Εισαγωγή στη Στατιστική

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στη Στατιστική"

Transcript

1 Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο.

2 Περιεχόμενα Εισαγωγή στη Στατιστική Επιδημιολογικές Μελέτες Περιγραφική Στατιστική Στατιστική Συμπερασματολογία Ένα Δείγμα Δύο Ανεξάρτητα Δείγματα Δείγματα κατά Ζεύγη Ποσοστά Έλεγχος Καλής Προσαρμογής Πίνακες Συνάφειας 2 2. Ανάλυση Παλινδρόμησης Ανάλυση Διασποράς Στατιστική Συμπερασματολογία 2 Δημήτρης Φουσκάκης

3 Εισαγωγικά Όπως είδαμε και στην εισαγωγή, στην Στατιστική συνήθως ενδιαφερόμαστε να εκτιμήσουμε ένα άγνωστο μέγεθος, το οποίο καλείται παράμετρος και το οποίο συνήθως συνοψίζει κατά κάποιον τρόπο τις τιμές της υπό μελέτης μεταβλητής στον πληθυσμό, π.χ. τη μέση της τιμή. Η εκτίμησή μας γίνεται με την βοήθεια κατάλληλα επιλεγμένων δειγματοσυναρτήσεων, συναρτήσεων δηλαδή του δείγματος, οι οποίες καλούνται (σημειακές) εκτιμήτριες. Ο τρόπος επιλογής εκτιμητριών γίνεται είτε (α) με βάση την λογική, π.χ. αν θέλουμε να εκτιμήσουμε την μέση τιμή στον πληθυσμό μας ακούγεται λογικό να χρησιμοποιήσουμε ως εκτιμήτρια την μέση τιμή του δείγματος (plug in principle), είτε (β) με βάση διάφορες ιδιότητες, π.χ. η εκτιμήτρια μας θέλουμε να έχει μέση τιμή ίση με την ποσότητα όπου εκτιμά (αμεροληψία) είτε (γ) με βάση κάποιο κριτήριο κατασκευής (π.χ. εκτιμήτριες μέγιστης πιθανοφάνειας). Να υπενθυμίσουμε εδώ ότι οι εκτιμήτριες ως δειγματοσυναρτήσεις είναι τυχαίες μεταβλητές και άρα η ίδια εκτιμήτρια συνήθως παίρνει άλλη τιμή όταν παρατηρούμε άλλα δεδομένα. Συνήθως θέλουμε η εκτιμήτριά μας να έχει μικρή μεταβλητότητα (δηλαδή διασπορά), έτσι ώστε το τυπικό σφάλμα εκτίμησης (η τυπική απόκλιση της εκτιμήτριας) να είναι μικρό, δηλαδή οι τιμές της εκτιμήτριας μας να μην μεταβάλλονται πολύ από δείγμα σε δείγμα. Στατιστική Συμπερασματολογία 3 Δημήτρης Φουσκάκης

4 Σημειακές Εκτιμήσεις Παράμετρος Εκτιμήτρια Μέση Τιμή Πληθυσμού Δειγματικός Μέσος Διασπορά Πληθυσμού Δειγματική Διασπορά Ποσοστό Πληθυσμού Σχετική Συχνότητα Στατιστική Συμπερασματολογία 4 Δημήτρης Φουσκάκης

5 Διαστήματα Εμπιστοσύνης Οι (σημειακές) εκτιμήσεις δεν μας δίνουν κάποια πληροφορία σχετικά με την ακρίβεια ή το σφάλμα εκτίμησης. Είναι λοιπόν χρήσιμο να προσδιορίσουμε, μέσω των εκτιμητριών και των τυπικών τους σφαλμάτων, ένα διάστημα το οποίο θα περιέχει την άγνωστη τιμή της παραμέτρου θ με καθορισμένη πιθανότητα, έστω γ. Σκοπός μας δηλαδή είναι να βρούμε δυο ποσότητες u και v (u<v) έτσι ώστε η πιθανότητα (u θ v)=γ=1-α. Το [u,v] καλείται διάστημα εμπιστοσύνης (Δ.Ε.) με συντελεστή εμπιστοσύνης (σ.ε.) γ=1-α. Το διάστημα εμπιστοσύνης του θ προσδιορίζεται με βάση την κατανομή της εκτιμήτριας του θ από το τυχαίο δείγμα, συνεπώς οι τιμές u και v είναι τυχαίες μεταβλητές. Αυτό σημαίνει ότι από διαφορετικό δείγμα ίδιου μεγέθους ενδέχεται να προκύψουν διαφορετικά Δ.Ε. για το θ. Στατιστική Συμπερασματολογία 5 Δημήτρης Φουσκάκης

6 Διαστήματα Εμπιστοσύνης Το εύρος του Δ.Ε. εξαρτάται από το τυπικό σφάλμα της εκτιμήτριας του θ και τον συντελεστή εμπιστοσύνης. Όσο μεγαλύτερο είναι το τυπικό σφάλμα της εκτιμήτριας του θ τόσο μεγαλύτερο εύρος έχει το Δ.Ε. Επίσης όσο μεγαλύτερο συντελεστή εμπιστοσύνης έχουμε τόσο μεγαλύτερο εύροςέχειτοδ.ε. Το τυπικό σφάλμα των εκτιμητριών είναι αντιστρόφως ανάλογο του μεγέθους του δείγματος n. Συνεπώς όσο το n αυξάνει τόσο το εύρος του Δ.Ε. θα μειώνεται. Στατιστική Συμπερασματολογία 6 Δημήτρης Φουσκάκης

7 Διαστήματα Εμπιστοσύνης Η πραγματική ερμηνεία ενός Δ.Ε. με σ.ε. γ είναι η ακόλουθη. Σε μια σειρά κατασκευών διαστημάτων εμπιστοσύνης μιας παραμέτρου, με ανεξάρτητα δείγματα του αυτού μεγέθους, ένα ποσοστό 100 γ% των διαστημάτων αυτών αναμένεται να περιέχουν την αληθή τιμή της παραμέτρου θ. Στατιστική Συμπερασματολογία 7 Δημήτρης Φουσκάκης

8 Διαστήματα Εμπιστοσύνης Repetitions Confidence Intervals Στατιστική Συμπερασματολογία 8 Δημήτρης Φουσκάκης

9 Έλεγχοι Υποθέσεων Στατιστική υπόθεση ονομάζεται κάθε υπόθεση που αφορά στην κατανομή μιας τυχαίας μεταβλητής Χ. Συνήθως μια υπόθεση αφορά στην άγνωστη παράμετρο, έστω θ της κατανομής της τυχαίας μεταβλητής Χ. Παράδειγμα 1. Έστω Χ η συστολική πίεση υγιών γυναικών. Ενδιαφερόμαστε να ελέγξουμε αν η μέση τιμή της τυχαίας μεταβλητής Χ, έστω μ, είναι 100 mm Hg, δηλαδή να ελέγξουμε αν ισχύει η μηδενική υπόθεση Η 0 : μ=100 με εναλλακτική υπόθεση την Η 1 : μ 100. Η απόφασή μας για το αν θα απορρίψουμε ή όχι την μηδενική υπόθεση θα γίνει με βάση τα δεδομένα μας. Λογική Ελέγχου Υποθέσεων: Αθώος (Η 0 σωστή) μέχρι αποδείξεως του εναντίου (Η 0 λανθασμένη). Άρα ή θα έχουμε αρκετές ενδείξεις από τα δεδομένα για να απορρίψουμε την μηδενική υπόθεση ή δεν θα έχουμε αρκετές ενδείξεις και δεν μπορούμε να την απορρίψουμε. Στατιστική Συμπερασματολογία 9 Δημήτρης Φουσκάκης

10 Έλεγχοι Υποθέσεων Ο έλεγχος καλείται αμφίπλευρος. Οι έλεγχοι H :θ H :θ H :θ H :θ = θ > θ = θ θ H :θ= θ H :θ< θ καλούνται μονόπλευροι. Στατιστική Συμπερασματολογία 10 Δημήτρης Φουσκάκης

11 Έλεγχοι Υποθέσεων Για τον έλεγχο μιας (στατιστικής) υπόθεσης υπολογίζουμε το στατιστικό ελέγχου (test statistic). Συνήθως το στατιστικό ελέγχου είναι της μορφής ( Εκτιμή τρια του θ) (Τιμή του θ με βάση την Η ) Τυπικό Σφάλμα Εκτιμήτριας του θ Παρατηρήστε ότι το στατιστικό ελέγχου είναι μια δειγματοσυνάρτηση. Αυτό σημαίνει ότι από διαφορετικό δείγμα ίδιου μεγέθους ενδέχεται να προκύψουν διαφορετικές τιμές για την παραπάνω παράσταση. 0 Στατιστική Συμπερασματολογία 11 Δημήτρης Φουσκάκης

12 Έλεγχοι Υποθέσεων Εν συνεχεία χωρίζουμε τον παραμετρικό χώρο σε περιοχή αποδοχής (οι τιμές του στατιστικού ελέγχου για τις οποίες δεν απορρίπτουμε την Η ο ) και σε κρίσιμη περιοχή (οι τιμές του στατιστικού ελέγχου για τις οποίες απορρίπτουμε την Η ο ). Ο εν λόγω διαχωρισμός του παραμετρικού χώρου εξαρτάται πέραν της τιμής του στατιστικού ελέγχου και από μια πιθανότητα α την οποία καλούμε επίπεδο σημαντικότητας του ελέγχου και ισούται με την πιθανότητα σφάλματος τύπου Ι. Στατιστική Συμπερασματολογία 12 Δημήτρης Φουσκάκης

13 Έλεγχοι Υποθέσεων Πραγματικότητα Απόφαση H 0 Αληθής H 1 Αληθής Δεν απορρίπτω H 0 Σωστή Απόφαση Σφάλμα Τύπου ΙΙ (πιθανότητα β) Απορρίπτω H 0 Σφάλμα Τύπου Ι (πιθανότητα α) Σωστή Απόφαση α = P(σφάλμα τύπου Ι) = P(απορρίπτω Η ο Η 0 σωστή) β = P(σφάλμα τύπου ΙΙ) = P(δεν απορρίπτω Η ο Η 1 σωστή) Στατιστική Συμπερασματολογία 13 Δημήτρης Φουσκάκης

