Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces"

Transcript

1 1 Gemetry f Parallelzable Manflds n the Cntext f Generalzed Lagrange Spaces arxv: v1 [gr-qc] 16 Apr 2007 M. I. Wanas, N. L. Yussef and A. M. Sd-Ahmed Department f Astrnmy, Faculty f Scence, Car Unversty wanas@frcu.eun.eg Department f Mathematcs, Faculty f Scence, Car Unversty nyussef@frcu.eun.eg, amrs@maler.eun.eg Abstract. In ths paper, we deal wth a generalzatn f the gemetry f parallelzable manflds, r the abslute parallelsm (AP-) gemetry, n the cntext f generalzed Lagrange spaces. All gemetrc bjects defned n ths gemetry are nt nly functns f the pstnal argument x, but als depend n the drectnal argument y. In ther wrds, nstead f dealng wth gemetrc bjects defned n the manfld M, as n the case f classcal AP-gemetry, we are dealng wth gemetrc bjects n the pullback bundle π 1 (TM) (the pullback f the tangent bundle TM by π : TM M). Many new gemetrc bjects, whch have n cunterpart n the classcal AP-gemetry, emerge n ths mre general cntext. We refer t such a gemetry as generalzed AP-gemetry (GAP-gemetry). In analgy t AP-gemetry, we defne a d-cnnectn n π 1 (TM) havng remarkable prpertes, whch we call the canncal d-cnnectn, n terms f the unque trsn-free Remannan d-cnnectn. In addtn t these tw d-cnnectns, tw mre d-cnnectns are defned, the dual and the symmetrc d-cnnectns. Our space, therefre, admts twelve curvature tensrs (crrespndng t the fur defned d-cnnectns), three f whch vansh dentcally. Smple frmulae fr the nne nn-vanshng curvatures tensrs are btaned, n terms f the trsn tensrs f the canncal d-cnnectn. The dfferent W-tensrs admtted by the space are als calculated. All cntractns f the h- and v-curvature tensrs and the W-tensrs are derved. Secnd rank symmetrc and skew-symmetrc tensrs, whch prve useful n physcal applcatns, are sngled ut. Ths paper, hwever, s nt an end n tself, but rather the begnnng f a research drectn. The physcal nterpretatn f the gemetrc bjects n the GAP-space that have n cunterpart n the classcal AP-space wll be further nvestgated n frthcmng papers. 1 Keywrds: Parallelzable manfld, Generalzed Lagrange space, AP-gemetry, GAPgemetry, Canncal d-cnnectn, W-tensr AMS Subject Classfcatn. 53B40, 53A40, 53B50. 1 Ths paper was presented n The Internatnal Cnference n Fnsler Extensns f Relatvty Thery held at Car, Egypt, Nvember 4-10, 2006.

2 2 1. Intrductn The gemetry f parallelzable manflds r the abslute parallelsm gemetry (AP-gemetry) ([5], [10], [14], [15]) has many advantages n cmparsn t Remannan gemetry. Unlke Remannan gemetry, whch has ten degrees f freedm (crrespndng t the metrc cmpnents fr n = 4), AP-gemetry has sxteen degrees f freedm (crrespndng t the number f cmpnents f the fur vectr felds defnng the parallelzatn). Ths makes AP-gemetry a ptental canddate fr descrbng physcal phenmena ther than gravty. Mrever, as ppsed t Remannan gemetry, whch admts nly ne symmetrc lnear cnnectn, AP-gemetry admts at least fur natural (bult-n) lnear cnnectns, tw f whch are nn-symmetrc and three f whch have nn-vanshng curvature tensrs. Last, but nt least, asscated wth an AP-space, there s a Remannan structure defned n a natural way. Thus, APgemetry cntans wthn ts gemetrcal structure all the mathematcal machnary f Remannan gemetry. Accrdngly, a cmparsn between the results btaned n the cntext f AP-gemetry and general relatvty, whch s based n Remannan gemetry, can be carred ut. In ths paper, we study AP-gemetry n the wder cntext f a generalzed Lagrange space ([7], [9], [11], [12]). All gemetrc bjects defned n ths space are nt nly functns f the pstnal argument x, but als depend n the drectnal argument y. In ther wrds, nstead f dealng wth gemetrc bjects defned n the manfld M, as n the case f classcal AP-space, we are dealng wth gemetrc bjects n the pullback bundle π 1 (TM) (the pullback f the tangent bundle TM by the prjectn π : TM M) [1]. Many new gemetrc bjects, whch have n cunterpart n the classcal AP-space, emerge n ths mre general cntext. We refer t such a space as a d-parallelzable manfld r a generalzed abslute parallelsm space (GAP-space). The paper s rganzed n the fllwng manner. In sectn 2, fllwng the ntrductn, we gve a bref accunt f the basc cncepts and defntns that wll be needed n the sequel, ntrducng the ntn f a nn-lnear cnnectn Nµ α. In sectn 3, we cnsder an n-dmensnal d-parallelzable manfld M ([2], [11]) n whch we defne a metrc n terms f the n ndependent π-vectr felds λ defnng the parallelzatn n π 1 (TM). Thus, ur parallelzable manfld becmes a generalzed Lagrange space, whch s a generalzatn f the classcal AP-space. We then defne the canncal d-cnnectn D, relatve t whch the h- and v-cvarant dervatves f the vectr felds λ vansh. We end ths sectn wth a cmparsn between the classcal AP-space and the GAP-space. In sectn 4, cmmutatn frmulae are recalled and sme denttes btaned. We then ntrduce, n analgy t the AP-space, tw ther d-cnnectns: the dual d-cnnectn and the symmetrc d-cnnectn. The nne nnvanshng curvature tensrs, crrespndng t the dual, symmetrc and Remannan d-cnnectns are then calculated, expressed n terms f the trsn tensrs f the canncal d-cnnectn. In sectn 5, a summary f the fundamental symmetrc and skew symmetrc secnd rank tensrs s gven, tgether wth the symmetrc secnd rank tensrs f zer trace. In sectn 6, all pssble cntractns f the h- and v- curvature tensrs are btaned and the cntracted curvature tensrs are expressed n terms f the fundamental tensrs gven n sectn 5. In sectn 7, we study the dfferent W-tensrs crrespndng t the dfferent d-cnnectns defned n the space, agan

