Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces"

Transcript

1 1 Gemetry f Parallelzable Manflds n the Cntext f Generalzed Lagrange Spaces arxv: v1 [gr-qc] 16 Apr 2007 M. I. Wanas, N. L. Yussef and A. M. Sd-Ahmed Department f Astrnmy, Faculty f Scence, Car Unversty Department f Mathematcs, Faculty f Scence, Car Unversty Abstract. In ths paper, we deal wth a generalzatn f the gemetry f parallelzable manflds, r the abslute parallelsm (AP-) gemetry, n the cntext f generalzed Lagrange spaces. All gemetrc bjects defned n ths gemetry are nt nly functns f the pstnal argument x, but als depend n the drectnal argument y. In ther wrds, nstead f dealng wth gemetrc bjects defned n the manfld M, as n the case f classcal AP-gemetry, we are dealng wth gemetrc bjects n the pullback bundle π 1 (TM) (the pullback f the tangent bundle TM by π : TM M). Many new gemetrc bjects, whch have n cunterpart n the classcal AP-gemetry, emerge n ths mre general cntext. We refer t such a gemetry as generalzed AP-gemetry (GAP-gemetry). In analgy t AP-gemetry, we defne a d-cnnectn n π 1 (TM) havng remarkable prpertes, whch we call the canncal d-cnnectn, n terms f the unque trsn-free Remannan d-cnnectn. In addtn t these tw d-cnnectns, tw mre d-cnnectns are defned, the dual and the symmetrc d-cnnectns. Our space, therefre, admts twelve curvature tensrs (crrespndng t the fur defned d-cnnectns), three f whch vansh dentcally. Smple frmulae fr the nne nn-vanshng curvatures tensrs are btaned, n terms f the trsn tensrs f the canncal d-cnnectn. The dfferent W-tensrs admtted by the space are als calculated. All cntractns f the h- and v-curvature tensrs and the W-tensrs are derved. Secnd rank symmetrc and skew-symmetrc tensrs, whch prve useful n physcal applcatns, are sngled ut. Ths paper, hwever, s nt an end n tself, but rather the begnnng f a research drectn. The physcal nterpretatn f the gemetrc bjects n the GAP-space that have n cunterpart n the classcal AP-space wll be further nvestgated n frthcmng papers. 1 Keywrds: Parallelzable manfld, Generalzed Lagrange space, AP-gemetry, GAPgemetry, Canncal d-cnnectn, W-tensr AMS Subject Classfcatn. 53B40, 53A40, 53B50. 1 Ths paper was presented n The Internatnal Cnference n Fnsler Extensns f Relatvty Thery held at Car, Egypt, Nvember 4-10, 2006.

2 2 1. Intrductn The gemetry f parallelzable manflds r the abslute parallelsm gemetry (AP-gemetry) ([5], [10], [14], [15]) has many advantages n cmparsn t Remannan gemetry. Unlke Remannan gemetry, whch has ten degrees f freedm (crrespndng t the metrc cmpnents fr n = 4), AP-gemetry has sxteen degrees f freedm (crrespndng t the number f cmpnents f the fur vectr felds defnng the parallelzatn). Ths makes AP-gemetry a ptental canddate fr descrbng physcal phenmena ther than gravty. Mrever, as ppsed t Remannan gemetry, whch admts nly ne symmetrc lnear cnnectn, AP-gemetry admts at least fur natural (bult-n) lnear cnnectns, tw f whch are nn-symmetrc and three f whch have nn-vanshng curvature tensrs. Last, but nt least, asscated wth an AP-space, there s a Remannan structure defned n a natural way. Thus, APgemetry cntans wthn ts gemetrcal structure all the mathematcal machnary f Remannan gemetry. Accrdngly, a cmparsn between the results btaned n the cntext f AP-gemetry and general relatvty, whch s based n Remannan gemetry, can be carred ut. In ths paper, we study AP-gemetry n the wder cntext f a generalzed Lagrange space ([7], [9], [11], [12]). All gemetrc bjects defned n ths space are nt nly functns f the pstnal argument x, but als depend n the drectnal argument y. In ther wrds, nstead f dealng wth gemetrc bjects defned n the manfld M, as n the case f classcal AP-space, we are dealng wth gemetrc bjects n the pullback bundle π 1 (TM) (the pullback f the tangent bundle TM by the prjectn π : TM M) [1]. Many new gemetrc bjects, whch have n cunterpart n the classcal AP-space, emerge n ths mre general cntext. We refer t such a space as a d-parallelzable manfld r a generalzed abslute parallelsm space (GAP-space). The paper s rganzed n the fllwng manner. In sectn 2, fllwng the ntrductn, we gve a bref accunt f the basc cncepts and defntns that wll be needed n the sequel, ntrducng the ntn f a nn-lnear cnnectn Nµ α. In sectn 3, we cnsder an n-dmensnal d-parallelzable manfld M ([2], [11]) n whch we defne a metrc n terms f the n ndependent π-vectr felds λ defnng the parallelzatn n π 1 (TM). Thus, ur parallelzable manfld becmes a generalzed Lagrange space, whch s a generalzatn f the classcal AP-space. We then defne the canncal d-cnnectn D, relatve t whch the h- and v-cvarant dervatves f the vectr felds λ vansh. We end ths sectn wth a cmparsn between the classcal AP-space and the GAP-space. In sectn 4, cmmutatn frmulae are recalled and sme denttes btaned. We then ntrduce, n analgy t the AP-space, tw ther d-cnnectns: the dual d-cnnectn and the symmetrc d-cnnectn. The nne nnvanshng curvature tensrs, crrespndng t the dual, symmetrc and Remannan d-cnnectns are then calculated, expressed n terms f the trsn tensrs f the canncal d-cnnectn. In sectn 5, a summary f the fundamental symmetrc and skew symmetrc secnd rank tensrs s gven, tgether wth the symmetrc secnd rank tensrs f zer trace. In sectn 6, all pssble cntractns f the h- and v- curvature tensrs are btaned and the cntracted curvature tensrs are expressed n terms f the fundamental tensrs gven n sectn 5. In sectn 7, we study the dfferent W-tensrs crrespndng t the dfferent d-cnnectns defned n the space, agan

3 3 expressed n terms f the trsn tensrs f the canncal d-cnnectn. Cntractns f the dfferent W-tensrs and the relatns between them are then derved. Fnally, we end ths paper by sme cncludng remarks. 2. Fundamental Prelmnares Let M be a dfferental manfld f dmensn n f class C. Let π : TM M be ts tangent bundle. If (U, x µ ) s a lcal chart n M, then (π 1 (U), (x µ, y µ )) s the crrespndng lcal chart n TM. The crdnate transfrmatn law n TM s gven by: x µ = x µ (x ν ), y µ = p µ ν yν, where p µ ν = xµ and det(p µ x ν ν ) 0. Defntn 2.1. A nn-lnear cnnectn N n TM s a system f n 2 functns Nβ α(x, y) defned n every lcal chart π 1 (U) f TM whch have the transfrmatn law where p ǫ β σ = pǫ β x σ = 2 x ǫ x β x σ. N α β = pα α p β β N α β + p α ǫ p ǫ β σ yσ, (2.1) The nn-lnear cnnectn N leads t the drect sum decmpstn T u (TM) = H u (TM) V u (TM), u T M = TM \ {0}, where H u (TM) s the hrzntal space at u asscated wth N supplementary t the vertcal space V u (TM). If δ µ := µ Nµ α α, where µ :=, x µ µ :=, then ( y µ µ ) s the natural bass f V u (TM) and (δ µ ) s the natural bass f H u (TM) adapted t N. Defntn 2.2. A dstngushed cnnectn (d-cnnectn) n M s a trplet D = (Nµ α, Γ α µν, Cµν), α where Nµ α (x, y) s a nn-lnear cnnectn n TM and Γ α µν(x, y) and Cµν α (x, y) transfrm accrdng t the fllwng laws: Γ α µ ν = pα α pµ µ p ν ν Γα µν + pα ǫ pǫ µ ν, (2.2) C α µ ν = pα α pµ µ p ν ν Cα µν. (2.3) In ther wrds, Γ α µν transfrm as the ceffcents f a lnear cnnectn, whereas Cα µν transfrm as the cmpnents f a tensr. Defntn 2.3. The hrzntal (h-) and vertcal (v-) cvarant dervatves wth respect t the d-cnnectn D (f a tensr feld A α µ) are defned respectvely by: A α µ ν := δ νa α µ + Aǫ µ Γα ǫν Aα ǫ Γǫ µν ; (2.4) A α µ ν := ν A α µ + Aǫ µ Cα ǫν Aα ǫ Cǫ µν. (2.5) Defntn 2.4. A symmetrc and nn-degenerate tensr feld g µν (x, y) f type (0, 2) s called a generalzed Lagrange metrc n the manfld M. The par (M, g) s called a generalzed Lagrange space.