14 Έλεγχοι Υποθέσεων Επιλέγουμε την κρίσιμη περιοχή έτσι ώστε να ελαχιστοποιούνται οι πιθανότητες των 2 ειδών σφαλμάτων. Κάτι τέτοιο δεν είναι πάντοτε εφικτό, οπότε στην πράξη κρατάμε το α σταθερό (π.χ. α=0.05) και ελαχιστοποιούμε το β. Η πιθανότητα P(απορρίπτω Ηο Η 1 σωστή) = 1-β καλείται ισχύς του ελέγχου. Στατιστική Συμπερασματολογία 14 Δημήτρης Φουσκάκης

15 Έλεγχοι Υποθέσεων 1. Ορίζουμε τη μηδενική και την εναλλακτική υπόθεση με βάση το ερευνητικό μας ερώτημα. 2. Υπολογίζουμε το στατιστικό ελέγχου για τα δεδομένα μας. 3. Ορίζουμε την κρίσιμη περιοχή με βάση την προκαθορισμένη πιθανότητα σφάλματος τύπου Ι α. 4. Αν η τιμή του στατιστικού μας ελέγχου ανήκει στην κρίσιμη περιοχή απορρίπτουμε την μηδενική υπόθεση, αλλιώς δεν έχουμε με βάση τα δεδομένα σοβαρές ενδείξεις για να την απορρίψουμε. Στατιστική Συμπερασματολογία 15 Δημήτρης Φουσκάκης

16 Έλεγχοι Υποθέσεων Στο παράδειγμα 1 θέλουμε να ελέγξουμε αν η μέση συστολική πίεση των υγιών γυναικών είναι 100 mm Hg με εναλλακτικήότιδενείναι. Έχουμε δηλαδή, σε ε.σ. έστω α, τον εξής έλεγχο: H 0 :μ = 100 H :μ 100. Από τυχαίο δείγμα 50 τέτοιων γυναικών έστω ότι η δειγματική μέση τιμή προέκυψε 107 mm Hg. Το ερώτημα λοιπόν είναι αν η διαφορά αυτή μεταξύ της τιμής του δείγματος και της υποτιθέμενης τιμής των 100 mm Hg μας δίνει σοβαρές ενδείξεις εναντίον της Η 0 ή αν πιστεύουμε ότι προήλθε στην τύχη λόγω του συγκεκριμένου τυχαίου δείγματος που επιλέξαμε. Προφανώς όσο μεγαλύτερο είναι το τυπικό σφάλμα της εκτιμήτριας που χρησιμοποιούμε τόσο πιο εύκολα πιστεύουμε ότι η παρατηρούμενη αυτή διαφορά μπορεί να προέκυψε στην τύχη. Στατιστική Συμπερασματολογία 16 Δημήτρης Φουσκάκης 1

17 Έλεγχοι Υποθέσεων Υπολογίζουμε λοιπόν το στατιστικό ελέγχου X 100 X 100 Z = =. SE(X) σ / n Αν υποθέσουμε ότι γνωρίζουμε την τυπική απόκλιση του πληθυσμού, έστω σ=16 mm Hg, τότε το παραπάνω στατιστικό για το συγκεκριμένο δείγμα παίρνει την τιμή x z= = = σ / n 16/ 50 Στατιστική Συμπερασματολογία 17 Δημήτρης Φουσκάκης

18 Έλεγχοι Υποθέσεων Το ερώτημα λοιπόν είναι ποια είναι η πιθανότητα αν είχαμε κάποιο άλλο δείγμα να παρατηρούσαμε μια τιμή τόσο ακραία ή και ακόμα περισσότερο από το z=3.09. Επειδή ο έλεγχος μας είναι αμφίπλευρος ως ακραία θεωρούμε οποιαδήποτε τιμή που είναι >3.09 ή < Άρα αρκεί να βρούμε την περιοχή (πιθανότητα) κάτω από την κατανομή της τ.μ. Ζδεξιάτου3.09 και αριστερά του και να τις προσθέσουμε. Από την θεωρία Πιθανοτήτων ξέρουμε ότι κάτω από την μηδενική υπόθεση η τ.μ. Ζ ακολουθεί την τυποποιημένη Κανονική κατανομή. Στατιστική Συμπερασματολογία 18 Δημήτρης Φουσκάκης

19 Έλεγχοι Υποθέσεων ΑπότουςπίνακεςτηςΚανονικήςκατανομήςβρίσκουμεότι Στατιστική Συμπερασματολογία 19 Δημήτρης Φουσκάκης

20 Έλεγχοι Υποθέσεων Η πιθανότητα λοιπόν να παρατηρήσουμε μια τιμή τόσο ακραία ή και ακόμα περισσότερο από το z =3.09, δηλαδή η πιθανότητα της περιοχής δεξιά από το 3.09 συν την πιθανότητα της περιοχής αριστερά από το -3.09, είναι περίπου Άρα κάτω από την μηδενική υπόθεση η τιμή του δειγματικού μέσου 93 mm Hg είναι πάρα πολύ απίθανη και άρα έχουμε πολύ σοβαρές ενδείξεις εναντίον της μηδενικής υπόθεσης, και οπότε την απορρίπτουμε. Η παραπάνω πιθανότητα καλείται P-τιμή του ελέγχου. Προσοχή! Η P-τιμή του ελέγχου δεν είναι η πιθανότητα η μηδενική υπόθεση να είναι αληθής. Η P-τιμή του ελέγχου είναι η πιθανότητα το στατιστικό ελέγχου που χρησιμοποιούμε να πάρει σε κάποιο άλλο δείγμα μία τόσο ακραία ή και ακόμα περισσότερο τιμή με αυτή που έχουμε παρατηρήσει, δεχόμενοι την μηδενική υπόθεση. Συνήθως όταν η P-τιμή < α απορρίπτουμε την μηδενική υπόθεση. Στατιστική Συμπερασματολογία 20 Δημήτρης Φουσκάκης

21 Έλεγχοι Υποθέσεων Αν θέλουμε για το εν λόγω παράδειγμα να δημιουργήσουμε την κρίσιμη περιοχή σε ε.σ. έστω α=0.05 θα ήταν λογικό να είχαμε τον εξής κανόνα για το στατιστικό ελέγχου μας: Απορρίπτω την Η 0 αν: Z<-z α/2 ή z > z α/2 Στατιστική Συμπερασματολογία 21 Δημήτρης Φουσκάκης

22 Έλεγχοι Υποθέσεων Κρίσιμη Περιοχή Κρίσιμη Περιοχή -z α/2 z α/2 Στατιστική Συμπερασματολογία 22 Δημήτρης Φουσκάκης

23 Έλεγχοι Υποθέσεων Για α=0.05 εύκολα βρίσκουμε από τους πίνακες της τυποποιημένης Κανονικής κατανομής ότι z =1.96. Άρα z=-3.03<-z =-1.96 οπότε απορρίπτουμε την μηδενική υπόθεση. Ισοδύναμα θα μπορούσαμε να κατασκευάζαμε ένα συμμετρικό 95% Δ.Ε. για το μ, το οποίο δεν είναι τίποτα άλλο από την περιοχή αποδοχής του αμφίπλευρου ελέγχου: x z σ / n, x + z σ / n = ( / 50, / 50) = ( α/2 α/2 ) = (102.56,111.44) Παρατηρούμε ότι το παραπάνω ΔΕ δεν περιέχει την υποτιθέμενη τιμή με βάση την Η 0 των 100 mm Hg και άρα οδηγούμαστε στο συμπέρασμα να απορρίψουμε την Η 0. Στατιστική Συμπερασματολογία 23 Δημήτρης Φουσκάκης

24 Ένα δείγμα Έλεγχος για την μέση τιμή μιας ποσοτικής μεταβλητής: Ας υποθέσουμε ότι έχουμε μια τυχαία μεταβλητή Χ από πληθυσμό με μέση τιμή μ και διασπορά σ 2 (μ, σ 2 άγνωστα) και ενδιαφερόμαστε να ελέγξουμε την υπόθεση Η 0 : μ = μ 0 έναντι της Η 1 : μ μ 0 σε ε.σ. α. Έστω Χ 1,...,Χ n τυχαίο δείγμα. Το στατιστικό ελέγχου μας τότε είναι X X Z μ μ = = SE(X) σ / n 0 0 το οποίο ακολουθεί την Ν(0,1). Επειδή το σ είναι άγνωστο το εκτιμούμε από την δειγματική τυπική απόκλιση S και το στατιστικό ελέγχου γίνεται X μ Τ = S/ n Στατιστική Συμπερασματολογία 24 Δημήτρης Φουσκάκης 0 ~St(n 1).

25 Ένα δείγμα Απαραίτητη προϋπόθεση για τα παραπάνω είναι τα δεδομένα μας να είναι Κανονικά κατανεμημένα ή το μέγεθος του δείγματος είναι μεγάλο (n>50). Στην περίπτωση μάλιστα που το μέγεθος του δείγματος είναι μεγάλο η κατανομή του Student προσεγγίζεται από την Κανονική κατανομή, οπότε μπορούμε να θεωρήσουμε ότι το Τ ακολουθεί την Ν(0,1). Με βάση λοιπόν τους πίνακες της Student κατανομής (ή τηςν(0,1) για μεγάλο δείγμα) μπορούμε να βρούμε την P-τιμή του παραπάνω ελέγχου. Ο εν λόγω έλεγχος καλείται one sample t-test. Αν το μέγεθος του δείγματος δεν είναι μεγάλο και δεν ισχύει η κανονικότητα, τότε ή μετασχηματίζουμε κατάλληλα τα δεδομένα ώστε να επιτευχθεί η κανονικότητα ή χρησιμοποιούμε τον αντίστοιχο μη παραμετρικό έλεγχο όπως θα δούμε παρακάτω. Ισοδύναμα με τον παραπάνω αμφίπλευρο έλεγχο θα μπορούσαμε να κατασκευάζαμε ένα συμμετρικό (1-α)% Δ.Ε. για το μ, και να ελέγχαμε αν η υποτιθέμενη τιμή μ 0 ανήκει στο εν λόγω διάστημα. ( x t ) n 1, α/2s/ n, x+ tn 1, α/2s/ n Στατιστική Συμπερασματολογία 25 Δημήτρης Φουσκάκης