3 3 expressed n terms f the trsn tensrs f the canncal d-cnnectn. Cntractns f the dfferent W-tensrs and the relatns between them are then derved. Fnally, we end ths paper by sme cncludng remarks. 2. Fundamental Prelmnares Let M be a dfferental manfld f dmensn n f class C. Let π : TM M be ts tangent bundle. If (U, x µ ) s a lcal chart n M, then (π 1 (U), (x µ, y µ )) s the crrespndng lcal chart n TM. The crdnate transfrmatn law n TM s gven by: x µ = x µ (x ν ), y µ = p µ ν yν, where p µ ν = xµ and det(p µ x ν ν ) 0. Defntn 2.1. A nn-lnear cnnectn N n TM s a system f n 2 functns Nβ α(x, y) defned n every lcal chart π 1 (U) f TM whch have the transfrmatn law where p ǫ β σ = pǫ β x σ = 2 x ǫ x β x σ. N α β = pα α p β β N α β + p α ǫ p ǫ β σ yσ, (2.1) The nn-lnear cnnectn N leads t the drect sum decmpstn T u (TM) = H u (TM) V u (TM), u T M = TM \ {0}, where H u (TM) s the hrzntal space at u asscated wth N supplementary t the vertcal space V u (TM). If δ µ := µ Nµ α α, where µ :=, x µ µ :=, then ( y µ µ ) s the natural bass f V u (TM) and (δ µ ) s the natural bass f H u (TM) adapted t N. Defntn 2.2. A dstngushed cnnectn (d-cnnectn) n M s a trplet D = (Nµ α, Γ α µν, Cµν), α where Nµ α (x, y) s a nn-lnear cnnectn n TM and Γ α µν(x, y) and Cµν α (x, y) transfrm accrdng t the fllwng laws: Γ α µ ν = pα α pµ µ p ν ν Γα µν + pα ǫ pǫ µ ν, (2.2) C α µ ν = pα α pµ µ p ν ν Cα µν. (2.3) In ther wrds, Γ α µν transfrm as the ceffcents f a lnear cnnectn, whereas Cα µν transfrm as the cmpnents f a tensr. Defntn 2.3. The hrzntal (h-) and vertcal (v-) cvarant dervatves wth respect t the d-cnnectn D (f a tensr feld A α µ) are defned respectvely by: A α µ ν := δ νa α µ + Aǫ µ Γα ǫν Aα ǫ Γǫ µν ; (2.4) A α µ ν := ν A α µ + Aǫ µ Cα ǫν Aα ǫ Cǫ µν. (2.5) Defntn 2.4. A symmetrc and nn-degenerate tensr feld g µν (x, y) f type (0, 2) s called a generalzed Lagrange metrc n the manfld M. The par (M, g) s called a generalzed Lagrange space.

4 4 Defntn 2.5. Let (M, g) be a generalzed Lagrange space equpped wth a nn-lnear cnnectn N α µ. Then a d -cnnectn D = (N α µ, Γ α µ,ν, C α µν) s sad t be metrcal wth respect t g f g µν α = 0, g µν α = 0. (2.6) The fllwng remarkable result was prved by R. Mrn [8]. It guarantees the exstence f a unque trsn-free metrcal d-cnnectn n any generalzed Lagrange space equpped wth a nn-lnear cnnectn. Mre precsely: Therem 2.6. Let (M, g) be a generalzed Lagrange space. Let N α µ be a gven nnlnear cnnectn n TM. Then there exsts a unque metrcal d-cnnectn D = (Nµ α, Γ α µν, C α µν ) such that Λ α µν := Γ α µν Γ α νµ = 0 and T α µν := C α µν C α νµ = 0. Ths d-cnnectn s gven by Nµ α and the generalzed Chrstffel symbls: Γ α µν = 1 2 gαǫ (δ µ g νǫ + δ ν g µǫ δ ǫ g µν ), (2.7) C α µν = 1 2 gαǫ ( µ g νǫ + ν g µǫ ǫ g µν ). (2.8) Ths cnnectn wll be referred t as the Remannan d-cnnectn. 3. d-parallelzable manflds (GAP-spaces) The Remannan d-cnnectn mentned n Therem 2.6 plays the key rle n ur generalzatn f the AP-space, whch, as wll be revealed, appears natural. Hwever, t s t be nted that the clse resemblance f the tw spaces s deceptve; as they are smlar n frm. Hwever, the extra degrees f freedm n the generalzed AP-space makes t rcher n cntent and dfferent n ts gemetrc structure (see Remark 3.6). We start wth the cncept f d-parallelzable manflds. Defntn 3.1. An n-dmensnal manfld M s called d-parallelzable, r generalzed abslute parallelsm space (GAP-space), f the pull-back bundle π 1 (TM) admts n glbal lnearly ndependent sectns (π-vectr felds) λ(x, y), = 1,..., n. If λ = ( λ α ), α = 1,..., n, then λ α λ β = δβ α, where ( λ α ) dentes the nverse f the matrx ( λ α ). λ α λ α = δ j, (3.1) j Ensten summatn cnventn s appled n bth Latn (mesh) ndces and Greek (wrld) ndces, where all Latn ndces are wrtten n a lwer pstn. In the sequel, we wll smply use the symbl λ (wthut a mesh ndex) t dente any ne f the vectr felds λ ( = 1,..., n) and n mst cases, when mesh ndces appear they wll be n pars, meanng summatn. We shall ften use the expressn GAP-space (resp. GAP-gemetry) nstead f d-parallelzable manfld (resp. gemetry f d-parallelzable manflds) fr ts typgraphcal smplcty.

5 5 Therem 3.2. A GAP-space s a generalzed Lagrange space. In fact, the cvarant tensr feld g µν (x, y) f rder 2 gven by g µν (x, y) := λ µ λ ν, (3.2) defnes a metrc n the pull-back bundle π 1 (TM) wth nverse gven by g µν (x, y) = λ µ λ ν (3.3) Assume that M s a GAP-space equpped wth a nn-lnear cnnectn Nµ α. By Therem 2.6, there exsts n (M, g) a unque trsn-free metrcal d-cnnectn D = (Nµ α, Γ α µν, C α µν ) (the Remannan d-cnnectn). We defne anther d-cnnectn D = (N α µ, Γ α µν, C α µν) n terms f D by: Γ α µν := Γ α µν + λ α λ µ ν, (3.4) Cµν α := C α µν + λ α λ µ ν. (3.5) Here, and dente the h- and v-cvarant dervatves wth respect t the Remannan d-cnnectn D. If and dente the h- and v-cvarant dervatves wth respect t the d-cnnectn D, then λ α µ = 0, λ α µ = 0. (3.6) Ths can be shwn as fllws: λ α µ = δ µ λ α + λ ǫ Γ α ǫµ = δ µλ α + λ ǫ ( Γ α ǫµ + λ α λ j j ǫ µ ) = (δ µ λ α + λ ǫ Γ α ǫµ) λ α j µ ( λ ǫ λ ǫ ) = 0. In exactly the same way, t can be shwn that j λ α µ = 0. Hence, we btan the fllwng Therem 3.3. Let (M, λ(x, y)) be a GAP-space equpped wth a nn-lnear cnnectn Nµ α. There exsts a unque d-cnnectn D = (Nµ α, Γ α µν, Cµν), α such that λ α µ = λ α µ = 0. Ths cnnectn s gven by Nβ α, (3.4) and (3.5). Cnsequently, D s metrcal: g µν σ = g µν σ = 0. Ths cnnectn wll be referred t as the canncal d-cnnectn. It s t be nted that relatns (3.6) are n accrdance wth the classcal APgemetry n whch the cvarant dervatve f the vectr felds λ wth respect t the canncal cnnectn Γ α µν = λ α ( ν λ µ ) vanshes [15]. Therem 3.4. Let (M, λ(x, y)) be a d-parallelzable manfld equpped wth a nnlnear cnnectn Nµ α. The canncal d-cnnectn D = (Nα µ, Γα µν, Cα µν ) s explctly expressed n terms f λ n the frm Γ α µν = λ α (δ ν λ µ ), Cµν α = λ α ( ν λ µ ). (3.7) Prf. Snce λ α ν = 0, we have δ ν λ α = λ ǫ Γ α ǫν. Multplyng bth sdes by λ µ, takng nt accunt the fact that λ α λ µ = δµ α, we get Γα µν = λ µ (δ ν λ α ) = λ α (δ ν λ µ ). The prf f the secnd relatn s exactly smlar and we mt t. It s t be nted that the cmpnents f the canncal d-cnnectn are smlar n frm t the cmpnents f the canncal cnnectn n the classcal AP-cntext [15], ntng that ν s replaced by δ ν (fr the h-cunterpart) and by ν (fr the v-cunterpart) respectvely (See Table 1). The abve expressns fr the canncal cnnectn seem therefre lke a natural generalzatn f the classcal AP case. By (3.4) and (3.5), n vew f the abve therem, we have the fllwng