4 4 Defntn 2.5. Let (M, g) be a generalzed Lagrange space equpped wth a nn-lnear cnnectn N α µ. Then a d -cnnectn D = (N α µ, Γ α µ,ν, C α µν) s sad t be metrcal wth respect t g f g µν α = 0, g µν α = 0. (2.6) The fllwng remarkable result was prved by R. Mrn [8]. It guarantees the exstence f a unque trsn-free metrcal d-cnnectn n any generalzed Lagrange space equpped wth a nn-lnear cnnectn. Mre precsely: Therem 2.6. Let (M, g) be a generalzed Lagrange space. Let N α µ be a gven nnlnear cnnectn n TM. Then there exsts a unque metrcal d-cnnectn D = (Nµ α, Γ α µν, C α µν ) such that Λ α µν := Γ α µν Γ α νµ = 0 and T α µν := C α µν C α νµ = 0. Ths d-cnnectn s gven by Nµ α and the generalzed Chrstffel symbls: Γ α µν = 1 2 gαǫ (δ µ g νǫ + δ ν g µǫ δ ǫ g µν ), (2.7) C α µν = 1 2 gαǫ ( µ g νǫ + ν g µǫ ǫ g µν ). (2.8) Ths cnnectn wll be referred t as the Remannan d-cnnectn. 3. d-parallelzable manflds (GAP-spaces) The Remannan d-cnnectn mentned n Therem 2.6 plays the key rle n ur generalzatn f the AP-space, whch, as wll be revealed, appears natural. Hwever, t s t be nted that the clse resemblance f the tw spaces s deceptve; as they are smlar n frm. Hwever, the extra degrees f freedm n the generalzed AP-space makes t rcher n cntent and dfferent n ts gemetrc structure (see Remark 3.6). We start wth the cncept f d-parallelzable manflds. Defntn 3.1. An n-dmensnal manfld M s called d-parallelzable, r generalzed abslute parallelsm space (GAP-space), f the pull-back bundle π 1 (TM) admts n glbal lnearly ndependent sectns (π-vectr felds) λ(x, y), = 1,..., n. If λ = ( λ α ), α = 1,..., n, then λ α λ β = δβ α, where ( λ α ) dentes the nverse f the matrx ( λ α ). λ α λ α = δ j, (3.1) j Ensten summatn cnventn s appled n bth Latn (mesh) ndces and Greek (wrld) ndces, where all Latn ndces are wrtten n a lwer pstn. In the sequel, we wll smply use the symbl λ (wthut a mesh ndex) t dente any ne f the vectr felds λ ( = 1,..., n) and n mst cases, when mesh ndces appear they wll be n pars, meanng summatn. We shall ften use the expressn GAP-space (resp. GAP-gemetry) nstead f d-parallelzable manfld (resp. gemetry f d-parallelzable manflds) fr ts typgraphcal smplcty.

5 5 Therem 3.2. A GAP-space s a generalzed Lagrange space. In fact, the cvarant tensr feld g µν (x, y) f rder 2 gven by g µν (x, y) := λ µ λ ν, (3.2) defnes a metrc n the pull-back bundle π 1 (TM) wth nverse gven by g µν (x, y) = λ µ λ ν (3.3) Assume that M s a GAP-space equpped wth a nn-lnear cnnectn Nµ α. By Therem 2.6, there exsts n (M, g) a unque trsn-free metrcal d-cnnectn D = (Nµ α, Γ α µν, C α µν ) (the Remannan d-cnnectn). We defne anther d-cnnectn D = (N α µ, Γ α µν, C α µν) n terms f D by: Γ α µν := Γ α µν + λ α λ µ ν, (3.4) Cµν α := C α µν + λ α λ µ ν. (3.5) Here, and dente the h- and v-cvarant dervatves wth respect t the Remannan d-cnnectn D. If and dente the h- and v-cvarant dervatves wth respect t the d-cnnectn D, then λ α µ = 0, λ α µ = 0. (3.6) Ths can be shwn as fllws: λ α µ = δ µ λ α + λ ǫ Γ α ǫµ = δ µλ α + λ ǫ ( Γ α ǫµ + λ α λ j j ǫ µ ) = (δ µ λ α + λ ǫ Γ α ǫµ) λ α j µ ( λ ǫ λ ǫ ) = 0. In exactly the same way, t can be shwn that j λ α µ = 0. Hence, we btan the fllwng Therem 3.3. Let (M, λ(x, y)) be a GAP-space equpped wth a nn-lnear cnnectn Nµ α. There exsts a unque d-cnnectn D = (Nµ α, Γ α µν, Cµν), α such that λ α µ = λ α µ = 0. Ths cnnectn s gven by Nβ α, (3.4) and (3.5). Cnsequently, D s metrcal: g µν σ = g µν σ = 0. Ths cnnectn wll be referred t as the canncal d-cnnectn. It s t be nted that relatns (3.6) are n accrdance wth the classcal APgemetry n whch the cvarant dervatve f the vectr felds λ wth respect t the canncal cnnectn Γ α µν = λ α ( ν λ µ ) vanshes [15]. Therem 3.4. Let (M, λ(x, y)) be a d-parallelzable manfld equpped wth a nnlnear cnnectn Nµ α. The canncal d-cnnectn D = (Nα µ, Γα µν, Cα µν ) s explctly expressed n terms f λ n the frm Γ α µν = λ α (δ ν λ µ ), Cµν α = λ α ( ν λ µ ). (3.7) Prf. Snce λ α ν = 0, we have δ ν λ α = λ ǫ Γ α ǫν. Multplyng bth sdes by λ µ, takng nt accunt the fact that λ α λ µ = δµ α, we get Γα µν = λ µ (δ ν λ α ) = λ α (δ ν λ µ ). The prf f the secnd relatn s exactly smlar and we mt t. It s t be nted that the cmpnents f the canncal d-cnnectn are smlar n frm t the cmpnents f the canncal cnnectn n the classcal AP-cntext [15], ntng that ν s replaced by δ ν (fr the h-cunterpart) and by ν (fr the v-cunterpart) respectvely (See Table 1). The abve expressns fr the canncal cnnectn seem therefre lke a natural generalzatn f the classcal AP case. By (3.4) and (3.5), n vew f the abve therem, we have the fllwng

6 6 Crllary 3.5. The Remannan d-cnnectn D = (Nµ α, Γ α µν, C α µν ) s explctely expressed n terms f λ n the frm Γ α µν = λ α (δ ν λ µ λ µ ν ), C α µν = λ α ( ν λ µ λ µ ν ). (3.8) Remark 3.6. As a result f the dependence f λ n the velcty vectr y, the n 3 functns λ α ( ν λ µ ), as ppsed t the classcal AP-space, d nt transfrm as the ceffcents f a lnear cnnectn, but transfrm accrdng t the rule λ α ( ν λ µ ) = p α α pµ µ p ν ν λ α ( ν λ µ ) + p α ǫ pǫ µ ν + pα α pµ µ p ν ν ǫ C α yǫ µν. (3.9) Smlarly, t can be shwn that, n general, tensrs n the cntext f the classcal AP-space d nt transfrm lke tensrs n the wder cntext f the GAP-space; ther dependence n the velcty vectr y spls ther tensr character. In ther wrds, tensrs n the classcal AP-cntext d nt necessarly behave lke tensrs when they are regarded as functns f pstn x and velcty vectr y. Ths means that thugh the classcal AP-space and the GAP-space appear smlar n frm, they dffer radcally n ther gemetrc structures. We nw ntrduce sme tensrs that wll prve useful later n. Let γµν α := λ α λ µ ν = Γ α µν Γ α µν, Gα µν := λ α λ µ ν = Cµν α C α µν. (3.10) In analgy t the AP-space, we refer t γ α µν and G α µν as the h- and v-cntrtn tensrs respectvely. Let Λ α µν := Γα µν Γα νµ = γα µν γα νµ. (3.11) be the trsn tensr f the canncal cnnectn Γ α µν and Ω α µν := γµν α + γνµ. α (3.12) Smlarly, let Tµν α := Cµν α Cνµ α = G α µν G α νµ (3.13) be what we may call the trsn tensr f Cµν α and D α µν := Gα µν + Gα νµ. (3.14) Nw, f γ σµν := g ǫσ γ ǫ µν and G σµν := g ǫσ G ǫ µν, then γ σµν and G σµν are skew symmetrc n the frst par f ndces. Ths, n turn, mples that Hence, f then γǫν ǫ = Gǫ ǫν = 0. (3.15) β µ := γ ǫ µǫ, B µ := G ǫ µǫ, Λ ǫ µǫ = γ ǫ µǫ = β µ, T ǫ µǫ = G ǫ µǫ = B µ. (3.16) Fnally, t can be shwn, n analgy t the classcal AP-space [3], that the cntrtn tensrs γ µνσ and G µνσ can be expressed n terms f the trsn tensrs n the frm γ µνσ = 1 2 (Λ µνσ + Λ σνµ + Λ νσµ ) (3.17) G µνσ = 1 2 (T µνσ + T σνµ + T νσµ ), (3.18)

7 7 where Λ µνσ := g ǫµ Λ ǫ νσ and T µνσ := g ǫµ Tνσ ǫ. It s clear by (3.11), (3.13), (3.17) and (3.18) that the trsn tensrs vansh f and nly f the cntrtn tensrs vansh. The next table gves a cmparsn between the fundamental gemetrc bjects n the classcal AP-gemetry and the GAP-gemetry. Smlar bjects f the tw spaces wll be dented by the same symbl. As prevusly mentned, h stands fr hrzntal whereas v stands fr vertcal. Table 1: Cmparsn between the classcal AP-gemetry and the GAP-gemetry Classcal AP-gemetry GAP-gemetry Buldng blcks λ α (x) λ α (x, y) Metrc g µν (x) = λ µ (x) λ ν (x) g µν (x, y) = λ µ (x, y) λ ν (x, y) Remannan cnnectn Γ α µν = 1 2 gαǫ { µ g νǫ + ν g µǫ + ǫ g µν } Γ α µν = 1 2 gαǫ {δ µ g νǫ + δ ν g µǫ + δ ǫ g µν } (h) C α µν = 1 2 gαǫ { µ g νǫ + ν g µǫ + ǫ g µν } (v) Canncal cnnectn Γ α µν = λ α ( ν λ µ ) Γ α µν = λ α (δ ν λ µ ) (h-cunterpart) Cµν α = λ α ( ν λ µ ) (v-cunterpart) AP-cndtn λ α µ = 0 λ α µ = 0 (h-cvarant dervatve) λ α µ = 0 (v-cvarant dervatve) Trsn Λ α µν = Γα µν Γα νµ Λ α µν = Γα µν Γα νµ (h-cunterpart) T α µν = C α µν C α νµ (v-cunterpart) Cntrsn γ α µν = Γα µν Γ α µν γ α µν = Γα µν Γ α νµ (h-cunterpart) G α µν = Cα µν C α µν (v-cunterpart) Basc vectr β µ = Λ α µα = γ α µα β µ = Λ α µα = γ α µα (h-cunterpart) B µ = T α µα = Gα µα (v-cunterpart)

8 8 4. Curvature tensrs n Generalzed AP-space Owng t the exstence f tw types f cvarant dervatves wth respect t the canncal cnnectn D, we have essentally three cmmutatn frmulae and cnsequently three curvature tensrs. Lemma 4.1. Let [δ σ, δ µ ] := δ σ δ µ δ µ δ σ and let [δ σ, µ ] be smlarly defned. Then [δ σ, δ µ ] = R ǫ σµ ǫ, [δ σ, µ ] = ( µ N ǫ σ ) ǫ, (4.1) where R α σµ := δ µn α σ δ σn α µ s the curvature tensr f the nn-lnear cnnectn Nα µ. Therem 4.2. The three cmmutatn frmulae f cnnectn D = (Nµ α, Γ α µν, Cµν) α are gven by (a) λ α µσ λ α σµ = λ ǫ R α ǫµσ + λα ǫ Λ ǫ σµ + λα ǫ R ǫ σµ (b) λ α µσ λ α σµ = λ ǫ S α ǫµσ + λα ǫ T ǫ σµ (c) λ α µ σ λ α σ µ = λ ǫ P α ǫµσ + λ α ǫ C ǫ σµ + λ α ǫ P ǫ σµ, λ α crrespndng t the canncal where Rνµσ α : = (δ σγ α νµ δ µγ α νσ ) + (Γǫ νµ Γα ǫσ Γǫ νσ Γα ǫµ ) + Lα νµσ, (h-curvature) Sνµσ α : = σ Cνµ α µ Cνσ α + Cǫ νµ Cα ǫσ Cǫ νσ Cα ǫµ, (v-curvature) Pνµσ α : = Cνµ σ α µ Γ α νσ PσµC ǫ νǫ, α (hv-curvature) gven that L α νµσ := C α νǫ R ǫ µσ and P ν σµ := µ N ν σ Γ ν µσ. A drect cnsequence f the abve cmmutatn frmulae, tgether wth the fact that λ α µ = λ α µ = 0, s the fllwng Crllary 4.3. The three curvature tensrs Rνµσ α, Sα νµσ and P νµσ α cnnectn D = (Nµ α, Γα µν, Cα µν ) vansh dentcally. f the canncal It s t be nted that the abve result s a natural generalzatn f the crrespndng result f the classcal AP-gemetry [15]. The Banch denttes [4] fr the canncal d-cnnectn (N α µ, Γα µν, Cα µν ) gves Prpstn 4.4. The fllwng denttes hld (a) S ν,µ,σ Λ α νµ σ = S ν,µ,σ(λ α µǫ Λǫ νσ + Lα µνσ ) (b) S ν,µ,σ T α νµ σ = S ν,µ,σ(t α µǫ T ǫ νσ ), where S ν,µ,σ dentes a cyclc permutatn n ν, µ, σ. Crllary 4.5. The fllwng denttes hld: (a) Λ ǫ µν ǫ = β µ ν β ν µ + β ǫ Λ ǫ µν + S ǫ,ν,µl ǫ ǫνµ. (b) T ǫ µν ǫ = B µ ν B ν µ + B ǫ T ǫ µν,

9 9 Prf. Bth denttes fllw by cntractng the ndces α and σ n the denttes (a) and (b) f Prpstn 4.4, takng nt accunt that β µ = Λ ǫ µǫ, B µ = T ǫ µǫ and L α µνσ = Lα µσν. In addtn t the Remannan and the cannncal d-cnnectns, ur space admts at least tw ther natural d-cnnectns. In analgy t the classcal AP-space, we defne the dual d-cnnectn D = (N α µ, Γ α µν, C α µν) by and the symmetrc d cnnectn D = (N α µ, Γ α µν, Ĉα µν ) by Γ α µν := Γα νµ, Cα µν := C α νµ (4.2) Γ α µν := 1 2 (Γα µν + Γα νµ ), Ĉα µν := 1 2 (Cα µν + Cα νµ ). (4.3) Cvarant dfferentatn wth respect t Γ α µν and Γ α µν wll be dented by and respectvely. Nw, crresndng t each f the fur d-cnnectns there are three curvature tensrs. Therefre, we have a ttal f twelve curvature tensrs three f whch, as already mentned, vansh dentcally. The vanshng f the curvature tensrs f the canncal d-cnnectn allws us t express, n a relatvely cmpact frm, sx f the ther curvature tensrs (the h- and v-curvature tensrs) crrespndng t the Remannan, symmetrc and the dual d-cnnectns. These curvature tensrs are expressed n terms f the trsn tensrs Λ α µν, Tµν α and ther cvarant dervatves wth respect t the canncal d-cnnectn, tgether wth the curvature Rµν α f the nnlnear cnnectn Nµ α. The ther three hv-curvature tensrs are calculated, thugh ther expressns are mre cmplcated. Ths s t be expected snce the expressn btaned fr the hv-curvature tensr f the canncal d-cnnectn lacks the symmetry prpertes enjyed by the h- and v-curvature tensrs. Therem 4.6. The h-, v- and hv-curvature tensrs f the dual d-cnnectn D = (Nµ α, Γ α µν, C µν α ) can be expressed n the frm: (a) R α µσν = Λα σν µ + Cα ǫµ Rǫ σν + Lα σνµ + Lα νµσ. (b) S α µσν = T α σν µ. (c) P α νµσ = T α µν σ Λα σν µ + T ǫ µνλ α σǫ T α µǫλ ǫ σν Λ α ǫνc ǫ σµ P ǫ σµt α ǫν. The crrespndng curvature tensrs f the symmetrc d-cnnectn D = (N α µ, Γ α µν, Ĉα µν ) can be expressed n the frm: (d) R α µσν = 1 2 (Λα µν σ Λα µσ ν ) (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) (Λǫ σν Λα ǫµ ) (T α ǫµ Rǫ σν ). (e) Ŝα µσν = 1 2 (T α µν σ T α µσ ν ) (T ǫ µνt α σǫ T ǫ µσt α νǫ) (T ǫ σνt α ǫµ). (f) P α νµσ = 1 2 (Λα µν σ Λα σν µ ) Λǫ σµt α ǫν 1 2 Λα ǫνc ǫ σµ S µ,ν,σλ ǫ µνλ α σǫ 1 2 P ǫ σµt α ǫν.

10 10 The crrespndng curvature tensrs f the Remannan d-cnnectn D = (N α µ, Γ α µν, C α µν ) can be expressed n the frm (g) R α µσν = γα µν σ γα µσ ν + γǫ µσ γα ǫν γǫ µν γα ǫσ + γα µǫ Λǫ νσ + Gα µǫ Rǫ νσ. (h) S α µσν = Gα µν σ Gα µσ ν + Gǫ µσ Gα ǫν Gǫ µν Gα ǫσ + Gα µǫ T ǫ νσ. () P α νµσ = u γ α νσ G α νµ σ + (Gǫ νµ C ǫ νµ)γ α ǫσ (G α ǫµ C α ǫµ)γ ǫ νσ + P ǫ σµg α νǫ. Prf. We prve (a) and (c) nly. The prf f the ther parts s smlar. (a) We have (c) We have R α µσν = δ ν Γ α µσ δ σ Γ α µν + Γ ǫ µσ Γ α ǫν Γ ǫ µν Γ α ǫσ + C α µǫ Rǫ σν = δ ν Γ α σµ δ σ Γ α νµ + Γ ǫ σµγ α νǫ Γ ǫ νµγ α σǫ + C α ǫµr ǫ σν = {δ ν Γ α σµ + Γǫ σµ (Λα νǫ + Γα ǫν )} {δ σγ α νµ + Γǫ νµ (Λα σǫ + Γα ǫσ )} + C α ǫµ Rǫ σν = (δ ν Γ α σµ + Γ ǫ σµγ α ǫν) (δ σ Γ α νµ + Γ ǫ νµγ α ǫσ) (Γ ǫ σµλ α ǫν + Γ ǫ νµλ α σǫ) + C α ǫµr ǫ σν = (R α σµν Cα σǫ Rǫ µν + δ µγ α σν + Γǫ σν Γα ǫµ ) (Rα νµσ Cα νǫ Rǫ µσ + δ µ Γ α νσ + Γǫ νσ Γα ǫµ ) (Γǫ σµ Λα ǫν + Γǫ νµ Λα σǫ ) + Cα ǫµ Rǫ σν. = δ µ Λ α σν + Γ α ǫµλ ǫ σν Γ ǫ σµλ α ǫν Γ ǫ νµλ α σǫ + C α ǫµr ǫ σν + C α σǫr ǫ νµ + C α νǫr ǫ µσ = Λ α σν µ + Cα ǫµ Rǫ σν + Lα σνµ + Lα νµσ. P α νµσ = C α µν e σ µ Γ α σν ( µ N ǫ σ Γ ǫ σµ)c α ǫν = C α νµ σ + (C α µν e σ Cα νµ σ) µ Λ α σν µ Γ α νσ µ N ǫ σ(t α ǫν + C α νǫ) + (Λ ǫ σµ + Γǫ µσ )(T α ǫν + Cα νǫ ) = P α νµσ ( µ N ǫ σ Γǫ µσ )T α ǫν µ Λ α σν + Λǫ σµ Cα ǫν + (Cα µν e σ Cα νµ σ ) = (C α µν e σ Cα νµ σ) + Λ ǫ σµc α ǫν µ Λ α σν P ǫ σµt α ǫν = T α µν σ + Cǫ µν Λα σǫ Cα µǫ Λǫ σν µ Λ α σν P ǫ σµ T α ǫν = T α µν σ µ Λ α σν + (T ǫ µν + C ǫ νµ)λ α σǫ (T α µǫ + C α ǫµ)λ ǫ σν P ǫ σµt α ǫν = T α µν σ Λα σν µ + T ǫ µν Λα σǫ T α µǫ Λǫ σν Λα ǫν Cǫ σµ P ǫ σµ T α ǫν. 5. Fundamental secnd rank tensrs Due t the mprtance f secnd rder symmetrc and skew-symmetrc tensrs n physcal applcatns, we here lst such tensrs n Table 2 belw. We regard these tensrs as fundamental snce ther cunterparts n the classcal AP-cntext play a key rle n physcal applcatns. Mrever, n the AP-gemetry, mst secnd rank tensrs whch have physcal sgnfcance can be expressed as a lnear cmbnatn f these fundamental tensrs. The Table s cnstructed as smlar as pssble t

11 11 that gven by Mkhal (cf. [5], Table 2), t facltate cmparsn wth the case f the classcal AP-gemetry whch has many physcal applcatns [14]. Crrespndng hrzntal and vertcal tensrs are dented by the same symbl wth the vertcal tensrs barred. It s t be nted that all vertcal tensrs have n cunterpart n the classcal AP-cntext. Table 2: Summary f the fundamental symmetrc and skew-symmetrc secnd rank tensrs Hrzntal Vertcal Skew-Symmetrc Symmetrc Skew-Symmetrc Symmetrc ξ µν := γ µν α α øξ µν := G µν α α γ µν := β α γ µν α øγ µν := B α G µν α η µν := β ǫ Λ ǫ µν φ µν := β ǫ Ω ǫ µν øη µν := B ǫ T ǫ µν øφ µν := B ǫ D ǫ µν χ µν := Λ α µν α ψ µν := Ω ǫ µν ǫ øχ µν := T α µν α øψ µν := D α µν α ǫ µν := 1 2 (β µ ν β ν µ ) θ µν := 1 2 (β µ ν + β ν µ ) øǫ µν := 1 2 (B µ ν B ν µ ) øθ µν := 1 2 (B µ ν + B ν µ ) k µν := γ ǫ αµ γα νǫ γǫ µα γα ǫν h µν := γ ǫ αµ γα νǫ + γǫ µα γα ǫν øk µν := G ǫ αµ Gα νǫ Gǫ µα Gα ǫν øh µν := G ǫ αµ Gα νǫ + Gǫ µα Gα ǫν σ µν := γ ǫ αµ γα ǫν øσ µν := G ǫ αµ Gα ǫν ω µν := γ ǫ µαγ α νǫ øω µν := G ǫ µαg α νǫ α µν := β µ β ν øα µν := B µ B ν Due t the metrcty cndtn n Therem 3.3, ne can use the metrc tensr g µν and ts nverse g µν t perfrm the peratns f lwerng and rasng tensr ndces under the h- and v- cvarant dervatves relatve t the canncal d-cnnectn. Thus, cntractn wth the metrc tensr f the abve fundamental tensrs gves the fllwng table f scalars:

12 12 Table 3: Summary f the fundamental scalars Hrzntal α := β µ β µ θ := β µ µ φ := β ǫ Ω ǫµ µ ψ := Ω αµ µ α ω := γ ǫµ α γ α µǫ σ := γ ǫ α µ γ α ǫµ h := 2γ αµ ǫ γ ǫ αµ Vertcal øα := B µ B µ øθ := B µ µ øφ := B ǫ D ǫµ µ øψ := D αµ µ α øω := G ǫµ α G α µǫ øσ := G ǫ α µ G α ǫµ øh := 2G αµ ǫ G ǫ αµ In physcal applcatns, secnd rder symmetrc tensrs f zer trace have specal mprtance. Fr example, n the case f electrmagnetsm, the tensr characterzng the electr-magnetc energy s a secnd rder symmetrc tensr havng zer trace. S t s f nterest t search fr such tensrs. The Table belw gves sme f the secnd rank tensrs f zer trace. Table 4: Summary f the fundamental tensrs f zer trace Hrzntal Vertcal φ µν + 2α µν øφ µν + 2ᾱ µν ψ µν + 2θ µν øψ µν + 2øθ µν h µν + 2ω µν øh µν + 2øω µν 1 2 (φ µν ψ µν ) + θ µν α µν 1 2 g µνβ α 1 e α 2 (øφ µν øψ µν ) + øθ µν øα µν 1 2 g µνb α α e We nw cnsder sme useful secnd rank tensrs whch are nt expressble n terms f the fundamental tensrs appearng n Table 2. Unlke the tensrs f Table 2, sme f the tensrs t be defned belw have n hrzntal and vertcal cunterparts. T ths end, let L µν := L α αµν = C α αǫr ǫ µν, M µν := L α µαν = C α µǫ R ǫ αν, N µν := C α ǫµ R ǫ αν, F µν := C α ǫµ R ǫ αν. Then, clearly T µν := M µν N µν = T α µǫ R ǫ αν, G µν := M µν F µν = G α µǫ R ǫ αν, G µν T µν = G α ǫµ R ǫ αν. Fnally, let T := g µν T µν and G := g µν G µν. By the abve, we have the fllwng: Symmetrc secnd rank tensrs: M (µν), N (µν), F (µν). Skew-symmetrc secnd rank tensrs: M [µν], N [µν], F [µν], L µν.

13 13 6. Cntracted curvatures and curvature scalars It may be cnvenent, fr physcal reasns, t cnsder secnd rank tensrs derved frm the curvature tensrs by cntractns. It s als f nterest t reduce the number f these tensrs t a mnmum whch s fundamental (cf. Prpstns 6.1 and 6.2). Cntractng the ndces α and µ n the expressns btaned fr the h- and v- curvature tensrs n Therem 4.6, takng nt accunt Crllary 4.5, we btan Prpstn 6.1. Let R σν := R ασν α, Rσν := R ασν α and R σν := R α ασν expressns fr S σν, Ŝσν and S σν. Then, we have wth smlar (a) R σν = β σ ν β ν σ + β ǫ Λ ǫ σν + B ǫrσν ǫ, (b) S σν = B σ ν B ν σ + B ǫ Tσν ǫ, (c) R σν = 1 R 2 σν, (d) Ŝσν = 1 S 2 σν, (e) R σν = S σν = 0. Prpstn 6.2. Let R µσ := R µσα α, Rµσ := R µσα α and R µσ := R α µσα expressns fr S µσ, Ŝµσ and S µσ. Then, we have wth smlar (a) R µσ = β σ µ + CǫµR α σα ǫ + L α σαµ + L α αµσ, (b) S µσ = B σ µ, (c) R µσ = 1 R 2 µσ + 1{β 4 ǫλ ǫ σµ + Λǫ ασ Λα µǫ }, (d) Ŝµσ = 1 S 2 µσ + 1{B 4 ǫtσµ ǫ + T ασ ǫ T µǫ α }, (e) R µσ = β µ σ γµσ α α + β ǫγµσ ǫ γµǫγ α σα ǫ + G α µǫrασ, ǫ (f) S µσ := S α µσα = B µ σ G α µσ α + B ǫg ǫ µσ Gα µǫ Gǫ σα. Prpstn 6.3. The fllwng hlds. (a) R [µσ] = 1 {β 2 σ µ β µ σ } + CǫαR ǫ µσ α + C(ασ) ǫ Rα ǫµ C(αµ) ǫ Rα ǫσ, (b) R (µσ) = 1{β 2 σ µ + β µ σ + Tαµ ǫ Rα σǫ + T ασ ǫ Rα µǫ }, (c) S [µσ] = 1{B 2 σ µ B µ σ }, (d) S (µσ) = 1{B 2 σ µ + B µ σ }, (e) R [µσ] = 1 R 2 [µσ] + 1 β 4 ǫ Λ ǫ σµ, (f) R (µσ) = 1 R 2 (µσ) Λǫ ασ Λ α µǫ, (g) Ŝ[µσ] = 1 S 2 [µσ] + 1 B 4 ǫ Tσµ, ǫ

14 14 (h) Ŝ(µσ) = 1 2 S (µσ) T ǫ ασ T α µǫ, () R [µσ] = 1 2 {Lα αµσ + C α σǫ R ǫ αµ C α µǫ R ǫ ασ}, (j) R (µσ) = 1 2 {(β µ σ + β σ µ ) Ω α µσ α + β ǫ Ω ǫ µσ } γα µǫ γǫ σα {Gα µǫ Rǫ ασ + Gα σǫ Rǫ αµ }, (k) S [µσ] = 0, (l) S (µσ) = 1 2 {(B µ σ + B σ µ ) D α µσ α + B ǫ D ǫ µσ } Gα µǫ Gǫ σα. Crllary 6.4. The fllwng hlds: (a) R σ σ := g µσ Rµσ = β σ σ + T ǫσ α R α ǫσ, (b) S σ σ := gµσ Sµσ = B σ σ, (c) R σ σ := g µσ Rµσ = 1 2 {βσ σ + T ǫσ α R α ǫσ} Λǫσ α Λ α ǫσ, (d) Ŝσ σ := g µσ Ŝ µσ = 1 2 Bσ σ T ǫσ α T α ǫσ, (e) R σ σ := g µσ R µσ = β σ σ 1 2 Ωασ σ α β α Ω ασ σ γ ασ ǫ γ ǫ σα + Gασ ǫ R ǫ ασ, (f) S σ σ := g µσ S µσ = B σ σ 1 2 Dασ σ α B α D ασ σ G ασ ǫ G ǫ σα. We nw apply a dfferent methd fr calculatng bth R µσ and S µσ, nw expressed n terms f the cvarant dervatve f the cntrsn tensrs wth respect t the Remannan d-cnnectn. Then we btan Prpstn 6.5. The Rcc tensrs R µσ and S µσ can be expressed n the frm (a) R µσ = β µ σ γ α µσ α β ǫγ ǫ µσ + γǫ µα γα ǫσ + Gα µǫ Rǫ ασ. (b) S µσ = B µ σ G α µσ α B ǫg ǫ µσ + Gǫ µα Gα ǫσ. Prf. We prve (a) nly; the prf f (b) s smlar. We have 0 = R α µσα = (δ αγ α µσ δ σγ α µα ) + (Γǫ µσ Γα ǫα Γǫ µα Γα ǫσ ) + Rǫ σα Cα µǫ = δ α ( Γ α µσ + γα µσ ) δ σ( Γ α µα + γα µα ) + ( Γ ǫ µσ + γǫ µσ )( Γ α ǫα + γα ǫα ) Cnsequently, ( Γ ǫ µα + γǫ µα )( Γ α ǫσ + γα ǫσ ) + Rǫ σα Cα µǫ = R µσ (δ σ γµα α γǫα α Γ ǫ µσ) + (δ α γµσ α + γµσ ǫ Γ α ǫα γǫσ α γµǫ α Γ ǫ σα ) + Rǫ σα (Cα µǫ C α µǫ ) + γǫ µσ γα ǫα γǫ µα γα ǫσ. Γ ǫ µα R µσ = β µ σ γ α µσ α β ǫγ ǫ µσ + γǫ µα γα ǫσ + Gα µǫ Rǫ ασ. In vew f Prpstn 6.2 (e) and (f) and Prpstn 6.5, we btan