26 Ένα δείγμα Η P-τιμή για τον εν λόγω έλεγχο προκύπτει με βάση την εναλλακτική υπόθεση: Αν Η 1 : μ μ 0 τότε η P-τιμή είναι 2 φορές η πιθανότητα δεξιά του Τ (ή ισοδύναμα2 φορές η πιθανότητα αριστερά του - Τ ). Αν Η 1 : μ > μ 0 τότε η P-τιμή είναι πιθανότητα δεξιά του Τ. Αν Η 1 : μ < μ 0 τότε η P-τιμή είναι πιθανότητα αριστερά του Τ. Στατιστική Συμπερασματολογία 26 Δημήτρης Φουσκάκης

27 Ένα δείγμα Παράδειγμα. Έστω Χ η συστολική πίεση υγιών γυναικών. Ενδιαφερόμαστε να ελέγξουμε αν η μέση τιμή της τυχαίας μεταβλητής Χ, έστω μ, είναι 100 mm Hg, δηλαδή αν Η 0 : μ=100 με Η 1 : μ 100, σε ε.σ Έστω πήραμε τις ακόλουθες παρατηρήσεις από τυχαίο δείγμα 20 τέτοιων γυναικών: Στατιστική Συμπερασματολογία 27 Δημήτρης Φουσκάκης

28 Ένα δείγμα Στατιστική Συμπερασματολογία 28 Δημήτρης Φουσκάκης

29 Ένα δείγμα Στατιστική Συμπερασματολογία 29 Δημήτρης Φουσκάκης

30 Ένα δείγμα Στατιστική Συμπερασματολογία 30 Δημήτρης Φουσκάκης

31 Ένα δείγμα Στατιστική Συμπερασματολογία 31 Δημήτρης Φουσκάκης

32 Ένα δείγμα Μιας και το μέγεθος του δείγματός μας δεν είναι τόσο μεγάλο στην αρχή ελέγχουμεανηυπόθεση της κανονικότητας είναι λογική. Η υπόθεση της κανονικότητας δεν είναι παράλογη. Στατιστική Συμπερασματολογία 32 Δημήτρης Φουσκάκης

33 Ένα δείγμα Για να ελέγξουμε αν τα δεδομένα μας προέρχονται από την Κανονική κατανομή κάνουμε επίσης μια γραφική παράσταση των δειγματικών ποσοστημορίων ως προς τα θεωρητικά ποσοστημόρια της Κανονικής Κατανομής (QQ - PLOT). Όσο πιο κοντά στην γραμμή, που αναπαριστά τα θεωρητικά ποσοστημόρια, είναι τα σημεία, που με την σειρά τους αναπαριστούν τα δειγματικά ποσοστημόρια, τόσο καλύτερη προσαρμογή έχουμε. Ισοδύναμα υπάρχει και το PP PLOT που ελέγχει δειγματικές αθροιστικές πιθανότητες με αναμενόμενες αθροιστικές πιθανότητες με βάση την υπόθεση της κανονικής κατανομής. Και πάλι όσο πιο κοντά στην γραμμή είναι τα σημεία τόσο καλύτερη προσαρμογή έχουμε. Στατιστική Συμπερασματολογία 33 Δημήτρης Φουσκάκης

34 Ένα δείγμα Στατιστική Συμπερασματολογία 34 Δημήτρης Φουσκάκης

35 Ένα δείγμα Η υπόθεση της κανονικότητας δεν είναι παράλογη. Στατιστική Συμπερασματολογία 35 Δημήτρης Φουσκάκης

36 Ένα δείγμα Στατιστική Συμπερασματολογία 36 Δημήτρης Φουσκάκης

37 Ένα δείγμα Τιμή του στατιστικού T Βαθμοί ελευθερίας της Student κατανομής P-τιμή του αμφίπλευρου ελέγχου 95% Δ.Ε. της διαφοράς του μέσου από την υποτιθέμενη τιμή κάτω από την Η 0 (δεν περιέχει το 0) Διαφορά δειγματικού μέσου από υποτιθέμενη τιμή κάτω από την Η 0 Στατιστική Συμπερασματολογία 37 Δημήτρης Φουσκάκης

38 Ένα δείγμα Από τα αποτελέσματα του παραπάνω ελέγχου παρατηρούμε ότι η P-τιμή = < 0.05, οπότε σε ε.σ. 5% έχουμε σοβαρές ενδείξεις εναντίον της μηδενικής υπόθεσης, οπότε την απορρίπτουμε, δηλαδή η μέση συστολική πίεση υγιών γυναικών είναι διάφορη του 100. Ένα 95% Δ.Ε. για την μέση συστολική πίεση υγιών γυναικών είναι ( , ) = (101.24, ) Στατιστική Συμπερασματολογία 38 Δημήτρης Φουσκάκης

39 Ένα δείγμα Όταν το μέγεθος του δείγματος είναι μικρό και δεν ισχύει η υπόθεση της κανονικότητας είτε μετασχηματίζουμε κατάλληλα τα δεδομένα, είτε εφαρμόζουμε τον αντίστοιχο μη παραμετρικό έλεγχο που καλείται Wilcoxon test. Για την εφαρμογή του παραπάνω ελέγχου στο SPSS πρέπει να κατασκευάσουμε μια καινούργια μεταβλητή (έστω value), στην οποία επαναλαμβάνουμε την υποτιθέμενη τιμή κάτω από την μηδενική υπόθεση (100 για το παράδειγμα που βρισκόμαστε) για κάθε μονάδα του δείγματός μας. Στατιστική Συμπερασματολογία 39 Δημήτρης Φουσκάκης

40 Ένα δείγμα Στατιστική Συμπερασματολογία 40 Δημήτρης Φουσκάκης

41 Ένα δείγμα Στατιστική Συμπερασματολογία 41 Δημήτρης Φουσκάκης

42 Ένα δείγμα Ασυμπτωτική P-τιμή Ακριβής P-τιμή για τον αμφίπλευρο έλεγχο Ακριβής P-τιμή για τον μονόπλευρο έλεγχο < 0.05, οπότε έχουμε σοβαρές ενδείξεις εναντίον μηδενικής υπόθεσης Στατιστική Συμπερασματολογία 42 Δημήτρης Φουσκάκης

43 Έλεγχοι για ένα δείγμα (1 ποσοτική μεταβλητή) Ναι Είναι η μεταβλητή μας κανονική ή το μέγεθος του δείγματος μεγάλο; Όχι Wilcoxon test για ένα δείγμα Έλεγχος για τη μέση τιμή - t-test για ένα δείγμα Στατιστική Συμπερασματολογία 43 Δημήτρης Φουσκάκης

44 Ένα δείγμα Έλεγχος ποσοστών: Ας υποθέσουμε ότι έχουμε μια κατηγορική δίτιμη τυχαία μεταβλητή Χ με τιμές 0 και 1 και P(X=1)=p (άγνωστο). Προφανώς τότε η Χ~Bernoulli(p). Ενδιαφερόμαστε να ελέγξουμε την υπόθεση Η 0 : p = p 0 έναντι της Η 1 : p p 0 σε ε.σ. α. Έστω Χ 1,...,Χ n τυχαίο δείγμα. Το στατιστικό ελέγχου μας τότε είναι p ˆ p p ˆ p SE(p) ˆ p(1 p)/n 0 0 Z = =, όπου p= X η σχετική 0 0 συχνότητα της τιμής 1 στο δείγμα μας. ˆ Στατιστική Συμπερασματολογία 44 Δημήτρης Φουσκάκης

45 Ένα δείγμα Με βάση το Κ.Ο.Θ., για μεγάλο n, το Ζ Ν(0,1) κάτω από την μηδενική υπόθεση. Συχνά στην προκειμένη περίπτωση για να είναι πιο ικανοποιητική η προσέγγισή μας προχωράμε σε μια διόρθωση γνωστή ως διόρθωση συνέχειας του Yates (Yates continuity correction). Το στατιστικό ελέγχου γίνεται ˆp p 1/2n 0 Z. = p(1 p)/n 0 0 Υπολογίζουμε την τιμή του Z με βάση τις παρατηρήσεις μας και με την βοήθεια του πίνακα της τυποποιημένης Κανονικής κατανομής βρίσκουμε την P-τιμή. Αντίστοιχα μπορούμε να υπολογίσουμε το Ζ 2 το οποίο ακολουθεί την Χ 2 κατανομή με 1 βαθμό ελευθερίας και να βρούμε την P-τιμή με την βοήθεια του πίνακα της Χ 2 κατανομής με 1 βαθμό ελευθερίας. Στατιστική Συμπερασματολογία 45 Δημήτρης Φουσκάκης

46 Ένα δείγμα Ισοδύναμα με τον παραπάνω αμφίπλευρο έλεγχο θα μπορούσαμε να κατασκευάσουμε ένα συμμετρικό (1-α)% Δ.Ε. για το p, εκτιμώντας το τυπικό σφάλμα με την βοήθεια του ˆp, και να δούμε αν η υποτιθέμενη τιμή p 0 ανήκει στο εν λόγω διάστημα. ( p ˆ z ˆ ˆ ˆ ˆ ˆ ) α/2 p(1 p)/n, p + zα/2 p(1 p)/n Στατιστική Συμπερασματολογία 46 Δημήτρης Φουσκάκης

47 Ένα δείγμα Η P-τιμή για τον εν λόγω έλεγχο προκύπτει και πάλι με βάση την εναλλακτική υπόθεση: Αν Η 1 : p p 0 τότε η P-τιμή είναι 2 φορές η πιθανότητα δεξιά του Z (ή ισοδύναμα 2 φορές η πιθανότητα αριστερά του - Z ). Ισοδύναμα αν δουλέψουμε με το Ζ 2 η P-τιμή είναι η πιθανότητα δεξιά του Ζ 2. Αν Η 1 : p > p 0 τότε η P-τιμή είναι πιθανότητα δεξιά του Ζ. Ισοδύναμα αν δουλέψουμε με το Ζ 2 η P-τιμή είναι το 1/2 της πιθανότητας δεξιά του Ζ 2. Αν Η 1 : p < p 0 τότε η P-τιμή είναι πιθανότητα αριστερά του Ζ. Ισοδύναμα αν δουλέψουμε με το Ζ 2 η P-τιμή είναι ίση με το συμπλήρωμα του 1/2 της πιθανότητας δεξιά του Ζ 2. Στατιστική Συμπερασματολογία 47 Δημήτρης Φουσκάκης

48 Ένα δείγμα Για να ισχύει το Κ.Ο.Θ. και όλα τα προηγούμενα θα πρέπει το μέγεθος του δείγματος να είναι μεγάλο. To πόσο μεγάλο πρέπει να είναι το n σχετίζεται με το πόσο συμμετρική είναι η διωνυμική κατανομή που στην πραγματικότητα έχουμε και για αυτό στην πράξη ελέγχουμε αν n p 5 0 KAI n (1 p ) 5 0 Στατιστική Συμπερασματολογία 48 Δημήτρης Φουσκάκης