6 6 Crllary 3.5. The Remannan d-cnnectn D = (Nµ α, Γ α µν, C α µν ) s explctely expressed n terms f λ n the frm Γ α µν = λ α (δ ν λ µ λ µ ν ), C α µν = λ α ( ν λ µ λ µ ν ). (3.8) Remark 3.6. As a result f the dependence f λ n the velcty vectr y, the n 3 functns λ α ( ν λ µ ), as ppsed t the classcal AP-space, d nt transfrm as the ceffcents f a lnear cnnectn, but transfrm accrdng t the rule λ α ( ν λ µ ) = p α α pµ µ p ν ν λ α ( ν λ µ ) + p α ǫ pǫ µ ν + pα α pµ µ p ν ν ǫ C α yǫ µν. (3.9) Smlarly, t can be shwn that, n general, tensrs n the cntext f the classcal AP-space d nt transfrm lke tensrs n the wder cntext f the GAP-space; ther dependence n the velcty vectr y spls ther tensr character. In ther wrds, tensrs n the classcal AP-cntext d nt necessarly behave lke tensrs when they are regarded as functns f pstn x and velcty vectr y. Ths means that thugh the classcal AP-space and the GAP-space appear smlar n frm, they dffer radcally n ther gemetrc structures. We nw ntrduce sme tensrs that wll prve useful later n. Let γµν α := λ α λ µ ν = Γ α µν Γ α µν, Gα µν := λ α λ µ ν = Cµν α C α µν. (3.10) In analgy t the AP-space, we refer t γ α µν and G α µν as the h- and v-cntrtn tensrs respectvely. Let Λ α µν := Γα µν Γα νµ = γα µν γα νµ. (3.11) be the trsn tensr f the canncal cnnectn Γ α µν and Ω α µν := γµν α + γνµ. α (3.12) Smlarly, let Tµν α := Cµν α Cνµ α = G α µν G α νµ (3.13) be what we may call the trsn tensr f Cµν α and D α µν := Gα µν + Gα νµ. (3.14) Nw, f γ σµν := g ǫσ γ ǫ µν and G σµν := g ǫσ G ǫ µν, then γ σµν and G σµν are skew symmetrc n the frst par f ndces. Ths, n turn, mples that Hence, f then γǫν ǫ = Gǫ ǫν = 0. (3.15) β µ := γ ǫ µǫ, B µ := G ǫ µǫ, Λ ǫ µǫ = γ ǫ µǫ = β µ, T ǫ µǫ = G ǫ µǫ = B µ. (3.16) Fnally, t can be shwn, n analgy t the classcal AP-space [3], that the cntrtn tensrs γ µνσ and G µνσ can be expressed n terms f the trsn tensrs n the frm γ µνσ = 1 2 (Λ µνσ + Λ σνµ + Λ νσµ ) (3.17) G µνσ = 1 2 (T µνσ + T σνµ + T νσµ ), (3.18)

7 7 where Λ µνσ := g ǫµ Λ ǫ νσ and T µνσ := g ǫµ Tνσ ǫ. It s clear by (3.11), (3.13), (3.17) and (3.18) that the trsn tensrs vansh f and nly f the cntrtn tensrs vansh. The next table gves a cmparsn between the fundamental gemetrc bjects n the classcal AP-gemetry and the GAP-gemetry. Smlar bjects f the tw spaces wll be dented by the same symbl. As prevusly mentned, h stands fr hrzntal whereas v stands fr vertcal. Table 1: Cmparsn between the classcal AP-gemetry and the GAP-gemetry Classcal AP-gemetry GAP-gemetry Buldng blcks λ α (x) λ α (x, y) Metrc g µν (x) = λ µ (x) λ ν (x) g µν (x, y) = λ µ (x, y) λ ν (x, y) Remannan cnnectn Γ α µν = 1 2 gαǫ { µ g νǫ + ν g µǫ + ǫ g µν } Γ α µν = 1 2 gαǫ {δ µ g νǫ + δ ν g µǫ + δ ǫ g µν } (h) C α µν = 1 2 gαǫ { µ g νǫ + ν g µǫ + ǫ g µν } (v) Canncal cnnectn Γ α µν = λ α ( ν λ µ ) Γ α µν = λ α (δ ν λ µ ) (h-cunterpart) Cµν α = λ α ( ν λ µ ) (v-cunterpart) AP-cndtn λ α µ = 0 λ α µ = 0 (h-cvarant dervatve) λ α µ = 0 (v-cvarant dervatve) Trsn Λ α µν = Γα µν Γα νµ Λ α µν = Γα µν Γα νµ (h-cunterpart) T α µν = C α µν C α νµ (v-cunterpart) Cntrsn γ α µν = Γα µν Γ α µν γ α µν = Γα µν Γ α νµ (h-cunterpart) G α µν = Cα µν C α µν (v-cunterpart) Basc vectr β µ = Λ α µα = γ α µα β µ = Λ α µα = γ α µα (h-cunterpart) B µ = T α µα = Gα µα (v-cunterpart)

8 8 4. Curvature tensrs n Generalzed AP-space Owng t the exstence f tw types f cvarant dervatves wth respect t the canncal cnnectn D, we have essentally three cmmutatn frmulae and cnsequently three curvature tensrs. Lemma 4.1. Let [δ σ, δ µ ] := δ σ δ µ δ µ δ σ and let [δ σ, µ ] be smlarly defned. Then [δ σ, δ µ ] = R ǫ σµ ǫ, [δ σ, µ ] = ( µ N ǫ σ ) ǫ, (4.1) where R α σµ := δ µn α σ δ σn α µ s the curvature tensr f the nn-lnear cnnectn Nα µ. Therem 4.2. The three cmmutatn frmulae f cnnectn D = (Nµ α, Γ α µν, Cµν) α are gven by (a) λ α µσ λ α σµ = λ ǫ R α ǫµσ + λα ǫ Λ ǫ σµ + λα ǫ R ǫ σµ (b) λ α µσ λ α σµ = λ ǫ S α ǫµσ + λα ǫ T ǫ σµ (c) λ α µ σ λ α σ µ = λ ǫ P α ǫµσ + λ α ǫ C ǫ σµ + λ α ǫ P ǫ σµ, λ α crrespndng t the canncal where Rνµσ α : = (δ σγ α νµ δ µγ α νσ ) + (Γǫ νµ Γα ǫσ Γǫ νσ Γα ǫµ ) + Lα νµσ, (h-curvature) Sνµσ α : = σ Cνµ α µ Cνσ α + Cǫ νµ Cα ǫσ Cǫ νσ Cα ǫµ, (v-curvature) Pνµσ α : = Cνµ σ α µ Γ α νσ PσµC ǫ νǫ, α (hv-curvature) gven that L α νµσ := C α νǫ R ǫ µσ and P ν σµ := µ N ν σ Γ ν µσ. A drect cnsequence f the abve cmmutatn frmulae, tgether wth the fact that λ α µ = λ α µ = 0, s the fllwng Crllary 4.3. The three curvature tensrs Rνµσ α, Sα νµσ and P νµσ α cnnectn D = (Nµ α, Γα µν, Cα µν ) vansh dentcally. f the canncal It s t be nted that the abve result s a natural generalzatn f the crrespndng result f the classcal AP-gemetry [15]. The Banch denttes [4] fr the canncal d-cnnectn (N α µ, Γα µν, Cα µν ) gves Prpstn 4.4. The fllwng denttes hld (a) S ν,µ,σ Λ α νµ σ = S ν,µ,σ(λ α µǫ Λǫ νσ + Lα µνσ ) (b) S ν,µ,σ T α νµ σ = S ν,µ,σ(t α µǫ T ǫ νσ ), where S ν,µ,σ dentes a cyclc permutatn n ν, µ, σ. Crllary 4.5. The fllwng denttes hld: (a) Λ ǫ µν ǫ = β µ ν β ν µ + β ǫ Λ ǫ µν + S ǫ,ν,µl ǫ ǫνµ. (b) T ǫ µν ǫ = B µ ν B ν µ + B ǫ T ǫ µν,