15 15 Crllary 6.6. The fllwng denttes hlds: (a) (β µ σ β µ σ ) (γ α µσ α γα µσ α) = (γǫ µαω α σǫ 2β ǫ γ ǫ µσ) (b) (B µ σ B µ σ ) (G α µσ α Gα µσ α) = (Gǫ µαd α σǫ 2B ǫ G ǫ µσ). The next tw tables summarze the results btaned n ths sectn, where the cntracted curvatures are expressed n terms f the fundamental tensrs. Table 5 (a): Secnd rank curvature tensrs Skew-symmetrc Symmetrc Dual R[µσ] = ǫ σµ L σµ + M [σµ] + N [σµ] R(µσ) = θ µσ + M (µσ) N (µσ) S [µσ] = øǫ σµ S(µσ) = øθ µσ Symmetrc R[µσ] = 1 2 R [µσ] η σµ R(µσ) = 1 2 R (µσ) {h µσ ω µσ σ µσ } Ŝ [µσ] = 1 2 S [µσ] øη σµ Ŝ (µσ) = 1 2 S (µσ) {øh µσ øω µσ øσ µσ } Remannan R [µσ] = 1 2 L µσ F [µσ] R(µσ) = θ µσ 1 2 (ψ µσ φ µσ ) ω µσ + M (µσ) F (µσ) S [µσ] = 0 S (µσ) = øθ µσ 1 2 (øψ µσ øφ µσ ) øω µσ Table 5 (b): h- and v-scalar curvature tensrs h-scalar curvature v-scalar curvature Dual Rσ σ = θ + T Sσ σ = øθ Symmetrc Rσ σ = 1(θ + T) 1(3ω + σ) 2 4 Ŝσ σ = 1øθ 1 (3øω + øσ) 2 4 Remannan R σ σ = θ 1 (ψ φ) ω + G 2 S σ σ = øθ 1 (øψ øφ) øω 2

16 16 7. The W-tensrs The W-tensr was frst defned by M. Wanas n 1975 [13] and has been used by F. Mkhal and M. Wanas [6] t cnstruct a gemetrc thery unfyng gravty and electrmagnetsm. Recently, tw f the authrs f ths paper studed sme f the prpertes f ths tensr n the cntext f the classcal AP-space [15]. Defntn 7.1. Let (M, λ) be a generalzed AP-space. Fr a gven d-cnnectn D = (Nβ α, Γα µν, Cα µν ), the hrzntal W-tensr (hw-tensr) Hα µνσ s defned by the frmula λ µ νσ λ µ σν = λ ǫ Hµνσ, ǫ whereas the vertcal W-tensr (vw-tensr) V α µνσ λ µ νσ λ µ σν = λ ǫ V ǫ µνσ, s defned by the frmula where and are the hrzntal and the vertcal cvarant dervatves wth respect t the cnnectn D. We nw carry ut the task f calculatng the dfferent W-tensrs. As ppsed t the classcal AP-space, whch admts essentally ne W-tensr crrespndng t the dual cnnectn, we here have 4 dstnct W-tensrs: the hrzntal and vertcal W-tensrs crrespndng t the dual d-cnnectn, the hrzntal W-tensr crrespndng t the symmetrc d-cnnectn and, fnally, the hrzntal W-tensr crrespndng t the Remannan d-cnnectn. The remanng W-tensrs cncde wth the crrespndng curvature tensrs. It s t be nted that sme f the expressns btaned fr the W-tensrs are relatvely mre cmpact than thse btaned fr the crrespndng curvature tensrs. Therem 7.2. The hw-tensr H µνσ α, the vw-tensr Ṽ µνσ α, the hw-tensr Ĥα µνσ and the hw-tensr H α µνσ crrespndng t the dual, symmetrc and the Remannan d-cnnectns respectvely can be expressed n the frm: (a) H α µνσ = Λ α σν µ + Λǫ νσλ α µǫ + S µ,ν,σ L α µσν. (b) Ṽ α µνσ = T α σν µ + T ǫ νσ T α µǫ. (c) Ĥα µνσ = 1 2 (Λα µν σ Λα µσ ν ) (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) (Λǫ σν Λα ǫµ ). (d) H α µνσ = γα µν σ γα µσ ν + γǫ µσ γα ǫν γǫ µν γα ǫσ + Λǫ νσ γα µǫ. Prf. We prve (a) nly. The prf f the ther parts s smlar. We have λ ǫ Hǫ µνσ = λ ǫ Rǫ µσν + λ µ e ǫ Λǫ σν + λ µ e ǫ R ǫ σν. Hence, takng nt accunt Therem 4.6 (a), we btan H µνσ α = R µσν α + λ α (δ ǫ λ µ λ β Γ β ǫµ ) Λ ǫ σν + λ α ( ǫ λ µ λ β C ǫµ β )Rǫ σν = R µσν α + Λǫ νσ (Γα µǫ Γα ǫµ ) + Rǫ σν (Cα µǫ Cα ǫµ ) = Λ α σν µ + C α ǫµr ǫ σν + L α σνµ + L α νµσ + Λ ǫ νσλ α µǫ + T α µǫr ǫ σν = Λ α σν µ + T α ǫµ Rǫ σν + Cα µǫ Rǫ σν + Lα σνµ + Lα νµσ + Λǫ νσ Λα µǫ + T α µǫ Rǫ σν = Λ α σν µ + Λǫ νσ Λα µǫ + S µ,ν,σl α µσν.

17 17 Prpstn 7.3. Let Hνσ := H ανσ α, Ĥ νσ := Ĥα ανσ and H νσ := H α ανσ wth smlar expressn fr Ṽνσ. Then, we have (a) H νσ = β σ ν β ν σ + 2β ǫ Λ ǫ σν, (b) Ṽνσ = B σ ν B ν σ + 2B ǫ Tσν, ǫ (c) Ĥνσ = 1 { H 2 νσ + β ǫ Λ ǫ νσ}, (d) H νσ = 0. Prpstn 7.4. Let H µσ := H µασ α, Ĥ µσ := Ĥα µασ and H µσ := H α µασ expressns fr Ṽµσ. Then, we have wth smlar (a) H µσ = β σ µ + Λ ǫ ασλ α µǫ + S α,µ,σ L α αµσ, (b) Ṽµσ = B σ µ + T ǫ ασ T α µǫ, (c) Ĥµσ = 1 2 H µσ (β ǫλ ǫ σµ + Λǫ σα Λα µǫ ), (d) H µσ = β µ σ γ α µσ α + β ǫγ ǫ µσ γǫ σα γα µǫ. Prpstn 7.5. The fllwng hlds: (a) H [µσ] = 1 2 {β σ µ β µ σ } + S α,µ,σ L α αµσ, (b) H (µσ) = 1 2 {β σ µ + β µ σ } + Λ ǫ ασ Λα µǫ, (c) Ṽ[µσ] = 1 2 {B σ µ B µ σ }, (d) Ṽ(µσ) = 1 2 {B σ µ + B µ σ } + T ǫ ασt α µǫ, (e) Ĥ[µσ] = 1 2 H [µσ] β ǫλ ǫ σµ, (f) Ĥ(µσ) = 1 2 H (µσ) Λǫ σα Λα µǫ, (g) H [µσ] = 1 2 S αµσl α αµσ, (h) H (µσ) = 1 2 {(β µ σ + β σ µ ) Ω α µσ α + β ǫω ǫ µσ } γα µǫ γǫ σα. Crllary 7.6. the fllwng hlds: (a) H α α = βα α + Λ ǫµ αλ α ǫµ, (b) Ṽ α α = Bα α + T ǫµ αt α ǫµ, (c) Ĥα α = 1 2 βα α Λǫµ αλ α ǫµ, (d) H σ σ = β σ σ 1 2 Ωασ σ α β αω ασ σ γ ασ ǫγ ǫ σα. Takng nt accunt Prpstn 4.4, Therem 7.2 and the Banch dentty [4] fr the Remannan d-cnnectn, we get the fllwng

18 18 Prpstn 7.7. The hw-tensrs H α µνσ, Ĥα µνσ, H α µνσ and the vw-tensrs Ṽ α µνσ satsfy the fllwng denttes: (a) S µ,ν,σ Hα µνσ = 2S µ,ν,σ (Λ α µǫ Λǫ νσ + Lα µσν ). (b) S µ,ν,σ Ṽ α µνσ = 2S µ,ν,σ(t α µǫ T ǫ νσ ). (c) S µ,ν,σ Ĥ α µνσ = S µ,ν,σ L α µσν. (d) S µ,ν,σ H α µνσ = S µ,ν,σ L α µσν. We cllect the results btaned n ths sectn n the fllwng tables, where the cntracted W-tensrs are expressed n terms f the fundamental tensrs. Table 6 (a): Secnd rank W-tensrs Skew-symmetrc Symmetrc Dual H[µσ] = ǫ σµ L σµ + 2M [σµ] H(µσ) = θ µσ (ω µσ + σ µσ h µσ ) Ṽ [µσ] = ǫ σµ Ṽ (µσ) = θ µσ ( ω µσ + σ µσ h µσ ) Symmetrc Ĥ [µσ] = 1 2 H [µσ] η σµ Ĥ (µσ) = 1 2 H (µσ) {ω µσ + σ µσ h µσ } Remannan H [µσ] = 1 2 L µσ M [µσ] H(µσ) = θ µσ 1 2 (ψ µσ φ µσ ) ω µσ Table 6 (b): Scalar W-tensrs h-scalar W-tensrs v-scalar W-tensrs Dual Hσ σ = θ (3ω + σ) Ṽ σ σ = θ (3 ω + σ) Symmetrc Ĥσ σ = 1θ 1 (3ω + σ) 2 4 Remannan H σ σ = θ 1 (ψ φ) ω 2

19 19 Cncludng remarks In the present artcle, we have develped a parallelzable structure n the cntext f a generalzed Lagrange space. Fur dstngushed cnnectns, dependng n ne nn-lnear cnnectn, are used t explre the prpertes f ths space. Dfferent curvature tensrs characterzng ths structure are calculated. The cntracted curvature tensrs necessary fr physcal applcatns are gven and cmpared (Tables 5(a)). The traces f these tensrs are derved and cmpared (Table 5(b)). Fnally, the dfferent W-tensrs wth ther cntractns and traces are als derved (Tables 6(a) and 6(b)). On the present wrk, we have the fllwng cmments and remarks: 1. Exstng theres f gravty suffer frm sme prblems cnnected t recent bserved astrphyscal phenmena, especally thse admttng anstrpc behavr f the system cncerned (e.g. the flatness f the rtatn curves f spral galaxes). S, theres n whch the gravtatnal ptental depends n bth pstn and drectn are needed. Such theres are t be cnstructed n spaces admttng ths dependence. Ths s ne f the ams mtvatng the present wrk. 2. Amng the advantages f the AP-gemetry are the ease n calculatns and the dverse and ts thrugh applcatns. In ths wrk, we have kept as clse as pssble t the classcal AP-case. Hwever, the extra degrees f freedm n ur GAP-gemetry have created an abundance f gemetrc bjects whch have n cunterpart n the classcal AP-gemetry. Snce the physcal meanng f mst f the gemetrc bjects f the classcal AP-structure s clear, we hpe t attrbute physcal meanng t the new gemetrc bjects appearng n the present wrk, especally the vertcal quanttes. 3. Due t the wealth f the GAP-gemetry, ne s faced wth the prblem f chsng gemetrc bjects that represent true physcal quanttes. As a frst step t slve ths prblem, we have wrtten all secnd rder tensrs n terms f the fundamental tensrs defned n sectn 5. Ths s dne t facltate cmparsn between these tensrs and t be able t chse the mst apprprate fr physcal applcatn. The same prcedure has been used fr scalars. 4. We are aware that the present paper s f cmputatnal nature. The paper s certanly nt ntended t be an end n tself. In t, we try t cnstruct a gemetrc framewrk capable f dealng wth and descrbng physcal phenmena. The success f the classcal AP-gemetry n physcal applcatns made us chse ths gemetry as a gude lne. The physcal nterpretatn f the gemetrc bjects exstng n the GAPgemetry and nt n the AP-gemetry wll be further nvestgated n a frthcmng paper.

20 20 References [1] D. Ba, S. Chern and Z. Shen, An ntrductn t Remann-Fnsler Gemetry, Graduate Texts n Mathematcs, Sprnger, [2] F. Brckell and R. S Clark, Dfferentable manflds, Van Nstrand Renhld C., [3] K. Hayash and T. Shrafuj, New general relatvty, Phys. Rev. D 19 (1979), [4] M. Matsumt, Fundatns f Fnsler Gemetry and specal Fnsler spaces, Kasesha Press, Otsu, Japan, [5] F. I. Mkhal, Tedrad vectr felds and generalzng the thery f relatvty, An Shams Sc. Bull., N. 6 (1962), [6] F. I. Mkhal and M.I Wanas, A generalzed feld thery. I. Feld equatns, Prc. R. Sc. Lndn, A. 356 (1977), [7] R. Mrn, A Lagrangan thery f relatvty, Sem de Gem. s Tp., 84, Tmsara, Rmana, [8] R. Mrn, Metrcal Fnsler structures and specal Fnsler spaces, J. Math. Kyt Unv., 23 (1983), [9] R. Mrn, Cmpendum n the Gemetry f Lagrange Spaces, Handbk f Dfferental Gemetry, Vl. II (2006), [10] H. P. Rbertsn, Grups f mtn n spaces admttng abslute parallelsm, Ann. Math, Prncetn (2), 33 (1932), [11] T. Sakaguch, Parallelzable generalzed Lagrange spaces, Anal. St. Unv. AI. I. Cuza, Ias, Mat., 33, 2 (1987), [12] T. Sakaguch, Invarant thery f parallelzable Lagrange spaces, Tensr, N. S., 46 (1987), [13] M. I. Wanas, A generalzed feld thery and ts applcatns n csmlgy, Ph. D. Thess, Car Unversty, [14] M. I. Wanas, Abslute parallelsm gemetry: Develpments, applcatns and prblems, Stud. Cercet, Stn. Ser. Mat. Unv. Bacau, N. 10 (2001), [15] N. L. Yussef and A. M. Sd-Ahmed, Lnear cnnectns and curvature tensrs n the gemetry f parallelzabl manflds, Submtted.

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces Gemetry f parallelzable manflds n the cntext f generalzed Lagrange spaces M.I. Wanas, Nabl L. Yussef and A.M. Sd-Ahmed Abstract. In ths paper, we deal wth a generalzatn f the gemetry f parallelzable manflds,

Διαβάστε περισσότερα

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces 1 Gemetry f Parallelzable Manflds n the Cntext f Generalzed Lagrange Spaces arxv:0704.2001v2 [gr-qc] 30 Nv 2007 M. I. Wanas, N. L. Yussef and A. M. Sd-Ahmed Department f Astrnmy, Faculty f Scence, Car

Διαβάστε περισσότερα

On Curvature Tensors in Absolute Parallelism Geometry

On Curvature Tensors in Absolute Parallelism Geometry arxv:gr-qc/0604111 v1 26 Apr 2006 On Curvature Tensors n Absolute Parallelsm Geometry Nabl L. Youssef and Amr M. Sd-Ahmed Department of Mathematcs, Faculty of Scence, Caro Unversty e-mal: nyoussef@frcu.eun.eg

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τομέας Υδατικών Πόρων και Περιβάλλοντος Εύα- Στυλιανή Στείρου Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/ v2 8 Feb 2007

LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/ v2 8 Feb 2007 1 LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/0604111v2 8 Feb 2007 Nabil L. Youssef and Amr M. Sid-Ahmed Department of Mathematics, Faculty of Science,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΘΡΩΠΙΣΤΙΚΩΝ & ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΚΑΙΟΥ «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» Διπλωματική

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Παραγωγή ήχου από ψάρια που υέρουν νηκτική κύστη: Παραμετρική ανάλυση του μοντέλου

Παραγωγή ήχου από ψάρια που υέρουν νηκτική κύστη: Παραμετρική ανάλυση του μοντέλου Παραγωγή ήχου από ψάρια που υέρουν νηκτική κύστη: Παραμετρική ανάλυση του μοντέλου Σππξίδσλ Κνπδνύπεο Τκήκα Μνπζηθήο Τερλνινγίαο θαη Αθνπζηηθήο, Τ.Δ.Ι. Κξήηεο skuz@staff.teicrete.gr Παλαγηώηεο Παπαδάθεο

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30

Διαβάστε περισσότερα

Η ΑΝΑΖΗΤΗΣΗ ΤΟΥ ΌΡΟΥ "ΝΟΣΗΛΕΥΤΙΚΗ" ΣΤΑ ΠΡΑΚΤΙΚΑ ΤΩΝ ΣΥΝΕΔΡΙΑΣΕΩΝ ΤΟΥ ΔΙΟΙΚΗΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΤΟΥ ΘΕΡΑΠΕΥΤΗΡΙΟΥ ΕΥΑΓΓΕΛΙΣΜΟΣ

Η ΑΝΑΖΗΤΗΣΗ ΤΟΥ ΌΡΟΥ ΝΟΣΗΛΕΥΤΙΚΗ ΣΤΑ ΠΡΑΚΤΙΚΑ ΤΩΝ ΣΥΝΕΔΡΙΑΣΕΩΝ ΤΟΥ ΔΙΟΙΚΗΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΤΟΥ ΘΕΡΑΠΕΥΤΗΡΙΟΥ ΕΥΑΓΓΕΛΙΣΜΟΣ Η ΑΝΑΖΗΤΗΣΗ ΤΟΥ ΌΡΟΥ "ΝΟΣΗΛΕΥΤΙΚΗ" ΣΤΑ ΠΡΑΚΤΙΚΑ ΤΩΝ ΣΥΝΕΔΡΙΑΣΕΩΝ ΤΟΥ ΔΙΟΙΚΗΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΤΟΥ ΘΕΡΑΠΕΥΤΗΡΙΟΥ ΕΥΑΓΓΕΛΙΣΜΟΣ Λαμπρινή Κουρκούτα 1, Αβραμίκα Μαρία 2, Δέσποινα Σαπουντζή-Κρέπια 3 1.Αναπληρώτρια

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Final Test Grammar. Term C'

Final Test Grammar. Term C' Final Test Grammar Term C' Book: Starting Steps 1 & Extra and Friends Vocabulary and Grammar Practice Class: Junior AB Name: /43 Date: E xercise 1 L ook at the example and do the same. ( Κξίηα ηξ παοάδειγμα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΩΤΟΒΑΘΜΙΑ ΦΡΟΝΤΙΔΑ ΥΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΦΟΡΟΛΟΓΙΑ Ο.Ε. ΕΙΣΗΓΗΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ: κ. ΟΥΡΑΝΟΥ ΕΡΜΙΟΝΗ ΣΠΟΥΔΑΣΤΡΙΕΣ: ΔΕΜΕΤΖΟΥ ΑΓΛΑΪΑ

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 9: Inversion Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6301456813* GREEK 0543/03 Paper 3 Speaking Role Play Card One 1 March 30

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Διαπολιτισμική Εκπαίδευση και Θρησκευτική Ετερότητα: εθνικές και θρησκευτικές

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 11: The Unreal Past Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014 LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1 ΑΝΔΡΕΑΣ ΑΝΔΡΕΟΥ Φ.Τ:2008670839 Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

Θέμα διπλωματικής εργασίας: «Από το «φρενοκομείο» στη Λέρο και την Ψυχιατρική Μεταρρύθμιση: νομικό πλαίσιο και ηθικοκοινωνικές διαστάσεις»

Θέμα διπλωματικής εργασίας: «Από το «φρενοκομείο» στη Λέρο και την Ψυχιατρική Μεταρρύθμιση: νομικό πλαίσιο και ηθικοκοινωνικές διαστάσεις» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΕΣ ΙΑΤΡΙΚΗΣ & ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΤΜΗΜΑΤΑ ΝΟΜΙΚΗΣ & ΘΕΟΛΟΓΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΥΓΧΡΟΝΕΣ ΙΑΤΡΙΚΕΣ ΠΡΑΞΕΙΣ: ΔΙΚΑΙΙΚΗ ΡΥΘΜΙΣΗ ΚΑΙ ΒΙΟΗΘΙΚΗ

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V February 5, 006 CHAPTER 0 P.P.0. 0 in(t 0 0, ω H jωl j4 0. F -j.5 jωc Hence, e circuit in e frequency dmain i a hwn belw. -j.5 Ω 4 Ω 0 0 A Ω x j4 Ω x At nde, At nde, 0 - j.5 00 (5 j4 j ( 4 x where x j4

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΨΥΚΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ - ΑΝΑΛΥΣΗ, ΕΞΗΓΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΨΥΚΤΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΕΜΠΟΡΙΚΟΥ ΠΛΟΙΟΥ ΣΠΟΥΔΑΣΤΗΣ : ΘΕΜΕΛΗΣ ΜΑΓΡΙΠΛΗΣ Α.Μ:4803

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή

Μεταπτυχιακή διατριβή ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Μεταπτυχιακή διατριβή ΣΥΣΧΕΤΙΣΜΟΙ ΠΡΑΓΜΑΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΦΙΣΤΑΜΕΝΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΝΑΛΟΓΑ ΜΕ ΤΗ ΤΟΠΟΘΕΣΙΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Σπανό Ιωάννη Α.Μ. 148

Σπανό Ιωάννη Α.Μ. 148 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Ηλεκτροχημική εναπόθεση και μελέτη των ιδιοτήτων, λεπτών υμενίων μεταβατικών μετάλλων, για παραγωγή H2 Διπλωματική

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : Λεωφ. Αντ.Τρίτση, Αργοστόλι Κεφαλληνίας Τ.Κ. 28 100 τηλ. : 26710-27311 fax : 26710-27312

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ Π.Μ.Σ: «Σύγχρονες Προσεγγίσεις στη γλώσσα και στα κείμενα» ΚΑΤΕΥΘΥΝΣΗ ΓΛΩΣΣΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Το φωνηεντικό

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ Ε ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ ΙE ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΓΕΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέµα: Εκπαίδευση: Μέσο ανάπτυξης του ανθρώπινου παράγοντα και εργαλείο διοικητικής µεταρρύθµισης Επιβλέπουσα:

Διαβάστε περισσότερα

Εργασία Ενοποιημένου Σχεδιασμού

Εργασία Ενοποιημένου Σχεδιασμού ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Εργασία Ενοποιημένου Σχεδιασμού ΣΥΣΤΗΜΑ ΕΛΕΓΧΟΥ ΕΙΣΟΔΟΥ / ΕΞΟΔΟΥ ΒΗΜΑΤΙΚΩΝ ΑΣΘΕΝΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΕΧΝΟΛΟΓΙΑΣ RFID ΣΤΗΝ ΚΑΡΔΙΟΛΟΓΙΚΗ ΕΝΤΑΤΙΚΗ

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live. Topic 1: Describe yourself Write your name, your nationality, your hobby, your pet. Write where you live. Χρησιμοποίησε το and. WRITE your paragraph in 40-60 words... 1 Topic 2: Describe your room Χρησιμοποίησε

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

(Biomass utilization for electric energy production)

(Biomass utilization for electric energy production) ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ T.Ε.I. ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Επιβλέπων: ΠΕΤΡΟΣ Γ. ΒΕΡΝΑΔΟΣ, Ομότιμος Καθηγητής Συνεπιβλέπουσα: ΕΡΙΕΤΤΑ Ι. ΖΟΥΝΤΟΥΡΙΔΟΥ, Παν. Υπότροφος

Διαβάστε περισσότερα

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Μπουρνέλης Γεώργιος

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Μπουρνέλης Γεώργιος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Μπουρνέλης Γεώργιος Η ΣΥΜΒΑΣΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗΣ ΜΙΣΘΩΣΗΣ (LEASING) ΣΤΟ ΕΛΛΗΝΙΚΟ ΔΙΚΑΙΟ. ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΚΑΙ ΜΕΙΟΝΕΚΤΗΜΑΤΑ

Διαβάστε περισσότερα