49 Ένα δείγμα Ισοδύναμα θα μπορούσαμε να είχαμε κατασκευάσει ένα πίνακα συχνοτήτων και να ελέγχαμε αν οι παρατηρηθείσες συχνότητες (δείγμα) διαφέρουν από τις αναμενόμενες (np 0 και n(1-p 0 )) υπολογίζοντας το παρακάτω στατιστικό ελέγχου: ( ) 2 2 παρατηρηθείσες συχνότητες - αναμενόμενες συχνότητες Χ = αναμενόμενες συχνότητες, Στατιστική Συμπερασματολογία 49 Δημήτρης Φουσκάκης

50 Ένα δείγμα Το παραπάνω στατιστικό ελέγχου κάτω από την μηδενική υπόθεση ακολουθεί την Χ 2 με ένα βαθμό ελευθερίας, οπότε και η P-τιμή του ελέγχου προκύπτει όπως και πριν. Για να εφαρμοστεί ο παραπάνω έλεγχος πρέπει οι αναμενόμενες συχνότητες να είναι τουλάχιστον 5 (όπως και πριν). Στατιστική Συμπερασματολογία 50 Δημήτρης Φουσκάκης

51 Ένα δείγμα Παράδειγμα. Σε τυχαίο δείγμα n=100 Ελλήνων πολιτών βρέθηκαν κ=30 καπνιστές ( ˆp = 30 /100 ). Θέλουμε σε ε.σ. 5% να ελέγξουμε την υπόθεση ότι το 25% των Ελλήνων πολιτών καπνίζει (H 0 : p=0.25) με εναλλακτική H 1 :p Παρατηρούμε ότι np 0 = 25 και n(1-p 0 )= 75. Στατιστική Συμπερασματολογία 51 Δημήτρης Φουσκάκης

52 Ένα δείγμα Στατιστική Συμπερασματολογία 52 Δημήτρης Φουσκάκης

53 Ένα δείγμα Στατιστική Συμπερασματολογία 53 Δημήτρης Φουσκάκης

54 Ένα δείγμα Στατιστική Συμπερασματολογία 54 Δημήτρης Φουσκάκης

55 Ένα δείγμα Στατιστική Συμπερασματολογία 55 Δημήτρης Φουσκάκης

56 Ένα δείγμα Στατιστική Συμπερασματολογία 56 Δημήτρης Φουσκάκης

57 Ένα δείγμα Συχνότητες από το δείγμα, αναμενόμενες συχνότητες με βάση την Η 0 και διαφορές τους. Χ 2 Βαθμοί ελευθερίας P-τιμή του ακριβή αμφίπλευρου ελέγχου Προϋποθέσεις OK Στατιστική Συμπερασματολογία 57 Δημήτρης Φουσκάκης

58 Ένα δείγμα Από τα αποτελέσματα του παραπάνω ελέγχου καταλήγουμε ότι, σε ε.σ. 5%, δεν έχουμε σοβαρές ενδείξεις εναντίον της μηδενικής υπόθεσης, οπότε δεν την απορρίπτουμε. Όταν δεν ισχύουν οι προϋποθέσεις του Κ.Ο.Θ. (οι αναμενόμενες συχνότητες δεν είναι τουλάχιστον 5) θα πρέπει να εφαρμόσουμε το Διωνυμικό κριτήριο (binomial test). Στατιστική Συμπερασματολογία 58 Δημήτρης Φουσκάκης

59 Ένα δείγμα Στατιστική Συμπερασματολογία 59 Δημήτρης Φουσκάκης

60 Ένα δείγμα Στατιστική Συμπερασματολογία 60 Δημήτρης Φουσκάκης

61 Ένα δείγμα Ασυμπτωτική P-τιμή μονόπλευρου ελέγχου μεβάσητηνκανονικήκατανομή. Ακριβής P-τιμή μονόπλευρου ελέγχου. Η ακριβής P-τιμή αμφίπλευρου ελέγχου είναι = Στατιστική Συμπερασματολογία 61 Δημήτρης Φουσκάκης

62 Δύο ανεξάρτητα δείγματα Έλεγχος για την διαφορά των μέσων τιμών δύο ποσοτικών μεταβλητών: Έστω ότι έχουμε μετρήσεις της ίδιας ποσοτικής μεταβλητής σε δύο ομάδες διαφορετικών ατόμων (δύο διαφορετικούς πληθυσμούς). Είναι εύλογη τότε η αναζήτηση πιθανής τους σχέσης. Πιο συγκεκριμένα έστω το χαρακτηριστικό Χ από έναν πληθυσμό με μέση τιμή μ 1 και τυπική απόκλιση σ 1 (μ 1, σ 1 άγνωστα) και έστω Υ το ίδιο χαρακτηριστικό από έναν άλλο πληθυσμό με μέση τιμή μ 2 και τυπική απόκλιση σ 2 (μ 2, σ 2 άγνωστα). Ας θεωρήσουμε ότι Χ, Υ ανεξάρτητες, δηλαδή η τιμή που παίρνει το υπό μελέτη χαρακτηριστικό στον πρώτο πληθυσμό δεν επηρεάζει την τιμή που παίρνει το ίδιο χαρακτηριστικό στο δεύτερο πληθυσμό. Έστω Χ 1,...,Χ n1 τυχαίο δείγμα από τον πρώτο πληθυσμό και Υ 1,...,Υ n2 τυχαίο δείγμα από τον δεύτερο πληθυσμό. Για να ελέγξουμε πιθανή διαφοροποίηση του υπό μελέτη χαρακτηριστικού στους δύο πληθυσμούς είναι λογικό τότε να ελέγξουμε την υπόθεση Η 0 : μ 1 = μ 2 έναντι της Η 1 : μ 1 μ 2 σε ε.σ. α, δηλαδή να ελέγξουμε αν το υπό μελέτη χαρακτηριστικό έχει την ίδια μέση τιμή στους δύο πληθυσμούς. Στατιστική Συμπερασματολογία 62 Δημήτρης Φουσκάκης

63 Δύο ανεξάρτητα δείγματα ΠΑΡΑΔΕΙΓΜΑΤΑ Επίδοση στο ίδιο μάθημα σε δύο διαφορετικά έτη σπουδών (για διαφορετικούς φοιτητές). Μέτρηση χοληστερίνης σε δύο ομάδες ασθενούν που λαμβάνουν διαφορετική θεραπεία. Πωλήσεις σε 2 διαφορετικές ομάδες καταστημάτων εφαρμόσθηκε διαφορετική επιχειρηματική στρατηγική. που Μελέτη συμπεριφοράς δύο συνθηκών δοκιμασιών. ομάδων ατόμων υπό διαφορετικών Εξετάζει τη σχέση Επίδοσης + έτους. Χοληστερίνης + θεραπείας. Πωλήσεις + στρατηγικής. Νόσου + Θεραπείας. Συμπεριφοράς + συνθήκες. Δηλαδή σκοπός μας είναι να εξετάσουμε τη σχέση μιας Ποσοτικής και μίας Δίτιμης (κατηγορικής) μεταβλητής. Στο SPSS => 2 στήλες = 1 ποσοτική και μία κατηγορική μεταβλητή με 2 επίπεδα (κατηγορίες). Στατιστική Συμπερασματολογία 63 Δημήτρης Φουσκάκης

64 Δύο ανεξάρτητα δείγματα Το στατιστικό ελέγχου μας τότε είναι ( X Y ) ( μ1 μ2) ( X Y) = SE(X Υ) σ σ + n n Στο παραπάνω στατιστικό έλεγχο μπορούμε να αντικαταστήσουμε τις άγνωστες διασπορές των πληθυσμών στον παρονομαστή με τις αντίστοιχες δειγματικές διασπορές, οπότε το στατιστικό ελέγχου γίνεται ( X Y) Z = 2 2 S1 S2 + n n 1 2 =0 με βάση την Η 0 Στατιστική Συμπερασματολογία 64 Δημήτρης Φουσκάκης

65 Δύο ανεξάρτητα δείγματα Όταν τα μεγέθη των 2 δειγμάτων είναι μεγάλα με βάση το Κ.Ο.Θ. το Ζ ακολουθεί προσεγγιστικά την Ν(0,1) και άρα η P-τιμή του ελέγχου είναι 2 φορές η πιθανότητα της περιοχής της Ν(0,1) δεξιά από το Ζ. Αν ο έλεγχος είναι μονόπλευρος η P-τιμή του ελέγχου είναι η πιθανότητα της περιοχής της Ν(0,1) δεξιά ή αριστερά από το Ζ ανάλογα με την εναλλακτική. Στατιστική Συμπερασματολογία 65 Δημήτρης Φουσκάκης

66 Δύο ανεξάρτητα δείγματα Όταν τα δεδομένα προέρχονται από Κανονικούς πληθυσμούς θεωρούμε τις εξής 2 περιπτώσεις: 1. Οι πληθυσμοί έχουν ίσες τυπικές αποκλίσεις, δηλαδή σ 1 =σ 2 =σ (άγνωστη). Στην περίπτωση αυτή υπολογίζουμε την συγχωνευμένη (pooled) δειγματική διασπορά {( ) ( ) } ( ) S = n 1 S + n 1 S n + n 2 όπου S οι δύο δειγματικές διασπορές, i = 1, i Στατιστική Συμπερασματολογία 66 Δημήτρης Φουσκάκης

67 Δύο ανεξάρτητα δείγματα και έχουμε το ακόλουθο στατιστικό ελέγχου ( X Υ) 1 2 ( ) T = ~St n1+ n S + n n Υπολογίζουμε το Τ και η P-τιμή του ελέγχου είναι 2 φορές η πιθανότητα της περιοχής της St(n 1 +n 2-2) δεξιά από το T. Αν ο έλεγχος είναι μονόπλευρος η P-τιμή του ελέγχου είναι η πιθανότητα της περιοχής της St(n 1 +n 2-2) δεξιά ή αριστερά από το T ανάλογα με την εναλλακτική. Ο εν λόγω έλεγχος καλείται two sample t-test. Ισοδύναμα με τον παραπάνω αμφίπλευρο έλεγχο θα μπορούσαμε να είχαμε κατασκευάσει ένα συμμετρικό (1-α)% Δ.Ε. γιατηνδιαφοράτωνμέσωνκαιναελέγχαμεανπεριέχειτο X Υ ± tn + n 2,α /2S +. n n ( ) Κατανομή Student Στατιστική Συμπερασματολογία 67 Δημήτρης Φουσκάκης