9 9 Prf. Bth denttes fllw by cntractng the ndces α and σ n the denttes (a) and (b) f Prpstn 4.4, takng nt accunt that β µ = Λ ǫ µǫ, B µ = T ǫ µǫ and L α µνσ = Lα µσν. In addtn t the Remannan and the cannncal d-cnnectns, ur space admts at least tw ther natural d-cnnectns. In analgy t the classcal AP-space, we defne the dual d-cnnectn D = (N α µ, Γ α µν, C α µν) by and the symmetrc d cnnectn D = (N α µ, Γ α µν, Ĉα µν ) by Γ α µν := Γα νµ, Cα µν := C α νµ (4.2) Γ α µν := 1 2 (Γα µν + Γα νµ ), Ĉα µν := 1 2 (Cα µν + Cα νµ ). (4.3) Cvarant dfferentatn wth respect t Γ α µν and Γ α µν wll be dented by and respectvely. Nw, crresndng t each f the fur d-cnnectns there are three curvature tensrs. Therefre, we have a ttal f twelve curvature tensrs three f whch, as already mentned, vansh dentcally. The vanshng f the curvature tensrs f the canncal d-cnnectn allws us t express, n a relatvely cmpact frm, sx f the ther curvature tensrs (the h- and v-curvature tensrs) crrespndng t the Remannan, symmetrc and the dual d-cnnectns. These curvature tensrs are expressed n terms f the trsn tensrs Λ α µν, Tµν α and ther cvarant dervatves wth respect t the canncal d-cnnectn, tgether wth the curvature Rµν α f the nnlnear cnnectn Nµ α. The ther three hv-curvature tensrs are calculated, thugh ther expressns are mre cmplcated. Ths s t be expected snce the expressn btaned fr the hv-curvature tensr f the canncal d-cnnectn lacks the symmetry prpertes enjyed by the h- and v-curvature tensrs. Therem 4.6. The h-, v- and hv-curvature tensrs f the dual d-cnnectn D = (Nµ α, Γ α µν, C µν α ) can be expressed n the frm: (a) R α µσν = Λα σν µ + Cα ǫµ Rǫ σν + Lα σνµ + Lα νµσ. (b) S α µσν = T α σν µ. (c) P α νµσ = T α µν σ Λα σν µ + T ǫ µνλ α σǫ T α µǫλ ǫ σν Λ α ǫνc ǫ σµ P ǫ σµt α ǫν. The crrespndng curvature tensrs f the symmetrc d-cnnectn D = (N α µ, Γ α µν, Ĉα µν ) can be expressed n the frm: (d) R α µσν = 1 2 (Λα µν σ Λα µσ ν ) (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) (Λǫ σν Λα ǫµ ) (T α ǫµ Rǫ σν ). (e) Ŝα µσν = 1 2 (T α µν σ T α µσ ν ) (T ǫ µνt α σǫ T ǫ µσt α νǫ) (T ǫ σνt α ǫµ). (f) P α νµσ = 1 2 (Λα µν σ Λα σν µ ) Λǫ σµt α ǫν 1 2 Λα ǫνc ǫ σµ S µ,ν,σλ ǫ µνλ α σǫ 1 2 P ǫ σµt α ǫν.

10 10 The crrespndng curvature tensrs f the Remannan d-cnnectn D = (N α µ, Γ α µν, C α µν ) can be expressed n the frm (g) R α µσν = γα µν σ γα µσ ν + γǫ µσ γα ǫν γǫ µν γα ǫσ + γα µǫ Λǫ νσ + Gα µǫ Rǫ νσ. (h) S α µσν = Gα µν σ Gα µσ ν + Gǫ µσ Gα ǫν Gǫ µν Gα ǫσ + Gα µǫ T ǫ νσ. () P α νµσ = u γ α νσ G α νµ σ + (Gǫ νµ C ǫ νµ)γ α ǫσ (G α ǫµ C α ǫµ)γ ǫ νσ + P ǫ σµg α νǫ. Prf. We prve (a) and (c) nly. The prf f the ther parts s smlar. (a) We have (c) We have R α µσν = δ ν Γ α µσ δ σ Γ α µν + Γ ǫ µσ Γ α ǫν Γ ǫ µν Γ α ǫσ + C α µǫ Rǫ σν = δ ν Γ α σµ δ σ Γ α νµ + Γ ǫ σµγ α νǫ Γ ǫ νµγ α σǫ + C α ǫµr ǫ σν = {δ ν Γ α σµ + Γǫ σµ (Λα νǫ + Γα ǫν )} {δ σγ α νµ + Γǫ νµ (Λα σǫ + Γα ǫσ )} + C α ǫµ Rǫ σν = (δ ν Γ α σµ + Γ ǫ σµγ α ǫν) (δ σ Γ α νµ + Γ ǫ νµγ α ǫσ) (Γ ǫ σµλ α ǫν + Γ ǫ νµλ α σǫ) + C α ǫµr ǫ σν = (R α σµν Cα σǫ Rǫ µν + δ µγ α σν + Γǫ σν Γα ǫµ ) (Rα νµσ Cα νǫ Rǫ µσ + δ µ Γ α νσ + Γǫ νσ Γα ǫµ ) (Γǫ σµ Λα ǫν + Γǫ νµ Λα σǫ ) + Cα ǫµ Rǫ σν. = δ µ Λ α σν + Γ α ǫµλ ǫ σν Γ ǫ σµλ α ǫν Γ ǫ νµλ α σǫ + C α ǫµr ǫ σν + C α σǫr ǫ νµ + C α νǫr ǫ µσ = Λ α σν µ + Cα ǫµ Rǫ σν + Lα σνµ + Lα νµσ. P α νµσ = C α µν e σ µ Γ α σν ( µ N ǫ σ Γ ǫ σµ)c α ǫν = C α νµ σ + (C α µν e σ Cα νµ σ) µ Λ α σν µ Γ α νσ µ N ǫ σ(t α ǫν + C α νǫ) + (Λ ǫ σµ + Γǫ µσ )(T α ǫν + Cα νǫ ) = P α νµσ ( µ N ǫ σ Γǫ µσ )T α ǫν µ Λ α σν + Λǫ σµ Cα ǫν + (Cα µν e σ Cα νµ σ ) = (C α µν e σ Cα νµ σ) + Λ ǫ σµc α ǫν µ Λ α σν P ǫ σµt α ǫν = T α µν σ + Cǫ µν Λα σǫ Cα µǫ Λǫ σν µ Λ α σν P ǫ σµ T α ǫν = T α µν σ µ Λ α σν + (T ǫ µν + C ǫ νµ)λ α σǫ (T α µǫ + C α ǫµ)λ ǫ σν P ǫ σµt α ǫν = T α µν σ Λα σν µ + T ǫ µν Λα σǫ T α µǫ Λǫ σν Λα ǫν Cǫ σµ P ǫ σµ T α ǫν. 5. Fundamental secnd rank tensrs Due t the mprtance f secnd rder symmetrc and skew-symmetrc tensrs n physcal applcatns, we here lst such tensrs n Table 2 belw. We regard these tensrs as fundamental snce ther cunterparts n the classcal AP-cntext play a key rle n physcal applcatns. Mrever, n the AP-gemetry, mst secnd rank tensrs whch have physcal sgnfcance can be expressed as a lnear cmbnatn f these fundamental tensrs. The Table s cnstructed as smlar as pssble t

11 11 that gven by Mkhal (cf. [5], Table 2), t facltate cmparsn wth the case f the classcal AP-gemetry whch has many physcal applcatns [14]. Crrespndng hrzntal and vertcal tensrs are dented by the same symbl wth the vertcal tensrs barred. It s t be nted that all vertcal tensrs have n cunterpart n the classcal AP-cntext. Table 2: Summary f the fundamental symmetrc and skew-symmetrc secnd rank tensrs Hrzntal Vertcal Skew-Symmetrc Symmetrc Skew-Symmetrc Symmetrc ξ µν := γ µν α α øξ µν := G µν α α γ µν := β α γ µν α øγ µν := B α G µν α η µν := β ǫ Λ ǫ µν φ µν := β ǫ Ω ǫ µν øη µν := B ǫ T ǫ µν øφ µν := B ǫ D ǫ µν χ µν := Λ α µν α ψ µν := Ω ǫ µν ǫ øχ µν := T α µν α øψ µν := D α µν α ǫ µν := 1 2 (β µ ν β ν µ ) θ µν := 1 2 (β µ ν + β ν µ ) øǫ µν := 1 2 (B µ ν B ν µ ) øθ µν := 1 2 (B µ ν + B ν µ ) k µν := γ ǫ αµ γα νǫ γǫ µα γα ǫν h µν := γ ǫ αµ γα νǫ + γǫ µα γα ǫν øk µν := G ǫ αµ Gα νǫ Gǫ µα Gα ǫν øh µν := G ǫ αµ Gα νǫ + Gǫ µα Gα ǫν σ µν := γ ǫ αµ γα ǫν øσ µν := G ǫ αµ Gα ǫν ω µν := γ ǫ µαγ α νǫ øω µν := G ǫ µαg α νǫ α µν := β µ β ν øα µν := B µ B ν Due t the metrcty cndtn n Therem 3.3, ne can use the metrc tensr g µν and ts nverse g µν t perfrm the peratns f lwerng and rasng tensr ndces under the h- and v- cvarant dervatves relatve t the canncal d-cnnectn. Thus, cntractn wth the metrc tensr f the abve fundamental tensrs gves the fllwng table f scalars:

12 12 Table 3: Summary f the fundamental scalars Hrzntal α := β µ β µ θ := β µ µ φ := β ǫ Ω ǫµ µ ψ := Ω αµ µ α ω := γ ǫµ α γ α µǫ σ := γ ǫ α µ γ α ǫµ h := 2γ αµ ǫ γ ǫ αµ Vertcal øα := B µ B µ øθ := B µ µ øφ := B ǫ D ǫµ µ øψ := D αµ µ α øω := G ǫµ α G α µǫ øσ := G ǫ α µ G α ǫµ øh := 2G αµ ǫ G ǫ αµ In physcal applcatns, secnd rder symmetrc tensrs f zer trace have specal mprtance. Fr example, n the case f electrmagnetsm, the tensr characterzng the electr-magnetc energy s a secnd rder symmetrc tensr havng zer trace. S t s f nterest t search fr such tensrs. The Table belw gves sme f the secnd rank tensrs f zer trace. Table 4: Summary f the fundamental tensrs f zer trace Hrzntal Vertcal φ µν + 2α µν øφ µν + 2ᾱ µν ψ µν + 2θ µν øψ µν + 2øθ µν h µν + 2ω µν øh µν + 2øω µν 1 2 (φ µν ψ µν ) + θ µν α µν 1 2 g µνβ α 1 e α 2 (øφ µν øψ µν ) + øθ µν øα µν 1 2 g µνb α α e We nw cnsder sme useful secnd rank tensrs whch are nt expressble n terms f the fundamental tensrs appearng n Table 2. Unlke the tensrs f Table 2, sme f the tensrs t be defned belw have n hrzntal and vertcal cunterparts. T ths end, let L µν := L α αµν = C α αǫr ǫ µν, M µν := L α µαν = C α µǫ R ǫ αν, N µν := C α ǫµ R ǫ αν, F µν := C α ǫµ R ǫ αν. Then, clearly T µν := M µν N µν = T α µǫ R ǫ αν, G µν := M µν F µν = G α µǫ R ǫ αν, G µν T µν = G α ǫµ R ǫ αν. Fnally, let T := g µν T µν and G := g µν G µν. By the abve, we have the fllwng: Symmetrc secnd rank tensrs: M (µν), N (µν), F (µν). Skew-symmetrc secnd rank tensrs: M [µν], N [µν], F [µν], L µν.

13 13 6. Cntracted curvatures and curvature scalars It may be cnvenent, fr physcal reasns, t cnsder secnd rank tensrs derved frm the curvature tensrs by cntractns. It s als f nterest t reduce the number f these tensrs t a mnmum whch s fundamental (cf. Prpstns 6.1 and 6.2). Cntractng the ndces α and µ n the expressns btaned fr the h- and v- curvature tensrs n Therem 4.6, takng nt accunt Crllary 4.5, we btan Prpstn 6.1. Let R σν := R ασν α, Rσν := R ασν α and R σν := R α ασν expressns fr S σν, Ŝσν and S σν. Then, we have wth smlar (a) R σν = β σ ν β ν σ + β ǫ Λ ǫ σν + B ǫrσν ǫ, (b) S σν = B σ ν B ν σ + B ǫ Tσν ǫ, (c) R σν = 1 R 2 σν, (d) Ŝσν = 1 S 2 σν, (e) R σν = S σν = 0. Prpstn 6.2. Let R µσ := R µσα α, Rµσ := R µσα α and R µσ := R α µσα expressns fr S µσ, Ŝµσ and S µσ. Then, we have wth smlar (a) R µσ = β σ µ + CǫµR α σα ǫ + L α σαµ + L α αµσ, (b) S µσ = B σ µ, (c) R µσ = 1 R 2 µσ + 1{β 4 ǫλ ǫ σµ + Λǫ ασ Λα µǫ }, (d) Ŝµσ = 1 S 2 µσ + 1{B 4 ǫtσµ ǫ + T ασ ǫ T µǫ α }, (e) R µσ = β µ σ γµσ α α + β ǫγµσ ǫ γµǫγ α σα ǫ + G α µǫrασ, ǫ (f) S µσ := S α µσα = B µ σ G α µσ α + B ǫg ǫ µσ Gα µǫ Gǫ σα. Prpstn 6.3. The fllwng hlds. (a) R [µσ] = 1 {β 2 σ µ β µ σ } + CǫαR ǫ µσ α + C(ασ) ǫ Rα ǫµ C(αµ) ǫ Rα ǫσ, (b) R (µσ) = 1{β 2 σ µ + β µ σ + Tαµ ǫ Rα σǫ + T ασ ǫ Rα µǫ }, (c) S [µσ] = 1{B 2 σ µ B µ σ }, (d) S (µσ) = 1{B 2 σ µ + B µ σ }, (e) R [µσ] = 1 R 2 [µσ] + 1 β 4 ǫ Λ ǫ σµ, (f) R (µσ) = 1 R 2 (µσ) Λǫ ασ Λ α µǫ, (g) Ŝ[µσ] = 1 S 2 [µσ] + 1 B 4 ǫ Tσµ, ǫ

14 14 (h) Ŝ(µσ) = 1 2 S (µσ) T ǫ ασ T α µǫ, () R [µσ] = 1 2 {Lα αµσ + C α σǫ R ǫ αµ C α µǫ R ǫ ασ}, (j) R (µσ) = 1 2 {(β µ σ + β σ µ ) Ω α µσ α + β ǫ Ω ǫ µσ } γα µǫ γǫ σα {Gα µǫ Rǫ ασ + Gα σǫ Rǫ αµ }, (k) S [µσ] = 0, (l) S (µσ) = 1 2 {(B µ σ + B σ µ ) D α µσ α + B ǫ D ǫ µσ } Gα µǫ Gǫ σα. Crllary 6.4. The fllwng hlds: (a) R σ σ := g µσ Rµσ = β σ σ + T ǫσ α R α ǫσ, (b) S σ σ := gµσ Sµσ = B σ σ, (c) R σ σ := g µσ Rµσ = 1 2 {βσ σ + T ǫσ α R α ǫσ} Λǫσ α Λ α ǫσ, (d) Ŝσ σ := g µσ Ŝ µσ = 1 2 Bσ σ T ǫσ α T α ǫσ, (e) R σ σ := g µσ R µσ = β σ σ 1 2 Ωασ σ α β α Ω ασ σ γ ασ ǫ γ ǫ σα + Gασ ǫ R ǫ ασ, (f) S σ σ := g µσ S µσ = B σ σ 1 2 Dασ σ α B α D ασ σ G ασ ǫ G ǫ σα. We nw apply a dfferent methd fr calculatng bth R µσ and S µσ, nw expressed n terms f the cvarant dervatve f the cntrsn tensrs wth respect t the Remannan d-cnnectn. Then we btan Prpstn 6.5. The Rcc tensrs R µσ and S µσ can be expressed n the frm (a) R µσ = β µ σ γ α µσ α β ǫγ ǫ µσ + γǫ µα γα ǫσ + Gα µǫ Rǫ ασ. (b) S µσ = B µ σ G α µσ α B ǫg ǫ µσ + Gǫ µα Gα ǫσ. Prf. We prve (a) nly; the prf f (b) s smlar. We have 0 = R α µσα = (δ αγ α µσ δ σγ α µα ) + (Γǫ µσ Γα ǫα Γǫ µα Γα ǫσ ) + Rǫ σα Cα µǫ = δ α ( Γ α µσ + γα µσ ) δ σ( Γ α µα + γα µα ) + ( Γ ǫ µσ + γǫ µσ )( Γ α ǫα + γα ǫα ) Cnsequently, ( Γ ǫ µα + γǫ µα )( Γ α ǫσ + γα ǫσ ) + Rǫ σα Cα µǫ = R µσ (δ σ γµα α γǫα α Γ ǫ µσ) + (δ α γµσ α + γµσ ǫ Γ α ǫα γǫσ α γµǫ α Γ ǫ σα ) + Rǫ σα (Cα µǫ C α µǫ ) + γǫ µσ γα ǫα γǫ µα γα ǫσ. Γ ǫ µα R µσ = β µ σ γ α µσ α β ǫγ ǫ µσ + γǫ µα γα ǫσ + Gα µǫ Rǫ ασ. In vew f Prpstn 6.2 (e) and (f) and Prpstn 6.5, we btan

15 15 Crllary 6.6. The fllwng denttes hlds: (a) (β µ σ β µ σ ) (γ α µσ α γα µσ α) = (γǫ µαω α σǫ 2β ǫ γ ǫ µσ) (b) (B µ σ B µ σ ) (G α µσ α Gα µσ α) = (Gǫ µαd α σǫ 2B ǫ G ǫ µσ). The next tw tables summarze the results btaned n ths sectn, where the cntracted curvatures are expressed n terms f the fundamental tensrs. Table 5 (a): Secnd rank curvature tensrs Skew-symmetrc Symmetrc Dual R[µσ] = ǫ σµ L σµ + M [σµ] + N [σµ] R(µσ) = θ µσ + M (µσ) N (µσ) S [µσ] = øǫ σµ S(µσ) = øθ µσ Symmetrc R[µσ] = 1 2 R [µσ] η σµ R(µσ) = 1 2 R (µσ) {h µσ ω µσ σ µσ } Ŝ [µσ] = 1 2 S [µσ] øη σµ Ŝ (µσ) = 1 2 S (µσ) {øh µσ øω µσ øσ µσ } Remannan R [µσ] = 1 2 L µσ F [µσ] R(µσ) = θ µσ 1 2 (ψ µσ φ µσ ) ω µσ + M (µσ) F (µσ) S [µσ] = 0 S (µσ) = øθ µσ 1 2 (øψ µσ øφ µσ ) øω µσ Table 5 (b): h- and v-scalar curvature tensrs h-scalar curvature v-scalar curvature Dual Rσ σ = θ + T Sσ σ = øθ Symmetrc Rσ σ = 1(θ + T) 1(3ω + σ) 2 4 Ŝσ σ = 1øθ 1 (3øω + øσ) 2 4 Remannan R σ σ = θ 1 (ψ φ) ω + G 2 S σ σ = øθ 1 (øψ øφ) øω 2

