Between Square and Circle

Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

CONSULTING Engineering Calculation Sheet

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,


Figure 1 - Plan of the Location of the Piles and in Situ Tests

Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid. Stimulated Chalk Reservoirs

MECHANICAL PROPERTIES OF MATERIALS

Rectangular Polar Parametric

Grey Cast Irons. Technical Data


Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Defects in Hard-Sphere Colloidal Crystals


5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

A Classical Perspective on Non-Diffractive Disorder

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,



Chapter 7 Transformations of Stress and Strain


T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

Συµπεριφορά τοίχων πληρώσεως µε διάζωµα Ω.Σ. ή µε οπλισµό οριζόντιων αρµών

Fourier Analysis of Waves


08 : 2005/10/28(13:56) Web. Web. Web. Web. Web Visual BASIC. B B Visual BASIC (1) 4. Bezier

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2

θ p = deg ε n = με ε t = με γ nt = μrad

Συµπεριφορά µεταλλικών και σύµµικτων συστηµάτων πλάκας σε πυρκαγιά. Αριθµητική παραµετρική διερεύνηση της απλοποιηµένης µεθόδου σχεδιασµού

Κεφάλαιο 6 ιανυσµατικοί χώροι...1

Answers to practice exercises

6.4 Superposition of Linear Plane Progressive Waves


... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

(... )..!, ".. (! ) # - $ % % $ & % 2007

a,b a f a = , , r = = r = T

4.4 Superposition of Linear Plane Progressive Waves

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ.

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

Adaptive grouping difference variation wolf pack algorithm

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

ΑΝΤΙΣΕΙΣΜΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

The q-commutators of braided groups

Gradient Descent for Optimization Problems With Sparse Solutions

FEDRA-τοιχοποιία ιαστασιολόγηση Στέγης µε Ευρωκώδικα 5 σελ-1

Analyse af skrå bjælke som UPE200

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

Lisun Electronics Inc. Tel:+86(21)

ITU-R SA (2010/01)! " # $% & '( ) * +,

(Mechanical Properties)

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

M p f(p, q) = (p + q) O(1)

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Swirl diffusers, Variable swirl diffusers Swirl diffusers

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

x y 2 = 2 sin θ 2 dx = K R n e x pt n+p 1 e tp dt. dx = pt p 1 e tp dt dx. t x 1 e t dt.

MÉTHODES ET EXERCICES

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΚΑΤΑΝΑΛΩΤΗ ΕΛΤΙΟ ΤΥΠΟΥ. Ηµεροµηνία: Πέµπτη, 08 Μαρτίου 2012

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας

!! " # $%&'() * & +(&( 2010

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3



Diamond platforms for nanoscale photonics and metrology

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

..,..,.. ! " # $ % #! & %

Starters για Λαμπτήρες Φθορισμού

MasterSeries MasterPort Lite Sample Output

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

SPECIAL FUNCTIONS and POLYNOMIALS

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

M E T A L R U B B E R E N G I N E E R I N G

FACTORY DIRECT LIGHTING

Kul Finite element method I, Exercise 07/2016

program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey

Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Συµπεριφορά επιπέδων τοίχων υπό συγκεντρωµένα θλιπτικά φορτία

9 1. /001/2 27 /8? /89 16 < / B? > DEE F

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Προσδιορισμός Χαρακτηριστικών των Λεκανών Απορροής

Vol. 41 No Journal of Jiangxi Normal University Natural Science May A DOI /j. cnki. issn

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

Transcript:

DOCTORAL T H E SIS Between Square and Circle A Study on the Behaviour of Polygonal Steel Profiles Under Compression Panagiotis Manoleas Steel Structures