68 Δύο ανεξάρτητα δείγματα 2. Οι πληθυσμοί έχουν άνισες και άγνωστες τυπικές αποκλίσεις. Στην περίπτωση αυτή το στατιστικό ελέγχου είναι ( X Υ) T= St( ν ), 2 2 S1 S2 + n1 n2 προσεγγιστικά 2 2 S1 S2 + n1 n2 ν = S1 S2 n 1 n 2 + n 1 n Στατιστική Συμπερασματολογία 68 Δημήτρης Φουσκάκης 2

69 Δύο ανεξάρτητα δείγματα Υπολογίζουμε το Τ και η P-τιμή του ελέγχου είναι 2 φορές η πιθανότητα της περιοχής της St(ν) δεξιά από το T. Αν ο έλεγχος είναι μονόπλευρος η P-τιμή του ελέγχου είναι η πιθανότητα της περιοχής της St(ν) δεξιά ή αριστερά από το T ανάλογα με την εναλλακτική. Ο τελευταίος αυτός έλεγχος δίνει προσεγγιστικά αποτελέσματα και έχει την ονομασία Welch Two Sample t-test. Το συμμετρικό (1-α)% Δ.Ε. στην προκειμένη περίπτωση είναι S1 S2 S1 S2 X Υ t ν,α /2 + < μ1 μ2 < X Υ + t ν,α /2 +. n1 n2 n1 n2 Στατιστική Συμπερασματολογία 69 Δημήτρης Φουσκάκης

70 Δύο ανεξάρτητα δείγματα Με ποια κριτήρια όμως αποφασίζουμε αν οι διασπορές των πληθυσμών είναι ίσες ή όχι (περίπτωση 1 ή 2); Συχνά η απόφασή μας λαμβάνεται με βάση το αποτέλεσμα του ελέγχου H :σ = σ με εναλλακτική H :σ σ, σε ε.σ. α Αν δεν έχουμε σοβαρές ενδείξεις από τα δεδομένα για να απορρίψουμε την παραπάνω μηδενική υπόθεση, τότε θεωρούμε ισότητα διασπορών και πηγαίνουμε με βάση την περίπτωση 1. Αν έχουμε σοβαρές ενδείξεις εναντίον της Η 0 τότε την απορρίπτουμε, θεωρούμε δηλαδή ότι οι διασπορές είναι άνισες και προχωράμε με βάση την περίπτωση 2. Στατιστική Συμπερασματολογία 70 Δημήτρης Φουσκάκης

71 Δύο ανεξάρτητα δείγματα Κάτω από την μηδενική υπόθεση αναμένεται ο λόγος Κατανομή του 2 S1 Snedecor 2 2 ( ) F = ~F n1 1, n2 1. S Υπολογίζουμε λοιπόν το στατιστικό ελέγχου F και η P-τιμή του ελέγχου είναι 2 φορές η πιθανότητα της περιοχής της F(n 1-1,n 2-1) δεξιά από το F αν F 1 ή 2 φορές η πιθανότητα της περιοχής της F(n 1-1,n 2-1) αριστερά από το F αν F<1. Ο εν λόγω έλεγχος καλείται Variance Test ή F-test. Ισοδύναμα με τον παραπάνω αμφίπλευρο έλεγχο θα μπορούσαμε να είχαμε κατασκευάσει ένα συμμετρικό (1- α)% Δ.Ε. του λόγου των διασπορών και να ελέγχαμε αν περιέχει την μονάδα. 1 S1 σ1 1 S1 < < F S σ F S n 1,n 1,α /2 2 2 n 1,n 1,1 α / Στατιστική Συμπερασματολογία 71 Δημήτρης Φουσκάκης

72 Δύο ανεξάρτητα δείγματα Παράδειγμα. Έστω ότι θέλουμε να προσδιορίσουμε διαφορές στα προ-εγχειρητικά επίπεδα ουρικού οξέος (σε mg/dl) ασθενών εγχειρισμένων στην καρδιά που ανέπτυξαν οξεία νεφρική ανεπάρκεια (type = 0) και εκείνων που δεν ανέπτυξαν. Έστω Χ το προεγχειρητικό επίπεδο ουρικού οξέος ασθενών που ανέπτυξαν οξεία νεφρική ανεπάρκεια και Υ το προεγχειρητικό επίπεδο ουρικού οξέος ασθενών δεν που ανέπτυξαν οξεία νεφρική ανεπάρκεια. Ενδιαφερόμαστε να ελέγξουμε αν η μέση τιμή της τυχαίας μεταβλητής Χ, έστω μ 1, ισούται με την μέση τιμή της τ.μ Υ, έστω μ 2, δηλαδή αν Η 0 : μ 1 =μ 2 εναλλακτική υπόθεση την Η 1 : μ 1 μ 2 σε ε.σ με Στατιστική Συμπερασματολογία 72 Δημήτρης Φουσκάκης

73 Δύο ανεξάρτητα δείγματα Έστω ότι διαθέτουμε τα προεγχειρητικά επίπεδα ουρικού οξέος 81 τέτοιων ασθενών, εκ των οποίων οι 41 δεν ανέπτυξαν οξεία νεφρική ανεπάρκεια και 40 ανέπτυξαν οξεία νεφρική ανεπάρκεια μετά την εγχείρηση. Στατιστική Συμπερασματολογία 73 Δημήτρης Φουσκάκης

74 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 74 Δημήτρης Φουσκάκης

75 Δύο ανεξάρτητα δείγματα Παρόλο που τα μεγέθη του κάθε δείγματος (σε κάθε ομάδα) είναι αρκετά μεγάλα (40 και 41 αντίστοιχα) ελέγχουμε γραφικά και κατά πόσο ευσταθεί η υπόθεση της κανονικότητας. Στατιστική Συμπερασματολογία 75 Δημήτρης Φουσκάκης

76 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 76 Δημήτρης Φουσκάκης

77 Δύο ανεξάρτητα δείγματα Υπόθεση κανονικότητας λογική και στις 2 περιπτώσεις. Στατιστική Συμπερασματολογία 77 Δημήτρης Φουσκάκης

78 Δύο ανεξάρτητα δείγματα Στην συνέχεια με την βοήθεια δύο θηκογραφημάτων συγκρίνουμε στο δείγμα μας τα επίπεδα ουρικού οξέος για τις δύο ομάδες. Στατιστική Συμπερασματολογία 78 Δημήτρης Φουσκάκης

79 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 79 Δημήτρης Φουσκάκης

80 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 80 Δημήτρης Φουσκάκης

81 Δύο ανεξάρτητα δείγματα Από το διπλανό γράφημα παρατηρούμε ότι στο δείγμα μας τα επίπεδα ουρικού οξέος των ασθενών που δεν ανέπτυξαν οξεία νεφρική ανεπάρκεια (controls) είναι κατά μέσο όρο χαμηλότερα από αυτά των ασθενών που οξεία νεφρική ανεπάρκεια (cases). Είναι όμως η παρατηρούμενη αυτή διαφορά στατιστικά σημαντική; Επίσης παρατηρήστε πως στα cases παρατηρείται μεγαλύτερη μεταβλητότητα (διασπορά) στις τιμές του επιπέδου του ουρικού οξέος από ότι στα controls. Είναι όμως και πάλι αυτή η διαφορά στατιστικά σημαντική ή μπορούμε να θεωρήσουμε ότι έχουμε ισότητα διασπορών; Στατιστική Συμπερασματολογία 81 Δημήτρης Φουσκάκης

82 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 82 Δημήτρης Φουσκάκης

83 Δύο ανεξάρτητα δείγματα Ο παραπάνω πίνακας μας δίνει περιγραφικά στοιχεία του δείγματος ξεχωριστά για κάθε ομάδα. Παρατηρήστε πως το μέσο επίπεδο ουρικού οξέος των ασθενών που δεν ανέπτυξαν οξεία νεφρική ανεπάρκεια (controls) είναι κατά μέσο όρο χαμηλότερο από αυτό των ασθενών που οξεία νεφρική ανεπάρκεια (cases). Παρατηρήστε επίσης πως η τυπική απόκλιση του επιπέδου ουρικού οξέος των ασθενών που δεν ανέπτυξαν οξεία νεφρική ανεπάρκεια (controls) είναι χαμηλότερη από αυτήν των ασθενών που οξεία νεφρική ανεπάρκεια (cases). Στατιστική Συμπερασματολογία 83 Δημήτρης Φουσκάκης

84 Δύο ανεξάρτητα δείγματα Απορρίπτουμε την μηδενική υπόθεση ισότητας διασπορών. Τιμή του στατιστικού T Welch Two Sample t-test Βαθμοί ελευθερίας της Student κατανομής P-τιμή του Αμφίπλευρου ελέγχου Διαφορά δειγματικού μέσου από υποτιθέμενη τιμή κάτω από την Η 0 95% Δ.Ε. της διαφοράς μέσων Στατιστική Συμπερασματολογία 84 Δημήτρης Φουσκάκης

85 Δύο ανεξάρτητα δείγματα Καταρχήν απορρίπτουμε την μηδενική υπόθεση ισότητας διασπορών, οπότε εφαρμόζουμε το Welch Two Sample t- test. Η P-τιμή του παραπάνω ελέγχου είναι αρκετά μικρή οπότε απορρίπτουμε την μηδενική υπόθεση ισότητας των μέσων. Με την βοήθεια του Δ.Ε. συμπεραίνουμε ότι το μέσο επίπεδο ουρικού οξέος των ασθενών που δεν ανέπτυξαν οξεία νεφρική ανεπάρκεια (controls) είναι κατά μέσο όρο χαμηλότερο από αυτό των ασθενών που οξεία νεφρική ανεπάρκεια (cases). Όταν τα μεγέθη των δείγματος είναι μικρά και δεν ισχύει η υπόθεση της κανονικότητας, είτε μετασχηματίζουμε κατάλληλα τα δεδομένα, είτε εφαρμόζουμε τον αντίστοιχο μη παραμετρικό έλεγχο που καλείται Wilcoxon rank sum test ή Mann Whitney test. Στατιστική Συμπερασματολογία 85 Δημήτρης Φουσκάκης