16 16 7. The W-tensrs The W-tensr was frst defned by M. Wanas n 1975 [13] and has been used by F. Mkhal and M. Wanas [6] t cnstruct a gemetrc thery unfyng gravty and electrmagnetsm. Recently, tw f the authrs f ths paper studed sme f the prpertes f ths tensr n the cntext f the classcal AP-space [15]. Defntn 7.1. Let (M, λ) be a generalzed AP-space. Fr a gven d-cnnectn D = (Nβ α, Γα µν, Cα µν ), the hrzntal W-tensr (hw-tensr) Hα µνσ s defned by the frmula λ µ νσ λ µ σν = λ ǫ Hµνσ, ǫ whereas the vertcal W-tensr (vw-tensr) V α µνσ λ µ νσ λ µ σν = λ ǫ V ǫ µνσ, s defned by the frmula where and are the hrzntal and the vertcal cvarant dervatves wth respect t the cnnectn D. We nw carry ut the task f calculatng the dfferent W-tensrs. As ppsed t the classcal AP-space, whch admts essentally ne W-tensr crrespndng t the dual cnnectn, we here have 4 dstnct W-tensrs: the hrzntal and vertcal W-tensrs crrespndng t the dual d-cnnectn, the hrzntal W-tensr crrespndng t the symmetrc d-cnnectn and, fnally, the hrzntal W-tensr crrespndng t the Remannan d-cnnectn. The remanng W-tensrs cncde wth the crrespndng curvature tensrs. It s t be nted that sme f the expressns btaned fr the W-tensrs are relatvely mre cmpact than thse btaned fr the crrespndng curvature tensrs. Therem 7.2. The hw-tensr H µνσ α, the vw-tensr Ṽ µνσ α, the hw-tensr Ĥα µνσ and the hw-tensr H α µνσ crrespndng t the dual, symmetrc and the Remannan d-cnnectns respectvely can be expressed n the frm: (a) H α µνσ = Λ α σν µ + Λǫ νσλ α µǫ + S µ,ν,σ L α µσν. (b) Ṽ α µνσ = T α σν µ + T ǫ νσ T α µǫ. (c) Ĥα µνσ = 1 2 (Λα µν σ Λα µσ ν ) (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) (Λǫ σν Λα ǫµ ). (d) H α µνσ = γα µν σ γα µσ ν + γǫ µσ γα ǫν γǫ µν γα ǫσ + Λǫ νσ γα µǫ. Prf. We prve (a) nly. The prf f the ther parts s smlar. We have λ ǫ Hǫ µνσ = λ ǫ Rǫ µσν + λ µ e ǫ Λǫ σν + λ µ e ǫ R ǫ σν. Hence, takng nt accunt Therem 4.6 (a), we btan H µνσ α = R µσν α + λ α (δ ǫ λ µ λ β Γ β ǫµ ) Λ ǫ σν + λ α ( ǫ λ µ λ β C ǫµ β )Rǫ σν = R µσν α + Λǫ νσ (Γα µǫ Γα ǫµ ) + Rǫ σν (Cα µǫ Cα ǫµ ) = Λ α σν µ + C α ǫµr ǫ σν + L α σνµ + L α νµσ + Λ ǫ νσλ α µǫ + T α µǫr ǫ σν = Λ α σν µ + T α ǫµ Rǫ σν + Cα µǫ Rǫ σν + Lα σνµ + Lα νµσ + Λǫ νσ Λα µǫ + T α µǫ Rǫ σν = Λ α σν µ + Λǫ νσ Λα µǫ + S µ,ν,σl α µσν.

17 17 Prpstn 7.3. Let Hνσ := H ανσ α, Ĥ νσ := Ĥα ανσ and H νσ := H α ανσ wth smlar expressn fr Ṽνσ. Then, we have (a) H νσ = β σ ν β ν σ + 2β ǫ Λ ǫ σν, (b) Ṽνσ = B σ ν B ν σ + 2B ǫ Tσν, ǫ (c) Ĥνσ = 1 { H 2 νσ + β ǫ Λ ǫ νσ}, (d) H νσ = 0. Prpstn 7.4. Let H µσ := H µασ α, Ĥ µσ := Ĥα µασ and H µσ := H α µασ expressns fr Ṽµσ. Then, we have wth smlar (a) H µσ = β σ µ + Λ ǫ ασλ α µǫ + S α,µ,σ L α αµσ, (b) Ṽµσ = B σ µ + T ǫ ασ T α µǫ, (c) Ĥµσ = 1 2 H µσ (β ǫλ ǫ σµ + Λǫ σα Λα µǫ ), (d) H µσ = β µ σ γ α µσ α + β ǫγ ǫ µσ γǫ σα γα µǫ. Prpstn 7.5. The fllwng hlds: (a) H [µσ] = 1 2 {β σ µ β µ σ } + S α,µ,σ L α αµσ, (b) H (µσ) = 1 2 {β σ µ + β µ σ } + Λ ǫ ασ Λα µǫ, (c) Ṽ[µσ] = 1 2 {B σ µ B µ σ }, (d) Ṽ(µσ) = 1 2 {B σ µ + B µ σ } + T ǫ ασt α µǫ, (e) Ĥ[µσ] = 1 2 H [µσ] β ǫλ ǫ σµ, (f) Ĥ(µσ) = 1 2 H (µσ) Λǫ σα Λα µǫ, (g) H [µσ] = 1 2 S αµσl α αµσ, (h) H (µσ) = 1 2 {(β µ σ + β σ µ ) Ω α µσ α + β ǫω ǫ µσ } γα µǫ γǫ σα. Crllary 7.6. the fllwng hlds: (a) H α α = βα α + Λ ǫµ αλ α ǫµ, (b) Ṽ α α = Bα α + T ǫµ αt α ǫµ, (c) Ĥα α = 1 2 βα α Λǫµ αλ α ǫµ, (d) H σ σ = β σ σ 1 2 Ωασ σ α β αω ασ σ γ ασ ǫγ ǫ σα. Takng nt accunt Prpstn 4.4, Therem 7.2 and the Banch dentty [4] fr the Remannan d-cnnectn, we get the fllwng

18 18 Prpstn 7.7. The hw-tensrs H α µνσ, Ĥα µνσ, H α µνσ and the vw-tensrs Ṽ α µνσ satsfy the fllwng denttes: (a) S µ,ν,σ Hα µνσ = 2S µ,ν,σ (Λ α µǫ Λǫ νσ + Lα µσν ). (b) S µ,ν,σ Ṽ α µνσ = 2S µ,ν,σ(t α µǫ T ǫ νσ ). (c) S µ,ν,σ Ĥ α µνσ = S µ,ν,σ L α µσν. (d) S µ,ν,σ H α µνσ = S µ,ν,σ L α µσν. We cllect the results btaned n ths sectn n the fllwng tables, where the cntracted W-tensrs are expressed n terms f the fundamental tensrs. Table 6 (a): Secnd rank W-tensrs Skew-symmetrc Symmetrc Dual H[µσ] = ǫ σµ L σµ + 2M [σµ] H(µσ) = θ µσ (ω µσ + σ µσ h µσ ) Ṽ [µσ] = ǫ σµ Ṽ (µσ) = θ µσ ( ω µσ + σ µσ h µσ ) Symmetrc Ĥ [µσ] = 1 2 H [µσ] η σµ Ĥ (µσ) = 1 2 H (µσ) {ω µσ + σ µσ h µσ } Remannan H [µσ] = 1 2 L µσ M [µσ] H(µσ) = θ µσ 1 2 (ψ µσ φ µσ ) ω µσ Table 6 (b): Scalar W-tensrs h-scalar W-tensrs v-scalar W-tensrs Dual Hσ σ = θ (3ω + σ) Ṽ σ σ = θ (3 ω + σ) Symmetrc Ĥσ σ = 1θ 1 (3ω + σ) 2 4 Remannan H σ σ = θ 1 (ψ φ) ω 2

19 19 Cncludng remarks In the present artcle, we have develped a parallelzable structure n the cntext f a generalzed Lagrange space. Fur dstngushed cnnectns, dependng n ne nn-lnear cnnectn, are used t explre the prpertes f ths space. Dfferent curvature tensrs characterzng ths structure are calculated. The cntracted curvature tensrs necessary fr physcal applcatns are gven and cmpared (Tables 5(a)). The traces f these tensrs are derved and cmpared (Table 5(b)). Fnally, the dfferent W-tensrs wth ther cntractns and traces are als derved (Tables 6(a) and 6(b)). On the present wrk, we have the fllwng cmments and remarks: 1. Exstng theres f gravty suffer frm sme prblems cnnected t recent bserved astrphyscal phenmena, especally thse admttng anstrpc behavr f the system cncerned (e.g. the flatness f the rtatn curves f spral galaxes). S, theres n whch the gravtatnal ptental depends n bth pstn and drectn are needed. Such theres are t be cnstructed n spaces admttng ths dependence. Ths s ne f the ams mtvatng the present wrk. 2. Amng the advantages f the AP-gemetry are the ease n calculatns and the dverse and ts thrugh applcatns. In ths wrk, we have kept as clse as pssble t the classcal AP-case. Hwever, the extra degrees f freedm n ur GAP-gemetry have created an abundance f gemetrc bjects whch have n cunterpart n the classcal AP-gemetry. Snce the physcal meanng f mst f the gemetrc bjects f the classcal AP-structure s clear, we hpe t attrbute physcal meanng t the new gemetrc bjects appearng n the present wrk, especally the vertcal quanttes. 3. Due t the wealth f the GAP-gemetry, ne s faced wth the prblem f chsng gemetrc bjects that represent true physcal quanttes. As a frst step t slve ths prblem, we have wrtten all secnd rder tensrs n terms f the fundamental tensrs defned n sectn 5. Ths s dne t facltate cmparsn between these tensrs and t be able t chse the mst apprprate fr physcal applcatn. The same prcedure has been used fr scalars. 4. We are aware that the present paper s f cmputatnal nature. The paper s certanly nt ntended t be an end n tself. In t, we try t cnstruct a gemetrc framewrk capable f dealng wth and descrbng physcal phenmena. The success f the classcal AP-gemetry n physcal applcatns made us chse ths gemetry as a gude lne. The physcal nterpretatn f the gemetrc bjects exstng n the GAPgemetry and nt n the AP-gemetry wll be further nvestgated n a frthcmng paper.

20 20 References [1] D. Ba, S. Chern and Z. Shen, An ntrductn t Remann-Fnsler Gemetry, Graduate Texts n Mathematcs, Sprnger, [2] F. Brckell and R. S Clark, Dfferentable manflds, Van Nstrand Renhld C., [3] K. Hayash and T. Shrafuj, New general relatvty, Phys. Rev. D 19 (1979), [4] M. Matsumt, Fundatns f Fnsler Gemetry and specal Fnsler spaces, Kasesha Press, Otsu, Japan, [5] F. I. Mkhal, Tedrad vectr felds and generalzng the thery f relatvty, An Shams Sc. Bull., N. 6 (1962), [6] F. I. Mkhal and M.I Wanas, A generalzed feld thery. I. Feld equatns, Prc. R. Sc. Lndn, A. 356 (1977), [7] R. Mrn, A Lagrangan thery f relatvty, Sem de Gem. s Tp., 84, Tmsara, Rmana, [8] R. Mrn, Metrcal Fnsler structures and specal Fnsler spaces, J. Math. Kyt Unv., 23 (1983), [9] R. Mrn, Cmpendum n the Gemetry f Lagrange Spaces, Handbk f Dfferental Gemetry, Vl. II (2006), [10] H. P. Rbertsn, Grups f mtn n spaces admttng abslute parallelsm, Ann. Math, Prncetn (2), 33 (1932), [11] T. Sakaguch, Parallelzable generalzed Lagrange spaces, Anal. St. Unv. AI. I. Cuza, Ias, Mat., 33, 2 (1987), [12] T. Sakaguch, Invarant thery f parallelzable Lagrange spaces, Tensr, N. S., 46 (1987), [13] M. I. Wanas, A generalzed feld thery and ts applcatns n csmlgy, Ph. D. Thess, Car Unversty, [14] M. I. Wanas, Abslute parallelsm gemetry: Develpments, applcatns and prblems, Stud. Cercet, Stn. Ser. Mat. Unv. Bacau, N. 10 (2001), [15] N. L. Yussef and A. M. Sd-Ahmed, Lnear cnnectns and curvature tensrs n the gemetry f parallelzabl manflds, Submtted.

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces Gemetry f parallelzable manflds n the cntext f generalzed Lagrange spaces M.I. Wanas, Nabl L. Yussef and A.M. Sd-Ahmed Abstract. In ths paper, we deal wth a generalzatn f the gemetry f parallelzable manflds,

Διαβάστε περισσότερα

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces 1 Gemetry f Parallelzable Manflds n the Cntext f Generalzed Lagrange Spaces arxv:0704.2001v2 [gr-qc] 30 Nv 2007 M. I. Wanas, N. L. Yussef and A. M. Sd-Ahmed Department f Astrnmy, Faculty f Scence, Car

Διαβάστε περισσότερα

On Curvature Tensors in Absolute Parallelism Geometry

On Curvature Tensors in Absolute Parallelism Geometry arxv:gr-qc/0604111 v1 26 Apr 2006 On Curvature Tensors n Absolute Parallelsm Geometry Nabl L. Youssef and Amr M. Sd-Ahmed Department of Mathematcs, Faculty of Scence, Caro Unversty e-mal: nyoussef@frcu.eun.eg

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Extended Absolute Parallelism Geometry

Extended Absolute Parallelism Geometry Extended Absolute Parallelsm Geometry arxv:0805.1336v4 [math.dg] 5 Aug 2009 Nabl. L. Youssef and A. M. Sd-Ahmed Department of Mathematcs, Faculty of Scence, Caro Unversty, Gza, Egypt nlyoussef2003@yahoo.fr,

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τομέας Υδατικών Πόρων και Περιβάλλοντος Εύα- Στυλιανή Στείρου Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

arxiv: v2 [math.dg] 14 Oct 2017

arxiv: v2 [math.dg] 14 Oct 2017 Invarants of Thrd Type Almost Geodesc Mappngs of Generalzed Remannan Space arxv:1710.04504v2 [math.dg] 14 Oct 2017 Nenad O. Vesć Abstract e studed rules of transformatons of Chrstoffel symbols under thrd

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

arxiv: v1 [math.dg] 11 Oct 2017

arxiv: v1 [math.dg] 11 Oct 2017 NONUNIQUE INVARIANTS of Thrd Type Almost Geodesc Mappngs arxv:1710.04504v1 [math.dg] 11 Oct 2017 Nenad O. Vesć Abstract Famles of nvarants of specal almost geodesc mappngs of the thrd type are obtaned

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Class 03 Systems modelling

Class 03 Systems modelling Class 03 Systems mdelling Systems mdelling input utput spring / mass / damper Systems mdelling spring / mass / damper Systems mdelling spring / mass / damper applied frce displacement input utput Systems

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Journal of Theoretics Vol.4-5

Journal of Theoretics Vol.4-5 Journal of Theoretcs Vol.4- A Unfed Feld Theory Peter Hckman peter.hckman@ntlworld.com Abstract: In ths paper, the extenson of Remann geometry to nclude an asymmetrc metrc tensor s presented. A new co-varant

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space Flomat 9:0 (05), 4 47 DOI 0.98/FI504Z ublshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba valable at: htt://www.mf.n.ac.rs/flomat On Integrablty Condtons of Dervaton Equatons n a Subsace

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΘΡΩΠΙΣΤΙΚΩΝ & ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΚΑΙΟΥ «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» Διπλωματική

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/ v2 8 Feb 2007

LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/ v2 8 Feb 2007 1 LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/0604111v2 8 Feb 2007 Nabil L. Youssef and Amr M. Sid-Ahmed Department of Mathematics, Faculty of Science,

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1 SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα