αποδειχθεί ότι: f() G() > F() για κάθε στο διάστημα (0, ]. γ. Nα αποδειχθεί ότι ισχύει: F() F() G() G() για κάθε στο διάστημα (0, ]. Μονάδες 4 δ. Να βρεθεί το όριο: lim f(t) g(t) dt 0 0 g(t) dt ημt 5 dt. ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

51 ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ (για τους εξεταζόμενους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: μετά τη 0.30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΣΕΛΙ ΑΣ

52 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΛΙΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω μία συνεχής συνάρτηση σ ένα διάστημα [α, β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι β f (t)dt = G( β) G( α) α Μονάδες 0 Β. Τι σημαίνει γεωμετρικά το Θεώρημα Μέσης Τιμής του ιαφορικού Λογισμού; Μονάδες 5 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Υπάρχουν συναρτήσεις που είναι, αλλά δεν είναι γνησίως μονότονες. Μονάδες β. Αν μια συνάρτηση f είναι κοίλη σ ένα διάστημα, τότε η εφαπτομένη της γραφικής παράστασης της f σε κάθε σημείο του βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους. β α Μονάδες γ. Το ολοκλήρωμα f ()d είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

53 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ τον άξονα μείον το άθροισμα των εμβαδών των χωρίων που βρίσκονται κάτω από τον άξονα. δ. Αν α, β πραγματικοί αριθμοί, τότε: α+βi=0 α=0 ή β=0 Μονάδες Μονάδες ε. Έστω μια συνάρτηση ορισμένη σ ένα σύνολο της μορφής (α, ο ) ( ο, β) και ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία: lim f() = lim (f() ) = o o 0 Μονάδες ΘΕΜΑ ο + i 3 ίνεται ότι ο μιγαδικός αριθμός z = είναι ρίζα της εξίσωσης z +βz+γ=0, όπου β και γ πραγματικοί αριθμοί. α. Να αποδείξετε ότι β= και γ=. β. Να αποδείξετε ότι z 3 =. Μονάδες 9 Μονάδες 8 γ. Να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού αριθμού w, για τον οποίο ισχύει: w = z z Μονάδες 8 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

54 ΘΕΜΑ 3ο ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ίνεται η συνάρτηση f() = ln, > 0. α. Να αποδείξετε ότι ισχύει: f() για κάθε >0. β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f. γ. Έστω η συνάρτηση g() = ln f () k,, > 0 = 0 i. Να βρείτε την τιμή του k έτσι ώστε η g να είναι συνεχής. ii. Αν k =, τότε να αποδείξετε ότι η g έχει μία, τουλάχιστον, ρίζα στο διάστημα (0, e). ΘΕΜΑ 4ο Έστω f μια συνεχής συνάρτηση στο διάστημα [0, + ) για την οποία ισχύει f() > 0 για κάθε 0. Ορίζουμε τις συναρτήσεις: 0 F() = f(t) dt, [0, + ), F() h() =, ( 0, + ). t f (t) dt 0 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

55 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ α. Να αποδείξετε ότι e [f (t) + F(t)]dt = F() t 0 β. Να αποδείξετε ότι η συνάρτηση h είναι γνησίως φθίνουσα στο διάστημα (0, + ). γ. Αν h()=, τότε: i. Να αποδείξετε ότι f(t) dt < 0 ii. Να αποδείξετε ότι F(t)dt = F( ) 0 0 tf(t)dt Μονάδες 8 Μονάδες 5 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: μετά τη 0.00 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

56 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ o A. Να αποδειχθεί ότι η συνάρτηση f() = ln παραγωγίσιμη στο * και ισχύει: ln = ( ), * είναι Μονάδες 0 Α. Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5 B. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Αν μια συνάρτηση f:a είναι, τότε για την αντίστροφη συνάρτηση f ισχύει: f (f ( )) =, A και f (f ( y )) = y, y f ( A ) Μονάδες β. Μια συνεχής συνάρτηση f διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της f χωρίζουν το πεδίο ορισμού της. Μονάδες ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

57 ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ γ. Όταν η διακρίνουσα της εξίσωσης αz +βz+γ=0 με α,β,γ και α 0 είναι αρνητική, τότε η εξίσωση δεν έχει ρίζες στο σύνολο των μιγαδικών. Μονάδες δ. Αν μια συνάρτηση f είναι δύο φορές παραγωγίσιμη στο και στρέφει τα κοίλα προς τα άνω, τότε κατ ανάγκη θα ισχύει f ( ) > 0 για κάθε πραγματικό αριθμό. Μονάδες ε. Aν η f είναι συνεχής σε διάστημα και α,β,γ τότε ισχύει β α γ α f()d = f()d + β γ f()d Αν για τους μιγαδικούς αριθμούς z και w ισχύουν τότε να βρείτε: ( i + )z = 6 και w ( i) = w (3 3i) Μονάδες α. το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών z. β. το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών w. γ. την ελάχιστη τιμή του w δ. την ελάχιστη τιμή του z w ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

58 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 3 ο ίνεται η συνάρτηση f() = ln, 0, > 0 = 0 α. Να αποδείξετε ότι η συνάρτηση f είναι συνεχής στο 0. Μονάδες 3 β. Να μελετήσετε ως προς τη μονοτονία τη συνάρτηση f και να βρείτε το σύνολο τιμών της. Μονάδες 9 γ. Να βρείτε το πλήθος των διαφορετικών θετικών ριζών της εξίσωσης δ. Να αποδείξετε ότι ισχύει α = e για όλες τις πραγματικές τιμές του α. f (+)>f(+) f(), για κάθε > 0. ΘΕΜΑ 4 ο Έστω f μια συνάρτηση συνεχής στο για την οποία ισχύει f() = ( ) α. Να αποδείξετε ότι f()= f(t)dt 45 Μονάδες 8 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

59 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ β. ίνεται επίσης μια συνάρτηση g δύο φορές παραγωγίσιμη στο. Να αποδείξετε ότι g () g ( h) g () = lim h 0 h Μονάδες 4 γ. Αν για τη συνάρτηση f του ερωτήματος (α) και τη συνάρτηση g του ερωτήματος (β) ισχύει ότι g( + h) g() + g( h) lim h 0 h = f() + 45 και g(0)=g (0)=, τότε i. να αποδείξετε ότι g()= Μονάδες 0 ii. να αποδείξετε ότι η συνάρτηση g είναι Μονάδες 3 Ο ΗΓΙΕΣ (για τους εξεταζόμενους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. ΤΕΛΟΣ 4ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

60 ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: μετά τη 0.30 πρωινή. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

61 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ o A. Έστω η συνάρτηση f() =. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο (0, + ) και ισχύει: f () = Μονάδες 9 B. Έστω μια συνάρτηση f και o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο o ; Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Αν z είναι ένας μιγαδικός αριθμός τότε για κάθε θετικό ακέραιο ν ισχύει ( z ν ) = ( z ) ν Μονάδες β. Η συνάρτηση f είναι -, αν και μόνο αν κάθε οριζόντια ευθεία τέμνει τη γραφική παράσταση της f το πολύ σε ένα σημείο. Μονάδες ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

62 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ γ. Αν lim f() = 0 και f() < 0 κοντά στο o τότε o f () lim o = + Μονάδες ΘΕΜΑ ο δ. Έστω η συνάρτηση f() = εφ. H συνάρτηση f είναι παραγωγίσιμη στο = { συν = 0 } και ισχύει f () = - συν Μονάδες ε. Για κάθε συνάρτηση f, παραγωγίσιμη σε ένα διάστημα, ισχύει f () d = f() + c, όπου c είναι μια πραγματική σταθερά. Μονάδες Θεωρούμε τους μιγαδικούς αριθμούς z για τους οποίους ισχύει: ( i) z + ( + i) z 8 = 0 α. Nα βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών z = +yi οι οποίοι ικανοποιούν την παραπάνω εξίσωση. Μονάδες 0 ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

63 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ β. Nα βρείτε τον μοναδικό πραγματικό αριθμό z και τον μοναδικό φανταστικό αριθμό z οι οποίοι ικανοποιούν την παραπάνω εξίσωση. Μονάδες 8 γ. Για τους αριθμούς z, z που βρέθηκαν στο προηγούμενο ερώτημα να αποδείξετε ότι + z + z z 40 ΘΕΜΑ 3 ο ίνεται η συνάρτηση z = f() = ln[(λ+) ++] - ln(+), > - όπου λ ένας πραγματικός αριθμός με λ - Α. Να προσδιορίσετε την τιμή του λ, ώστε να υπάρχει το όριο lim f() και να είναι πραγματικός αριθμός. + Β. Έστω ότι λ = - Μονάδες 5 α. Να μελετήσετε ως προς τη μονοτονία τη συνάρτηση f και να βρείτε το σύνολο τιμών της. Μονάδες 0 β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f γ. Να αποδείξετε ότι η εξίσωση f() + α = 0 έχει μοναδική λύση για κάθε πραγματικό αριθμό α με α 0 Μονάδες 4 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

64 ΘΕΜΑ 4 ο ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ίνεται μια συνάρτηση f:[ 0, ] η οποία είναι δύο φορές παραγωγίσιμη και ικανοποιεί τις συνθήκες f () 4f () + 4f () = k e, 0 f (0) = f (0), f () = f()+ e 4, f() = e όπου k ένας πραγματικός αριθμός. α. Να αποδείξετε ότι η συνάρτηση g() = 3 - e f () f (), 0 ικανοποιεί τις υποθέσεις του θεωρήματος του Rolle στο διάστημα [0,]. Μονάδες 4 β. Να αποδείξετε ότι υπάρχει ξ (0,) τέτοιο, ώστε να ισχύει f ( ξ ) + 4f ( ξ) = 6 ξ e ξ + 4 f ( ξ) γ. Να αποδείξετε ότι k = 6 και ότι ισχύει g() = 0 για κάθε [0,]. δ. Να αποδείξετε ότι f () = e, 0 ε. Να υπολογίσετε το ολοκλήρωμα 3 Μονάδες 5 f () d Μονάδες 4 ΤΕΛΟΣ 4ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

65 ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ. Στο τετράδιο να γράψετε μόνον τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. Να μη χρησιμοποιηθεί το μιλιμετρέ φύλλο του τετραδίου. 4. Να γράψετε τις απαντήσεις σας μόνον με μπλε ή μαύρο στυλό διαρκείας και μόνον ανεξίτηλης μελάνης. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: 0.00 π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

= 1-3 i, να γράψετε στο τετράδιό

= 1-3 i, να γράψετε στο τετράδιό ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1o A.1. ίνονται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 )

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 ) ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( & ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΑΠΟ ΕΩΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ IOYNIOY 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

= 1-3 i, να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα σε κάθε αριθμό το γράμμα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα.

= 1-3 i, να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα σε κάθε αριθμό το γράμμα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1o A.1. Δίνονται

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 15 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

G(x) = G(x) = ΘΕΜΑ 1o

G(x) = G(x) = ΘΕΜΑ 1o ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 8 ΙΟΥΛΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Αν

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Να

Διαβάστε περισσότερα

β. Αν f (x) 0 σε κάθε εσωτερικό σημείο x του Δ, τι συμπεραίνετε για τη μονοτονία της συνάρτησης f ; Μονάδες 4,5

β. Αν f (x) 0 σε κάθε εσωτερικό σημείο x του Δ, τι συμπεραίνετε για τη μονοτονία της συνάρτησης f ; Μονάδες 4,5 ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 6 ΣΕΠΤΕΜΒΡΙΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) A. Έστω

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ TEXΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ TEXΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ TEXΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ο Α. α) Πότε ένας γεωμετρικός μετασχηματισμός ονομάζεται γραμμικός; Μονάδες,5

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε.

γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή Γενικού Λυκείου Ημερησίου-Εσπερινού-Ομογενών 07-08 Πρόλογος Το παρόν αρχείο αποτελείται από όλα τα θέματα των Μαθηματικών Θετικής και

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ σελ. από 0 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι: ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο A. Αν z, z

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΙΟΥΛΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΛΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ

Διαβάστε περισσότερα

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Θ Ε Μ Α Τ Α Γ ΛΥΚΕΙΟΥ

Θ Ε Μ Α Τ Α Γ ΛΥΚΕΙΟΥ Θ Ε Μ Α Τ Α Π Ρ Ο Α Γ Ω Γ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - 3 Α Π Ο Λ Υ Τ Η Ρ Ι Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Θ Ε Τ Ι Κ Η Κ Α Τ Ε Υ Θ Υ Ν Σ Η ΘΕΜΑ ο : Α.. Αν η

Διαβάστε περισσότερα

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ (IMF: 4o µεσοπρόθεσµο.) ( WWF:.εξοικονόµηση πόρων.) MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 5 ΣΕΠΤΕΜΒΡΙΟΥ... ΜΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 7 ΣΕΠΤΕΜΒΡΙΟΥ...

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

A ένα σημείο της C. Τι

A ένα σημείο της C. Τι ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 5 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim. ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) A1. Έστω μια

Διαβάστε περισσότερα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 211 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim. ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) A. Έστω μια συνάρτηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη σωστό ή λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε

Διαβάστε περισσότερα

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6 Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΙΟΥΝΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ

Διαβάστε περισσότερα

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim. ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ A. Έστω μια συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΚΑΙ ΕΠΙΛΕΓΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΘΕΜΑ o ΜΑΪΟΥ A Έστω μια συνεχής συνάρτηση σ' ένα διάστημα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 3 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρακάτω ερώτηση να γράψετε τη σωστή απάντηση. δ) Το z

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΝΕΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10 ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

α,β,γ και α 0 στο σύνολο των μιγαδικών

α,β,γ και α 0 στο σύνολο των μιγαδικών ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΓΕΝΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (1 )ΓΙΑ ΤΟ ΕΤΟΣ 215 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α 2 αz + βz +

Διαβάστε περισσότερα

f (x) g (x) για κάθε εσωτερικό σημείο x του Δ,

f (x) g (x) για κάθε εσωτερικό σημείο x του Δ, ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ (2) ΚΥΡΙΑΚΗ, 30 ΑΠΡΙΛΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

αριθμοί σε τριγωνομετρική μορφή, να αποδείξετε ότι: z 1 z 2 = ρ 1 ρ 2 [συν (θ 1 +θ 2 )+i ημ (θ 1 +θ 2 )] ( 1Α/2002 ΙΟΥΛ)

αριθμοί σε τριγωνομετρική μορφή, να αποδείξετε ότι: z 1 z 2 = ρ 1 ρ 2 [συν (θ 1 +θ 2 )+i ημ (θ 1 +θ 2 )] ( 1Α/2002 ΙΟΥΛ) ο Γενικό Λύκειο Χανίων Τάξη Γ Μαθηματικών προσανατολισμού Θέματα εξετάσεων ΘΕΩΡΙΑ Μιγαδικοί αριθμοί. Δίνονται οι μιγαδικοί αριθμοί z, z. Να αποδείξετε ότι: z z = z z. ( Α/00-007). Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θέματα τύπου Σωστό-Λάθος στις Πανελλαδικές Εξετάσεις από το 2000 έως 204 χωρισμένα σε Κεφάλαια Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 = 2. Για κάθε μιγαδικό αριθμό z ισχύει: α.

Διαβάστε περισσότερα

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, 4 ΜΑΡΤΙΟΥ 206 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ IOYNIOY 4 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 ΠΑΡΑΣΚΕΥΗ, 6 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

1 ο Τεστ προετοιμασίας Θέμα 1 ο

1 ο Τεστ προετοιμασίας Θέμα 1 ο ο Τεστ προετοιμασίας Θέμα ο Σε κάθε μια από τις ακόλουθες προτάσεις αφού πρώτα σημειώσετε το Σ (σωστή) ή το Λ (λανθασμένη), στη συνέχεια να δώσετε μια σύντομη τεκμηρίωση της όποιας απάντησή σας Αν για

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ ΣΕΠΤΕΜΒΡΙΟΥ 3 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - Γ ΛΥΚΕΙΟΥ. 1. Μιγαδικοί αριθμοί

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - Γ ΛΥΚΕΙΟΥ. 1. Μιγαδικοί αριθμοί Σελίδα από 4 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - Γ ΛΥΚΕΙΟΥ Θετική & Τεχνολογική κατεύθυνση Το παρόν κείμενο αποτελεί μια μορφοποιημένη έκδοση του αρχείου που μας έστειλε ο συνάδελφος Σπύρος Κούρτης.(Επιμέλεια : Μπάμπης

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ IOYNIOY 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 4 ΑΠΡΙΛΙΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 4 ΠΑΡΑΣΚΕΥΗ, 22 ΑΠΡΙΛΙΟΥ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4 ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 208 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ,

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ, ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 1 ΑΠΡΙΛΙΟΥ 13 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0 ΣΩΣΤΑ ΛΑΘΟΣ. Για οποιουσδήποτε μιγαδικούς z, z με Re (z + z ) = 0, ισχύει: Re (z ) + Re (z ) = 0. Ισχύει η ισοδυναμία : i κ = i λ κ = λ για κάθε κ., λ ακεραίους αριθμούς. 3. Για κάθε μιγαδικό αριθμό z

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4) Αµυραδάκη, Νίκαια (-493576) ΘΕΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 3 Α. Πότε µια συνάρτηση f λέγεται παραγωγίσιµη στο ο ; Β. Τι σηµαίνει γεωµετρικά το θεώρηµα Rolle ; Γ. Να αποδείξετε ότι ( ) a = a ln a (Μονάδες 5) (Μονάδες

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ IOYNIOY 4 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

f(x ) 0 O) = 0, τότε το x

f(x ) 0 O) = 0, τότε το x ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 07 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0. ΘΕΜΑ 5 ο Έστω συνάρτηση f :[0, + ) παραγωγίσιμη στο διάστημα [0, + ) για την οποία ισχύει : 2 -f(t) 2f()+f ()= 2 e dt και f(0) = 0. i) Να δείξετε ότι + f() 0 για κάθε є [0, + ). ii) Να δείξετε ότι η f

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8 ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΜΑΪΟΥ 3 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ A. Να αποδείξετε ότι,

Διαβάστε περισσότερα

Στήλη Β συναρτήσεις. Στήλη Α

Στήλη Β συναρτήσεις. Στήλη Α of 56 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A Aν η συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο 0 του πεδίου ορισμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 ΠΑΡΑΣΚΕΥΗ, ΚΥΡΙΑΚΗ 7 8 ΜΑΡΤΙΟΥ ΑΠΡΙΛΙΟΥ 0906 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ

Διαβάστε περισσότερα

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό. ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΣΥΝΟΛΟ

Διαβάστε περισσότερα

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα. ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ (2) ΠΑΡΑΣΚΕΥΗ, 18 ΜΑΪΟΥ 218 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τα γράµµατα της πρώτης στήλης και, δίπλα ακριβώς, τον αριθµό της

Να γράψετε στο τετράδιό σας τα γράµµατα της πρώτης στήλης και, δίπλα ακριβώς, τον αριθµό της ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

Α2. Να αποδείξετε ότι, αν μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,τότε είναι και συνεχής στο σημείο αυτό.

Α2. Να αποδείξετε ότι, αν μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,τότε είναι και συνεχής στο σημείο αυτό. ΘΕΜΑΤΑ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑo ΑAν η συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο Α

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων 9 Θεολόγης Καρκαλέτσης Μαθηματικός teomail@schgr Πρόλογος Στο βιβλίο αυτό περιέχονται όλα τα

Διαβάστε περισσότερα

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019 ΑΡΧΗ ης ΣΕΛΙΔΑΣ ΑΠΟ ΣΕΛΙΔΕΣ ο ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα Μαΐου 9 BAΘΜΟΣ../ ή / Ονοματεπώνυμο: Τμήμα:. ΘΕΜΑ Α Α. Να αποδείξετε το παρακάτω

Διαβάστε περισσότερα