86 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 86 Δημήτρης Φουσκάκης

87 Δύο ανεξάρτητα δείγματα Ασυμπτωτική P-τιμή αμφίπλευρου ελέγχου Ακριβής P-τιμή αμφίπλευρου ελέγχου. Έχουμε σοβαρές ενδείξεις εναντίον της μηδενικής υπόθεσης Στατιστική Συμπερασματολογία 87 Δημήτρης Φουσκάκης

88 Έλεγχοι Υποθέσεων για 2 ανεξάρτητα δείγματα (1 ποσοτική και 1 δίτιμη μεταβλητή) Ναι Είναι η ποσοτική μεταβλητή Κανονική σε κάθε ομάδα; Όχι Ναι Είναι τα δείγματα μεγάλα; (π.χ. n 1 & n 2 >50) Ναι Είναι ίσες οι διασπορές; Όχι Όχι Έλεγχος για μηδενική διαφορά μέσων με ίσες διασπορές two sample t-test Έλεγχος για μηδενική διαφορά μέσων με άνισες διακυμάνσεις (Welch two sample t- test) Mann Whitney test Στατιστική Συμπερασματολογία 88 Δημήτρης Φουσκάκης

89 Δύο ανεξάρτητα δείγματα Έλεγχοςδιαφοράςποσοστών Ας υποθέσουμε ότι έχουμε μια δίτιμη τυχαία μεταβλητή Χ με τιμές 0 και 1 και P(X=1)=p 1 (άγνωστο) και μία άλλη δίτιμη τυχαία μεταβλητή Υ, ανεξάρτητη της Χ, με τιμές 0 και 1 και P(Y=1)=p 2 (άγνωστο). Προφανώς τότε η Χ και η Υ ακολουθούν την κατανομή Bernoulli με παράμετρο p 1 και p 2 αντίστοιχα. Ενδιαφερόμαστε να ελέγξουμε την υπόθεση Η 0 : p 1 = p 2 έναντι της Η 1 : p 1 p 2 σε ε.σ. α. Έστω Χ 1,...,Χ n1 τυχαίο δείγμα από τον πρώτο πληθυσμό και Υ 1,...,Υ n2 τυχαίο δείγμα από τον δεύτερο πληθυσμό. Στατιστική Συμπερασματολογία 89 Δημήτρης Φουσκάκης

90 Δύο ανεξάρτητα δείγματα Το στατιστικό ελέγχου μας τότε είναι 1 = ( ˆ ˆ ) SE( pˆ pˆ ) p p (p p ) Z, 1 2 όπου pˆ = X η σχετική συχνότητα της τιμής 1 o στο 1 δείγμα και p 2 =Υ η σχετική συχνότητα o της τιμής 1 στο 2 δείγμα. ˆ =0 με βάση την Η 0 Στατιστική Συμπερασματολογία 90 Δημήτρης Φουσκάκης

91 Δύο ανεξάρτητα δείγματα Κάτω από την μηδενική υπόθεση p = p = p και τότε 1 2 Ζ= pˆ pˆ ( ) p(1 p) + n n 1 2. Στατιστική Συμπερασματολογία 91 Δημήτρης Φουσκάκης

92 Δύο ανεξάρτητα δείγματα Με βάση το Κ.Ο.Θ., για μεγάλα μεγέθη δειγμάτων, το Ζ Ν(0,1) κάτω από την μηδενική υπόθεση. Για τον υπολογισμό του τυπικού σφάλματος στον παρονομαστή εκτιμούμε την κοινή αναλογία p συνδυάζοντας τις πληροφορίες των δύο δειγμάτων, υπολογίζοντας δηλαδή την συγχωνευμένη (pooled) σχετική συχνότητα της τιμής 1 από τα δύο δείγματα n n 1 2 Xi + Yi npˆ 1 1+ npˆ 2 2 i= 1 i= 1 p = =. n + n n + n Συχνά στην προκειμένη περίπτωση για να είναι πιο ικανοποιητική η προσέγγισή μας προχωράμε όπως και στην περίπτωση του ενός δείγματος στην διόρθωση συνέχειας του Yates (Yates continuity correction). Το στατιστικό ελέγχου τότε γίνεται: Ζ= pˆ 1 2 Στατιστική Συμπερασματολογία 92 Δημήτρης Φουσκάκης 1 1 pˆ + 2n1 2n p(1 p) + n1 n2

93 Δύο ανεξάρτητα δείγματα Υπολογίζουμε την τιμή του Z με βάση τις παρατηρήσεις μας και με την βοήθεια του πίνακα της τυποποιημένης κανονικής κατανομής βρίσκουμε την P-τιμή. Αντίστοιχα μπορούμε να υπολογίσουμε το Ζ 2 το οποίο ακολουθεί την Χ 2 κατανομή με 1 βαθμό ελευθερίας και βρίσκουμε την P-τιμή με την βοήθεια του πίνακα της Χ 2 κατανομής με 1 βαθμό ελευθερίας. Ισοδύναμα με τον παραπάνω αμφίπλευρο έλεγχο θα μπορούσαμε να κατασκευάσουμε ένα συμμετρικό (1-α)% Δ.Ε. για το p 1 -p 2 και αν δούμε αν η υποτιθέμενη τιμή της διαφοράς με βάση την μηδενική υπόθεση (το μηδέν δηλαδή) ανήκει στο εν λόγω διάστημα. 1 pˆ ( ) ( ) pˆ1 pˆ 2 1 pˆ 2 ˆ ˆ p1 p2 ± z α /2 +. n1 n2 Στατιστική Συμπερασματολογία 93 Δημήτρης Φουσκάκης

94 Δύο ανεξάρτητα δείγματα Η P-τιμή για τον εν λόγω έλεγχο προκύπτει και πάλι με βάση την εναλλακτική υπόθεση: Αν Η 1 : p 1 p 2 τότε η P-τιμή είναι 2 φορές η πιθανότητα δεξιά του Z (ή ισοδύναμα 2 φορές η πιθανότητα αριστερά του - Z ). Ισοδύναμα αν δουλέψουμε με το Ζ 2 η P-τιμή είναι η πιθανότητα δεξιά του Ζ 2. Αν Η 1 : p 1 >p 2 τότε η P-τιμή είναι πιθανότητα δεξιά του Ζ. Ισοδύναμα αν δουλέψουμε με το Ζ 2 η P-τιμή είναι το 1/2 της πιθανότητας δεξιά του Ζ 2. Αν Η 1 : p 1 <p 2 τότε η P-τιμή είναι πιθανότητα αριστερά του Ζ. Ισοδύναμα αν δουλέψουμε με το Ζ 2 η P-τιμή είναι ίση με το συμπλήρωμα του 1/2 της πιθανότητας δεξιά του Ζ 2. Στατιστική Συμπερασματολογία 94 Δημήτρης Φουσκάκης

95 Δύο ανεξάρτητα δείγματα Για να ισχύει το ΚΟΘ και όλα τα προηγούμενα θα πρέπει τα μεγέθη των δειγμάτων να είναι μεγάλα. Στην πράξη ελέγχουμε αν n p 5 KAI όπου p = n1 n2 X i i= 1 i= 1 n + + n 1 2 Y i n (1 p ) 5 Στατιστική Συμπερασματολογία 95 Δημήτρης Φουσκάκης

96 Δύο ανεξάρτητα δείγματα Ισοδύναμα θα μπορούσαμε τα δεδομένα μας να τα βλέπαμε υπό μορφή ενός 2 2 πίνακα συχνοτήτων (contingency table). Υ Χ n 11 n 12 Παρατηρηθείσα συχνότητα στο δείγμα 1 n 21 n 22 Στατιστική Συμπερασματολογία 96 Δημήτρης Φουσκάκης

97 Δύο ανεξάρτητα δείγματα Ισοδύναμα τότε με τον προηγούμενο αμφίπλευρο έλεγχο θα ήταν να ελέγχαμε αν οι δύο τ.μ. Χ και Υ είναι ανεξάρτητες (με εναλλακτική ότι δεν είναι). Σε τέτοιες περιπτώσεις υπολογίζουμε το στατιστικό ελέγχου ( ) 2 παρατηρηθείσες συχνότητες - αναμενόμενες συχνότητες Χ = αναμενόμενες συχνότητες 2, όπου οι αναμενόμενες συχνότητες = ( άθροισμα γραμμής) ( άθροισμα στήλης) μέγεθος δείγματος και το άθροισμα είναι ως προς όλα τα κελιά. Στατιστική Συμπερασματολογία 97 Δημήτρης Φουσκάκης

98 Δύο ανεξάρτητα δείγματα Το στατιστικό ελέγχου Χ 2, κάτω από την μηδενική υπόθεση της ανεξαρτησίας, ακολουθεί προσεγγιστικά την Χ 2 κατανομή με 1 βαθμό ελευθερίας. Συχνά στην προκειμένη περίπτωση για να είναι πιο ικανοποιητική η προσέγγισή μας προχωράμε στην διόρθωση συνέχειας του Yates. Το στατιστικό ελέγχου τότε γίνεται: 2 ( παρατηρηθείσες συχνότητες - αναμενόμενες συχνότητες 0.5) Χ = αναμενόμενες συχνότητες 2. Στατιστική Συμπερασματολογία 98 Δημήτρης Φουσκάκης

99 Δύο ανεξάρτητα δείγματα Υπολογίζουμε λοιπόν την τιμή του στατιστικού ελέγχου με βάση τις παρατηρήσεις μας και εν συνεχεία η P-τιμή του ελέγχου είναι η πιθανότητα δεξιά της τιμής αυτής με βάση την Χ 2 κατανομή με 1 β.ε. Απαραίτητη προϋπόθεση είναι όλες οι αναμενόμενες συχνότητες να είναι 5. Ο εν λόγω έλεγχος καλείται X 2 independence test. Όταν δεν ισχύει η παραπάνω προϋπόθεση εφαρμόζουμε τον αντίστοιχο μη παραμετρικό έλεγχο, Fisher exact test. Οι παραπάνω έλεγχοι μπορούν να εφαρμοστούν και σε περιπτώσεις όπου οι κατηγορικές μεταβλητές έχουν παραπάνω από δύο κατηγοριών (k p πίνακας συχνοτήτων). Στατιστική Συμπερασματολογία 99 Δημήτρης Φουσκάκης