Printed by Luleå University of Technology, Graphic Production 2018 ISSN 12-1544 ISBN 978-91-7790-220-1 (print) ISBN 978-91-7790-221-8 (pdf) Luleå 2018 www.ltu.se

n l t b θ b p b /εt r r a r A p A I I ω x, y, z u, v, w f ε f k σ n n l l Δw f N,, N,,

f y >

n r l n r r

l=3 m l=3 m N b,rd,plt [MN] 3 2 1 500 A B r [mm] c 250 C N b,rd,shl [MN] 3 2 1 500 r [mm] c 250 N b,rd,plt [MN] 3 2 1 l=5 m 500 r [mm] c A C B 250 N b,rd,shl [MN] 3 2 1 l=5 m 500 r [mm] c 250 A = n r N /N

rc 0 0 200 0.75 l =3m 5 1.5 1.75 10 20 30 0.75 l =5m 5 1.5 1.75 10 20 30 2.00 1.75 1.50 5 0 0.75 0 N,, N,, A = σb,rd,shl σb,rd,shl,draft 1.1 l =3m l =5m l =7m 200 0 0 r c 200 0 0 r c 200 0 0 r c

ε p n

0.4 rc 0 0 200 l =3m 2.0 1.6 2.4 10 20 30 2.8 0.4 l =5m 2.0 1.6 2.4 10 20 30 2.8 3.0 2.5 2.0 1.5 N,, N,, n =18 σ = σ f

σ f =1.34 8R, 0.03 < λ 0.3 λ = rπ L f E f R = = b 12 (1 ν 2 ) f σ t Eπ 2 k σ b/t =30 b/t =72.9

σ f = σ f = { 1, R 0.44 7/R, 0.44 <R 1.3 { 1, R 0.44 0.74/R 0.75, 0.44 <R 1.3 n = {8, 12, 16} ( ) σ = f 1+λ 2n 1/n n λ k σ =4

λ = n 12 p =61

n p f

Facet Edge Side Vertice

r n r θ r θ = π n b =2r θ b r b = r θ c

b b c b f b c r b θ r i rp θ b = b 2b b =2(r θ r θ) p = n (b + r θ) p = n b +2πr t r t r = a t

A = p t A = t (n b +2πr ) A = t [2n (r θ r θ)+2πr ] A =2t (n r θ n a t θ + πa t) r A =2πr t A = A 2πr t =2t (n r θ n a t θ + πa t) r = n r θ n a t θ + πa t π r = n π (r θ a t θ)+a t p = b εt

p = b εt p = 2(r θ a t θ) εt 2r θ = p ε +2a t θ r = t θ ( p ε 2 + a θ ) r = n π [ t ( p ε ) ] θ 2 + a θ θ a t θ + a t r = n tp ε + a t 2π ( n p ε ) r = t 2π + a β = t θ b I = n b 3 t 8 b = b + t θ ( 1 3 + 1 ) (1 3β +4β 2 2β 3) 2 θ

N, = Aσ, σ, σ, = k σ, σ π 2 Et 2 σ = 12 (1 ν 2 ) b 2 b N, = Aσ, σ, t σ, =0.5EC r c ( ) ( ) 1.83 2.07 1.36 +,, ω 1.7 w w 2 C = 1,, 1.7 <ω r [ t, 1+ 0.2 ( )] 1 2ωt,, ω > r C r t ω = l rt C C

ω>2.86 r /t b εt =42 d ε 2 t =90

A, = n A + A A =2πr t ρ 1, λ 73 ρ = λ 0.055 (3 + ψ), λ 2 λ > 73 λ f b λ = = σ, 28.4εt k σ k σ =4 N, = A f γ χ λ =0.2

N, = Aσ, σ, = σ, γ σ, = f χ γ =1.1 f χ f λ = σ, 1, ( ) λ λ η λ λ χ = 1 β, λ < λ λ λ α λ, λ 2 λ λ =0.2 α λ = 1 β 2 α = ( ) 1.44 Δw 1+1.91 t β = η =1 Δw

Q =[, 25, 16] Δw = t Q r t χ χ = χ λ λ (χ 1), λ λ, χ λ alpha α =3 α = α α 3 α =0.06 + ( Δw 1+2.7 t ) 5

σ, σ,

u v x y w z w x y w = f(x, y), 0 <x<l, 0 <y<p w(x, 0) = w(x, p ) w(x, 0) x = w(x, p ) x

l, n = p l,, n N n /n n /n =4 n /n f (x) =0.42 (2πx)+0.08 (4πx) 0 x 1

n = n 2 l = 2π n w (θ) = (n θ) l = l n ( 2π ( z l 2 w (z) = n l )) l = l n = n l 2π n = n l 4π ( w (θ, z) =Δw w w f θ ( z ) 2π) f l ( 2π ( )) z l ( 2 =Δw (n θ) n f θ ( z ) l 2π) f l

jxkx AKTH2K2Mi ibqm a jr b a b a - imperfection wave b - windowing l U V ~ i T ii2`mx U#V j. K2b?X 6B;m`2 jxr, SH i2 #m+fhbm; `2H i2/ BKT2`72+iBQMb QM /2+ ;QM H bt2+bk2mx jxkxk.bbiq`ibqm H BKT2`72+iBQMb b /BbiQ`iBQM H BKT2`72+iBQMb `2 mm/2`biqq/ i?qb2 T ii2`mb i? i i` Mbp2`b2 i?2 2/;2b Q7 i?2 _*SaX h?`22 ivt2b Q7 /BbiQ`iBQM H BKT2`72+iBQMb `2 7Q`KmH i2/- /2`Bp2/ 7`QK i?2 i?`22 +QHH Tb2 KQ/2b /2b+`B#2/ T`2pBQmbHvX h?2 bbm;h2 M/ i?2 /Qm#H2 btbhhqp2` ivt2b? p2 #Qi? r p2h2m;i? Q7 9 7 +2ib #mi i?2v? p2 T? b2 /Bz2`2M+2 Q7? H7 7 +2i QM i?2 +B`+mK72`2M+2X at2+b}+ HHv- i?2 /Qm#H2 btbhhqp2` KQ/2-? b +B`+mK72`2MiB H MQ/2b BM i?2 KB//H2 Q7 7 +2ib- bbkbh ` iq i?2 T ii2`m /2b+`B#2/ #v "mhbqm (Rj)X h?2b2 irq KQ/2b + M HbQ #2 +QMbB/2`2/ b `?QK#B+ T ii2`m- bbkbh ` iq i?2 /B KQM/@ b? T2/ +QHH Tb2 Q7 +vhbm/`b+ H b?2hhb- (jj)x n+ = np 4 UjXR9V 2π n+ UjXR8V w+,r (θ) = bbm (n+ θ) UjXReV l+ = lk = w+,k (θ) = bbm n+ θ + π n+ UjXRdV h?2 `2bmHi2/ T ii2`mb `2 BHHmbi` i2/ BM };bx jxk M/ jxj 7Q` i?2 bbm;h2 M/ i?2 /Qm#H2 btbhhqp2` + b2b `2bT2+iBp2HvX

jk AKT2`72+iBQMb a b a b a - imperfection wave b - windowing l U V ~ i T ii2`mx U#V j. K2b?X 6B;m`2 jxk, abm;h2 btbhhqp2` BKT2`72+iBQMb QM /2+ ;QM H bt2+bk2mx a b a b a - imperfection wave b - windowing l U V ~ i T ii2`m 7Q` a>ax U#V j. K2b? Q7 /2+ ;QM H bt2+bk2mx 6B;m`2 jxj,.qm#h2 btbhhqp2` BKT2`72+iBQMb QM /2+ ;QM H bt2+bk2mx

n =2 l = l = 2π n w (θ) = (n θ) a b a b a - imperfection wave b - windowing l

n = n /2 n =2 b /200 b /100 U 0.006 U 0.010 U 0.016 U = Δw l

l =4 rt l =25t

l 150

n p

n p 46 12 2 3 4 = 13248 46 12 2 3 6 = 19872 n p = b εt n p 46 12 = 552 n p E = ε

50 30 0 1200 1000 800 0 10 0 10 20 30 10 1200 1000 800 0 σ 50 30 10 20 30 0.7 0.2 0.3 10 20 30 0.7 0.4 0.3 0.2 σ /σ, n p n

n,p σ σ 50 30 10 1200 800 10 20 30 0 σ 3000 2500 2000 1500 1000 500

9X8X :2QK2i`B+ MQM@HBM2 ` 9j U V np = 10, p+ = 57 U#V np = 24, p+ = 57 U+V np = 10, p+ = 30, U/V np = 24, p+ = 30 6B;m`2 9X9, :L /BbTH +2K2Mi }2H/b i mhibk i2 HQ /X *QHQm` K T p Hm2b BM JS X U V np = 5, p+ = 48, NK t = jj 9yy FL- U#V np = 6, p+ = 51, NK t = jk 8yy FL 6B;m`2 9X8, hrq 2/;2 + b2b Q7 bb;mb}+ MiHv 2H2p i2/ `2bBbi M+2X *QHQm` K T p Hm2b BM JS X

2.4 50 30 2.0 1.6 1.6 1.6 10 20 30 3.0 2.5 2.0 1.5 σ /σ σ σ x, y, z σ

Plate imp. 50 2.7 1.8 2.1 2.1 2.4 1.8 1.5 1.8 Single spillover imp. 2.5 30 1.5 2.0 10 20 30 Double spillover imp. 10 20 30 Multiple spillover imp. 1.5 50 30 10 20 30 10 20 30 σ /σ

1.81.8 1.8 50 30 50 30 2.7 2.1 2.1 2.4 1.5 1.8 Plate imp. 10 20 30 Double spillover imp. 0.4 10 20 30 0.4 1.6 Single spillover imp. 0.4 10 20 30 Multiple spillover imp. 10 20 30 0.4 2.5 2.0 1.5 σ σ 50 30 50 30 1.8 2.42.4 2.12.1 1.5 1.5 1.5 Plate imp. 10 20 30 Double spillover imp. 2.0 1.8 1.5 1.5 10 20 30 1.8 1.5 1.6 Single spillover imp. 10 20 30 Multiple spillover imp. 0.4 10 20 30 2.5 2.0 1.5 σ /σ

n < 7 σ σ /f

93 LmK2`B+ H bbkmh ibqmb U V np = 10, p+ = 30- U#V np = 10, p+ = 57 U+V np = 24, p+ = 30- U/V np = 24, p+ = 57 6B;m`2 9XRy, 1t KTH2b Q7 K tbkmk HQ / bi i2- :JL rbi? aj88x U V np = 10, p+ = 30 U#V np = 10, p+ = 57 U+V np = 24, p+ = 30 U/V np = 24, p+ = 57 6B;m`2 9XRR, 1t KTH2b Q7 K tbkmk HQ / bi i2- :JL rbi? adyyx

50 30 00 S355 75 10 20 30 S700 00 80 10 20 30 0.720 1.1 0.7 σ /f ε λ =0.15

6 50 8 4 0.76 Plate imp. 8 0.72 Single spillover imp. 0.7 0.4 30 50 30 2 Double spillover imp. 8 6 4 0.4 0.48 0.72 8 Multiple spillover imp. 8 4 0.72 0.7 0.4 σ f 50 30 50 30 0.75 5 5 Plate imp. Double spillover imp. 0.7 5 0.7 0.4 Single spillover imp. 0.7 0.4 Multiple spillover imp. 6 8 4 0.72 6 0.3 0.7 0.4 0.3 σ f

n p n p p n n > 30 f

50 0.72 S355, fca 6 0.48 0.4 S700, fca 0.4 30 50 30 50 30 8 4 10 20 30 S355, fcb 4 8 0.72 4 0.4 0.48 10 20 30 S355, fcc σ, f 0.72 4 6 0.4 10 20 30 6 0.48 0.7 10 20 30 S700, fcb 0.7 0.4 0.3 10 20 30 S700, fcc 0.7 0.3 0.4 10 20 30 n =18 0.7 0.4 0.3 n p n p f n p

10 <n < 28 n =18 n =18 n =18 n =18 N,, γ =

1.4 1.61.61.8 N,, γ =1.1 50 30 1.1 1.4 1.4 S355, fca 1.4 10 20 30 S355, fcb 50 1.61.4 1.6 1.6 1.6 1.4 1.1 1.1 1.1 1.4 1.1 S700, fca 1.3 10 20 30 S700, fcb 1.5 1.4 1.1 1.1 1.1 1.6 1.4 30 50 30 2.1 1.5 10 20 30 S355, fcc 2.1 1.8 1.5 10 20 30 1.4 1.4 10 20 30 S700, fcc 1.4 10 20 30 N, N,

00 50 30 50 30 50 30 80 00 1.120 S355, fca 1.120 00 80 10 20 30 S355, fcb 1.120 00 1.120 10 20 30 S355, fcc 00 N, N,, 00 10 20 30 00 1.120 00 80 S700, fca 10 20 30 S700, fcb 1.120 00 10 20 30 S700, fcc 00 00 10 20 30 00 1.120 80 1.800 00 1.3 2.0 1.8 1.6 1.4 S355, fca S700, fca 50 30 50 30 50 30 N, N,, 80 80 00 0.720 10 20 30 S355, fcb 80 00 0.720 0.480 10 20 30 S355, fcc 00 0.720 0.480 10 20 30 80 80 00 0.720 0.480 10 20 30 S700, fcb 80 0.720 0.480 0.0 10 20 30 S700, fcc 0.720 00 0.480 10 20 30 0.0 0.7 0.4

n =20 p =42 σ, f n > 20

100% (double spillover) 20% 80% 0.7 0.4 6 4 0.48 8 0.72 % % 6 4 % % 0.72 0.78 6 0.7 8 0.72 4 4 80% 20% 0.76 0.72 8 0.72 8 4 100 (plate) 0.76 8 0.72 0.4 2 2 σ, f

1.1 1.1 0% 100% 0.7 1.1 1.1 20% 80% 1.3 1.1 2.0 1.8 5 1.1 % % 1.1 1.4 1.4 1.3 80% 20% 5 1.35 1.65 1.5 5 % % 1.1 1.4 1.5 1.3 100% 0% 5 1.35 1.5 1.4 1.5 1.65 1.8 1.6 1.4 N, N,

50 30 10 20 30 fab. class A fab. class B fab. class C eq. (4.1) 10 20 30 n = ξ + p 27, 27 p ζ ζ = (364U 2 5U +0.021) 10 3 ξ =24 0.02f [ Δw U =, Δw ] l l f f n p b /t p ε n p

n 20

n 12 p > n =16 n

n =12 n =25 n p n =[16, 20, 24] p =[30,, 50]

50 30 10 20 30 fca fcb fcc n p t r

750 500 250 0 750 500 Stress, σeng [MPa] 250 0 750 500 250 0 cp3 0.0 2.5 5.0 7.5 10.0 12.5 15.0 Strain, ε eng [%]

f f f

1.5 Perimeter, [mm] 0.0 0 100 200 300 0 500 0 700 Height, z coordinate [mm]

700 0 500 0 z 300 200 100 0 100 50 0 50 x 100 0 50 100 D Fitted circle 100 50 y B2 Scanned points C Fitted plane B1 A

Deviation, w [mm] 0 100 200 300 0 500 0 700 Height, z coordinate [mm]

200 EN 1993-1-5 150 bf w 100 EN 1990-2 50 0 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 b /Δw b /200 b /100 l =2b 2b 2b l /750

1000 800 Bow imp. limit 0 l f w 0 200 0 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 Fab. class A Fab. class B Fab. class C l =2b Δw l /2 l /

0 200 0 0 0 200 0 0 original windowed Amplitude, Δw [mm] 0.0 0.4 0.2 original windowed 0.0 0.003 Δw lm 0.002 0.001 0.000 2 10 20 30 2 10 20 30 l Total length to half-wavelength ratio, l m

1500 Original 1250 l f w 1000 750 Bow imp. limit 500 250 0 00 Windowed Fab. classes A, B, C 3000 l f w 2000 1000 0 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 Bow imp. limit Fab. classes A, B, C l /Δw

welds Specimens 1, 2, 3 02 04 06 08 10 12 14 16 Specimens 4, 5, 6 02 07 12 17 Specimens 7, 8, 9 02 05 08 11 14 17 20 23

3y 1tT2`BK2Mib 6B;m`2 8XR8,.Bb bb2k#h2/ bt?2`b+ H #2 `BM;X 6B;m`2 8XRe, JQmMiBM; bt2+bk2m QM i?2 i2bibm; 7` K2 rbi? i?2 7Q`F HB7i2`X

N f r γ = γ =1.1 σ

f n =16 n =20 n =24 f n =16

0.75 SP3 =16 0 p c =47.5 0.25 0.00 SP6 =20 p c =51.4 SP9 =24 p c =51.8 σ fy Average stress, 0.75 0 0.25 0.00 SP2 =16 p c =37.5 SP5 =20 p c =38.0 SP8 =24 p c =41.1 0.75 SP1 =16 0 p c =27.5 0.25 SP4 =20 p c =27.9 SP7 =24 p c =28.2 0.00 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 Average strain, ε [%] 0.0 0.1 0.2 0.3 0.4

σ p, r, b, N, f n N, N N, N, N, N, σ p, r, b, N, f, N N, N, N, N,

Load, F [KN] 2000 1000 0 12C 12F 0.0 0.1 0.2 0.3 0.4 Strain, ε [%] 02C 02F 0.0 0.1 0.2 0.3 0.4 Strain, ε [%] 1000 500 0 1.6 1.4 N exp N b,rk,plt 10 20 30 N exp N b,rk,shl 10 20 30 110 100 90 80 70 p c 50 30 Bulson Aoki Harraq Godat Anas Manoleas

p 110 n > 20 n 10 n 10

n p f U n κ, n >κ, κ = ξ + p 27, ζ 27 p 4.1, ζ = 7.4, 34.2, ξ =24 0.02f f f

n p f U

50 4 0.72 Plate imp. 8 0.76 Single spillover imp. 0.4 30 8 4 Double spillover imp. 0.7 Multiple spillover imp. 0.7 50 30 0.7 0.4 0.7 0.4 0.4 0.3 σ GMNIA f y

50 30 50 30 0.76 8 Plate imp. 4 0.72 4 8 Double spillover imp. 0.7 0.4 0.3 0.7 Single spillover imp. 0.4 Multiple spillover imp. 0.7 0.3 0.4 0.7 0.4 0.3 σ GMNIA f y 50 30 50 30 5 5 Plate imp. 0.75 5 5 0.7 Double spillover imp. 0.7 0.3 0.4 Single spillover imp. 0.7 0.4 0.3 Multiple spillover imp. 0.7 0.4 0.7 0.4 0.3 σ GMNIA f y

50 30 50 30 0.7 5 Plate imp. 5 0.75 Double spillover imp. 0.7 0.3 0.4 0.75 Single spillover imp. 0.7 0.3 0.4 Multiple spillover imp. 0.75 0.45 0.3 0.7 0.4 0.3 σ GMNIA f y

100% (double spillover) 20% 80% 0.72 0.7 0.4 % % 6 0.4 0.48 0.72 0.7 0.4 % % 4 6 0.7 8 4 8 0.7 5 80% 20% 0.75 5 4 8 0.72 100 (plate) 8 0.76 4 0.4 0.3 σ, f

0.7 100% (double spillover) 0.7 20% 80% 0.4 % % 0.4 0.4 % % 0.7 4 6 0.48 0.7 0.72 8 0.7 5 80% 20% 5 0.75 8 0.72 100 (plate) 4 0.76 4 8 0.4 0.3 σ, f

100% (double spillover) 0.3 20% 80% 0.7 0.4 % % 0.7 0.4 0.72 % % 6 0.4 0.7 0.48 0.7 0.72 80% 20% 4 6 6 0.75 5 8 4 100 (plate) 0.7 5 0.4 6 8 5 0.3 σ, f

100% (double spillover) 0.7 0.4 % % 0.3 20% 80% 0.7 0.3 0.4 % % 0.7 0.4 0.4 0.7 0.7 0.72 80% 20% 6 5 100 (plate) 0.75 5 5 0.7 0.4 8 4 5 0.3 σ, f

100% (double spillover) 0.3 0.7 20% 80% 0.3 0.7 0.4 0.4 0.7 % % 0.3 % % 0.7 0.4 0.7 0.4 8 80% 20% 6 0.72 0.48 4 0.7 100 (plate) 5 5 0.75 0.4 0.3 σ, f

50 30 50 30 50 30 00 50 0% 100% 0.750 00 50 10 20 30 % % 50 00 50 10 20 30 80% 20% 00 00 00 00 1.350 1.800 10 20 30 00 50 00 50 20% 80% 0.750 00 00 50 10 20 30 % % 00 1.350 50 1.500 10 20 30 100% 0% 00 00 10 20 30 2.200 2.000 1.800 1.650 2.25 2.00 1.75 1.50 5 0 0.75 N, N,

00 00 1.350 50 30 50 30 50 30 1.350 00 50 0% 100% 00 0.0 00 0.750 50 10 20 30 % % 50 0.750 1.500 00 50 10 20 30 80% 20% 00 00 1.500 50 00 1.750 2.000 10 20 30 1.350 00 00 50 20% 80% 0.750 10 20 30 % % 50 00 00 1.350 50 00 50 00 1.500 10 20 30 100% 0% 00 00 1.500 50 1.750 2.000 10 20 30 N, N, 2.2502.500 1.650 2.5 2.0 1.5

00 1.350 50 30 1.120 0% 100% 20% 80% 0.720 00 80 10 20 30 % % 50 1.120 00 80 80 80 1.120 80 1.120 00 80 1.120 10 20 30 % % 00 00 1.100 00 00 2.2 2.0 1.8 1.6 1.4 30 50 30 50 10 20 30 80% 20% 50 00 1.650 1.500 10 20 30 1.300 10 20 30 100% 0% 00 00 00 2.000 1.800 10 20 30 N, N,

1.65 1.1 1.3 0% 100% 1.1 1.1 0.7 1.1 1.1 % % 1.1 1.3 1.3 1.3 1.3 1.1 1.1 20% 80% 0.7 1.1 % % 1.3 1.1 1.4 1.6 1.5 2.75 2.50 2.25 2.00 1.75 1.50 80% 20% 1.1 1.1 100% 0% 5 5 1.35 1.35 5 1.5 1.8 5 1.5 1.75 2.02.25 2.5 2.5 0 0.75 N, N,

5 2.0 0% 100% 5 0.75 5 5 20% 80% 0.75 5 5 1.35 3.0 5 % % 0.75 5 1.35 1.35 1.35 5 5 % % 1.35 5 1.5 1.35 1.5 1.65 2.5 2.0 80% 20% 100% 0% 2.8 1.5 1.6 5 1.5 1.5 1.75 2.0 2.0 2.4 N, N,

SP1 SP2 SP3 t =

SP4 SP5 SP7 t =

SP6 SP8 SP9 t =