100 Δύο ανεξάρτητα δείγματα Παράδειγμα. Στο προηγούμενο παράδειγμα έστω ότι πέραν της δίτιμη τυχαίας μεταβλητής type, που μας ενημερώνει αν οι ασθενείς ανέπτυξαν οξεία νεφρική ανεπάρκεια (type = 1) ή όχι (type = 0), γνωρίζουμε και τις τιμές της δίτιμης τ.μ. φύλο για τους ασθενείς του τυχαίου δείγματος (gender = 0: άνδρας ή gender = 1: γυναίκα). Θέλουμε να ελέγξουμε αν υπάρχει διαφοροποίηση μεταξύ ανδρών και γυναικών ως την μετά-εγχειρητική ανάπτυξη οξείας νεφρικής ανεπάρκειας. Στατιστική Συμπερασματολογία 100 Δημήτρης Φουσκάκης

101 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 101 Δημήτρης Φουσκάκης

102 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 102 Δημήτρης Φουσκάκης

103 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 103 Δημήτρης Φουσκάκης

104 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 104 Δημήτρης Φουσκάκης

105 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 105 Δημήτρης Φουσκάκης

106 Δύο ανεξάρτητα δείγματα Συχνότητες: 9 άνδρες στο control group. Αναμενόμενες Συχνότητες με βάση της υπόθεση ανεξαρτησίας: 13,7 άνδρες στο control group. (41*27)/81 Το 33.3% των ανδρών είναι στο control group. το 22% των ασθενών στο control group είναι άντρες. Στο δείγμα μας το 11.1% είναι άντρες και ανήκουν στο control group. Στατιστική Συμπερασματολογία 106 Δημήτρης Φουσκάκης

107 Δύο ανεξάρτητα δείγματα Στατιστικό ελέγχου Χ 2 Στατιστικό ελέγχου Χ 2 με διόρθωση συνέχειας Βαθμοί ελευθερίας της Χ 2 κατανομής Ασυμπτωτική P-τιμή του αμφίπλευρου ελέγχου Ασυμπτωτική P-τιμή του αμφίπλευρου ελέγχου ύστερα από διόρθωση συνέχειας Ακριβής P-τιμή του Fisher exact test (αμφίπλευρος έλεγχος) Ισχύουν οι προϋποθέσεις του ελέγχου Στατιστική Συμπερασματολογία 107 Δημήτρης Φουσκάκης

108 Δύο ανεξάρτητα δείγματα Καταρχήν παρατηρούμε ότι όλες οι αναμενόμενες συχνότητες είναι μεγαλύτερες του 5. Άρα μπορούμε να βασίσουμε την συμπερασματολογία μας στα αποτελέσματα του Χ 2 ελέγχου. Προχωρώντας σε διόρθωση συνέχειας παρατηρούμε ότι σε ε.σ. 5% έχουμε ενδείξεις εναντίον της μηδενικής υπόθεσης, δηλαδή θεωρούμε ότι υπάρχει διαφοροποίηση μεταξύ ανδρών και γυναικών ως την μετά-εγχειρητική ανάπτυξη οξείας νεφρικής ανεπάρκειας. Στατιστική Συμπερασματολογία 108 Δημήτρης Φουσκάκης

109 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 109 Δημήτρης Φουσκάκης

110 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 110 Δημήτρης Φουσκάκης

111 Δύο ανεξάρτητα δείγματα Με την βοήθεια του 2 2 πίνακα συχνοτήτων, αλλά και από το διπλανό ραβδόγραμμα παρατηρούμε ότι στους άντρες έχουμε περισσότερα κρούσματα μετά-εγχειρητικής ανάπτυξης οξείας νεφρικής ανεπάρκειας. Στατιστική Συμπερασματολογία 111 Δημήτρης Φουσκάκης

112 Δύο ανεξάρτητα δείγματα Τα δεδομένα του τελευταίου παραδείγματος υπάρχει περίπτωση να τα είχαμε ήδη σε υπό μορφή πίνακα συχνοτήτων. Στατιστική Συμπερασματολογία 112 Δημήτρης Φουσκάκης

113 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 113 Δημήτρης Φουσκάκης

114 Δύο ανεξάρτητα δείγματα Στατιστική Συμπερασματολογία 114 Δημήτρης Φουσκάκης

115 Δύο ανεξάρτητα δείγματα Τώρα πλέον είμαστε σε θέση να δημιουργήσουμε τον 2 2 πίνακα συχνοτήτων καθώς και να υπολογίσουμε τα στατιστικά ελέγχου μας για τις μεταβλητές type και gender ακριβώς όπως και πριν. Στατιστική Συμπερασματολογία 115 Δημήτρης Φουσκάκης

116 Δυο Εξαρτημένα Δείγματα Αρκετές φορές στις στατιστικές μελέτες συναντάμε το φαινόμενο των εξαρτημένων δειγμάτων. Π.χ. ας υποθέσουμε ότι έχουμε μετρήσεις της ίδιας ποσοτικής μεταβλητής για τα ίδια άτομα σε 2 διαφορετικές χρονικές περιόδους. Ας καλέσουμε Χ την μεταβλητή την χρονική τιμή 1 και ας θεωρήσουμε ότι προέρχεται από πληθυσμό με άγνωστη μέση τιμή μ 1 και άγνωστη τυπική απόκλιση σ 1 και Υ την μεταβλητή την χρονική στιγμή 2 και ας θεωρήσουμε ότι προέρχεται από πληθυσμό με άγνωστη μέση τιμή μ 2 και άγνωστη τυπική απόκλιση σ 2. Έστω το τυχαίο δείγμα που αποτελείται από ζεύγη συσχετισμένων τυχαίων μεταβλητών (Χ 1,Υ 1 ),...,(Χ n,υ n ). Ενδιαφερόμαστε να δούμε αν η υπό μελέτη τυχαία μεταβλητή διαφοροποιείται κατά μέσο όρο στις 2 χρονικές περιόδους, δηλαδή να ελέγξουμε την υπόθεση Η 0 : μ 1 = μ 2 έναντι της Η 1 : μ 1 μ 2 σε ε.σ. α. Ο εν λόγω έλεγχος καλείται paired t-test. Στατιστική Συμπερασματολογία 116 Δημήτρης Φουσκάκης

117 Δυο Εξαρτημένα Δείγματα Δημιουργούμε τις διαφορές των παραπάνω ζευγών (Ζ 1 =Χ 1 -Υ 1 ),...,(Ζ n = Χ n -Υ n ) και έτσι καταλήγουμε σε ένα τυχαίο δείγμα που προέρχεται από πληθυσμό με άγνωστη μέση τιμή μ 1 -μ 2 και άγνωστη τυπική απόκλιση σ 1 +σ 2. Μπορούμε λοιπόν με βάση τα όσα είπαμε στην περίπτωση του ελέγχου για την μέση τιμή μιας ποσοτικής μεταβλητής (one sample t-test) να ελέγξουμε τώρα την υπόθεση Η 0 : μ 1 - μ 2 =0 έναντι της Η 1 : μ 1 - μ 2 0. Στατιστική Συμπερασματολογία 117 Δημήτρης Φουσκάκης

118 Δυο Εξαρτημένα Δείγματα Παραδείγματα εξαρτημένων δειγμάτων: Μετρήσεις για τα ίδια άτομα I. σε 2 παρόμοιες μεταβλητές (π.χ. με ίδιες μονάδες μέτρησης). Π.χ. Ψυχιατρικές κλίμακες. II. της ίδιας μεταβλητής στην ίδια μονάδα μελέτης αλλά σε διαφορετικές χρονικές στιγμές. III. της ίδιας μεταβλητής αλλά σε διαφορετικά σημεία της ίδιας μονάδας μελέτης (π.χ. αριστερό δεξί χέρι). IV. της ίδιας μεταβλητής σε διαφορετικές μονάδες μελέτης που σχετίζονται (δίδυμα, συγγενείς, φίλοι). Στατιστική Συμπερασματολογία 118 Δημήτρης Φουσκάκης

119 Δυο Εξαρτημένα Δείγματα ΠΑΡΑΔΕΙΓΜΑΤΑ Επίδοση σε 2 διαφορετικά μαθήματα. Μέτρηση χοληστερίνης πριν και μετά από μια θεραπεία. Πωλήσεις πριν και μετά επιχειρηματικής στρατηγικής. από την εφαρμογή μιας Επίδραση ασθενή. θεραπείας στο δεξί και αριστερό χέρι ενός Μελέτη συμπεριφοράς συνθηκών. διδύμων υπό διαφορετικών Εξετάζει τη σχέση Επίδοσης + μαθήματος. Χοληστερίνης + θεραπείας. Πωλήσεις + στρατηγική. Νόσου + θεραπείας. Συμπεριφοράς + συνθήκες. Στατιστική Συμπερασματολογία 119 Δημήτρης Φουσκάκης

120 Δυο Εξαρτημένα Δείγματα Παράδειγμα. Σε μια παιδιατρική κλινική μία μελέτη πραγματοποιήθηκε με σκοπό να ελέγξει την αποτελεσματικότητα της ασπιρίνης. Μετρήθηκε η θερμοκρασία (σε F) δώδεκα παιδιών ηλικίας 5 ετών με πυρετό πριν και μία ώρα μετά την χορήγηση ασπιρίνης. Θέλουμε να ελέγξουμε την υπόθεση ότι η μέση θερμοκρασία είναι ίδια πριν και μία ώρα μετά την χορήγηση ασπιρίνης με εναλλακτική ότι η μέση θερμοκρασία μειώνεται μετά την χορήγηση ασπιρίνης. Στατιστική Συμπερασματολογία 120 Δημήτρης Φουσκάκης

121 Δυο Εξαρτημένα Δείγματα Στατιστική Συμπερασματολογία 121 Δημήτρης Φουσκάκης

122 Δυο Εξαρτημένα Δείγματα Στατιστική Συμπερασματολογία 122 Δημήτρης Φουσκάκης

123 Δυο Εξαρτημένα Δείγματα Μιας και το μέγεθος του δείγματος είναι μικρό ελέγχουμε γραφικά την υπόθεση της κανονικότητας για την διαφορά (μεταβλητή difference). Στατιστική Συμπερασματολογία 123 Δημήτρης Φουσκάκης

124 Δυο Εξαρτημένα Δείγματα Υπόθεση κανονικότητας λογική Στατιστική Συμπερασματολογία 124 Δημήτρης Φουσκάκης

125 Δυο Εξαρτημένα Δείγματα Εν συνεχεία εφαρμόζουμε για την νέα μεταβλητή που δηλώνει την διαφορά (difference) τον έλεγχό μας ότι η μέση τιμή της είναι 0 (μηδενική υπόθεση) με εναλλακτική ότι είναι μικρότερη του μηδενός. Στατιστική Συμπερασματολογία 125 Δημήτρης Φουσκάκης

126 Δυο Εξαρτημένα Δείγματα P-τιμή αμφίπλευρου ελέγχου. Για τον μονόπλευρο έλεγχο η τιμή αυτή πρέπει να διαιρεθεί με το 2. Στατιστική Συμπερασματολογία 126 Δημήτρης Φουσκάκης

127 Δυο Εξαρτημένα Δείγματα Με βάση τα παραπάνω αποτελέσματα έχουμε πολύ σοβαρές ενδείξεις εναντίον της μηδενικής υπόθεσης. Άρα πράγματι η ασπιρίνη μειώνει την μέση θερμοκρασία μία ώρα μετά την χορήγηση της. Στατιστική Συμπερασματολογία 127 Δημήτρης Φουσκάκης

128 Δυο Εξαρτημένα Δείγματα Αν το μέγεθος του δείγματος δεν είναι μεγάλο και δεν ισχύει η κανονικότητα εφαρμόζουμε εναλλακτικά το Wilcoxon Signed-Rank test για εξαρτημένα δείγματα. Στατιστική Συμπερασματολογία 128 Δημήτρης Φουσκάκης

129 Δυο Εξαρτημένα Δείγματα Στατιστική Συμπερασματολογία 129 Δημήτρης Φουσκάκης

130 Δυο Εξαρτημένα Δείγματα Απορρίπτουμε την Η 0. Ακριβής P-τιμή μονόπλευρου ελέγχου Στατιστική Συμπερασματολογία 130 Δημήτρης Φουσκάκης

131 Έλεγχοι Υποθέσεων για 2 εξαρτημένα δείγματα (2 ποσοτικές μεταβλητές) Ναι Είναι η διαφορά Κανονικά κατανεμημένη ή το μέγεθος του δείγματος μεγάλο; Όχι Wilcoxon sign rank test για εξαρτημένα δείγματα Έλεγχος για μηδενική μέση διαφορά - t-test για ζεύγη (paired t-test) Στατιστική Συμπερασματολογία 131 Δημήτρης Φουσκάκης

132 Δυο Εξαρτημένα Δείγματα Αν θέλαμε να συγκρίνουμε ποσοστά δύο συσχετισμένων δειγμάτων θα εφαρμόζαμε το McNemar s test. Παραδείγματος χάρη μπορεί να έχουμε τις ίδιες δίτιμες μετρήσεις σε δύο διαφορετικές χρονικές στιγμές. Το McNemar s test μπορεί να εφαρμοστεί και όταν έχουμε ζευγαρωτές τιμές σε μεταβλητή με περισσότερες από 2 κατηγορίες. Παράδειγμα. Οι διαβητικοί κάνουν καθημερινή θεραπεία ινσουλίνης η οποία έχει παρενέργειες. Μία από αυτές είναι εμφάνιση διαβητικής κετονοοξέωσης (diabetic ketoacidosis - DKA). Σκοπός εδώ είναι να δούμε αν η θεραπεία επηρέασε την εμφάνιση παρενεργειών DKA. Στατιστική Συμπερασματολογία 132 Δημήτρης Φουσκάκης

133 Δυο Εξαρτημένα Δείγματα Μετά τη θεραπεία ινσουλίνης Πριν τη θεραπεία Όχι DKA DKA ΣΥΝΟΛΟ Όχι DKA DKA ΣΥΝΟΛΟ Στατιστική Συμπερασματολογία 133 Δημήτρης Φουσκάκης

134 Δυο Εξαρτημένα Δείγματα Αρχικά κάνουμε WEIGHT CASES όπως στο παράδειγμα με τις δύο ανεξάρτητες δίτιμες τ.μ. Στατιστική Συμπερασματολογία 134 Δημήτρης Φουσκάκης

135 Δυο Εξαρτημένα Δείγματα Στατιστική Συμπερασματολογία 135 Δημήτρης Φουσκάκης

136 Δυο Εξαρτημένα Δείγματα Στατιστική Συμπερασματολογία 136 Δημήτρης Φουσκάκης

137 Δυο Εξαρτημένα Δείγματα Στατιστική Συμπερασματολογία 137 Δημήτρης Φουσκάκης

138 Δυο Εξαρτημένα Δείγματα ΥΠΑΡΞΗ DKA ΠΡΙΝ ΤΗ ΘΕΡΑΠΕΙΑ * ΥΠΑΡΞΗ DKA ΜΕΤΑ ΤΗ ΘΕΡΑΠΕΙΑ Crosstabulation ΥΠΑΡΞΗ DKA ΠΡΙΝ ΤΗ ΘΕΡΑΠΕΙΑ Total ΟΧΙ ΝΑΙ Count % of Total Count % of Total Count % of Total ΥΠΑΡΞΗ DKA ΜΕΤΑ ΤΗ ΘΕΡΑΠΕΙΑ ΟΧΙ ΝΑΙ Total % 11.8% 91.3% % 4.3% 8.7% % 16.1% 100.0% Στατιστική Συμπερασματολογία 138 Δημήτρης Φουσκάκης

139 Δυο Εξαρτημένα Δείγματα Chi-Square Tests Exact Sig. Exact Sig. Point Value (2-sided) (1-sided) Probability McNemar Test.029 a.014 a.010 a N of Valid Cases 161 a. Binomial distribution used. Απορρίπτεται η μηδενική υπόθεση Ακριβής P-τιμή αμφίπλευρου ελέγχου Άρα η θεραπεία επηρέασε (αύξησε) την εμφάνιση παρενεργειών DKA. Στατιστική Συμπερασματολογία 139 Δημήτρης Φουσκάκης

140 Έλεγχος Καλής Προσαρμογής Μέχρι τώρα ο τρόπος που ελέγχαμε την καταλληλότητα του επιλεγμένου μοντέλου (Κανονικού στις περισσότερες περιπτώσεις) ήταν με την βοήθεια γραφικών παραστάσεων, π.χ. ιστογράμματα και QQ-plots. Υπάρχει δύο έλεγχοι υποθέσεων (Kolmogorov-Smirnov test και Shapiro-Wilk), κατά τους οποίους ελέγχουμε την μηδενική υπόθεση ότι τα δεδομένα ακολουθούν μια συγκεκριμένη κατανομή, με εναλλακτική ότι δεν την ακολουθούν. Με βάση λοιπόν την P-τιμή του εν λόγω ελέγχουφτάνουμεσετελικάσυμπεράσματασεσχέσημε την καταλληλότητα ή μη του μοντέλου (κατανομή) που έχουμε επιλέξει. Για τα δεδομένα, π.χ., της συστολικής πίεσης των υγιών γυναικών που είδαμε στο παράδειγμα με το ένα δείγμα έχουμε: Στατιστική Συμπερασματολογία 140 Δημήτρης Φουσκάκης

141 Έλεγχος Καλής Προσαρμογής Στατιστική Συμπερασματολογία 141 Δημήτρης Φουσκάκης

142 Έλεγχος Καλής Προσαρμογής Δεν έχουμε σοβαρές ενδείξεις εναντίον της H 0, οπότε δεχόμαστε υπόθεση κανονικότητας Όταν το μέγεθος του δείγματος είναι μικρό (<50) συνήθως χρησιμοποιούμε το Shapiro-Wilk test. Γιαμεγάλαμεγέθητα2 tests δίνουν παρόμοια αποτελέσματα. Στατιστική Συμπερασματολογία 142 Δημήτρης Φουσκάκης

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Διαβάστε περισσότερα

Ιωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30

Ιωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30 Ιωάννης Ντζούφρας Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα Ανάλυση εδομένων ιαφάνεια 4-30 Έστωότιέχουμεμετρήσειςγιαταίδιαάτομα Σε 2 παρόμοιες μεταβλητές (π.χ. Με ίδιες

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing) Μέρος IV. Ελεγχοι Υποθέσεων (ypothesis Testig) Βασικές έννοιες Γενική μεθοδολογία Σφάλμα τύπου Ι και -vlue Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις Εφαρμοσμένη Στατιστική Μέρος 4 ο - Κ. Μπλέκας

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

1991 US Social Survey.sav

1991 US Social Survey.sav Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΙΜΟΣ ΜΕΙΝΤΑΝΗΣ, Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών, ΕΚΠΑ ΓΙΑΝΝΗΣ Κ. ΜΠΑΣΙΑΚΟΣ, Επίκουρος Καθηγητής Τμήμα Οικονομικών

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση.

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση. Κεφάλαιο 16 Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 1 Προϋποθέσεις για τη χρήση του τεστ ιαφορές ή συσχέτιση Κλίµακα µέτρησης Σχεδιασµός Σηµείωση ιαφορές Κατηγορική Ανεξάρτητα δείγµατα

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1

Διαβάστε περισσότερα

Ανάλυση εδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση εδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση εδομένων με χρήση του Στατιστικού Πακέτου R, Αναπληρωτής Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στη

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι Άσκηση 1 i) Σε κάθε παρατήρηση περιλαμβάνεται ένας έλεγχος (ο τελευταίος) κατά τον οποίο εμφανίστηκε το πρώτο ελαττωματικό της παραγωγικής διαδικασίας. Επομένως, ο αριθμός ελέγχων που έγιναν πριν εμφανιστεί

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγοι Υποθέσεων Υποθέσεις Η : μηδενική υπόθεση Η (ή ΗΑ): εναλλακτική υπόθεση Σφάλματα εόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγος

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Εργαστήριο Μαθηματικών & Στατιστικής 2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Ας θεωρήσουμε ότι είναι γνωστό από στοιχεία της Παγκόσμιας Οργάνωσης Υγείας ότι οι τιμές χοληστερίνης στον πληθυσμό έχουν

Διαβάστε περισσότερα

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80. ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΤ ΧΟΛΗ ΕΠΙΣΗΜΩΝ ΣΗ ΔΙΟΙΚΗΗ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΔΙΟΙΚΗΗ ΣΑΣΙΣΙΚΗ Ακαδ. Έτος -3 Διδάσκων: Βασίλης ΚΟΤΣΡΑ Διδάσκων επί Συμβάσει Π.Δ 47/8 v.kouras@fμe.aegea.gr Σηλ: 735457 Διωνυμικό

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Έλεγχοι υποθέσεων Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα