Christian J. Bordé SYRTE & LPL.
|
|
- Μνάσων Δεσποτόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Relativisti atom optis and interferometry : a trip in the fifth dimension Christian J. Bordé SYRTE & LPL
2 1 t Δ
3 ENERGY E( p) M + p 4 hν db E(p) Ω atom slopev M p p M ϕ+ ϕ rest mass hν M photon slope h / λ h / λdb MOMENTUM p K
4 KLEIN-GORDON EQUATION (Curved spae-time) ϕ M + 1/ 1/ ( ) ( ) ϕ g ν ϕ g g g ν ϕ ν ν g η + h with h << 1 ν ν ν ν 1 Δ h ν t ν
5 Elementary interval ν ds ν dx, (time),1,,3 (spae) Metri tensor 1 h 1 g ν + 1 sym 1 Analogy with: A ( V, A) Post-Newtonian parameters (PPN): g h i dx - gravitation field: h g. r / r. γ. r / - rotation field: h Ω r / U - gravitational wave: h h ν h h 1 11 h h h γ β U h h h h U δ i +..
6 LASER POINTER AND D OPTICS ϕ x ik x ϕ ϕ 1 ϕ ϕ ϕ + k ϕ x t y z ~ MASS TERM
7 FROM 3 TO 4 SPATIAL DIMENSIONS ϕ ϕ i 1 ( x, τ ) exp i ( τ τ ) ϕ ( x) ( x, τ ) ϕ τ M M ϕ d( M) M π ( x, τ ) t ϕ 1 ϕ 1 ϕ Δϕ t τ ( x τ ) exp i ( τ τ ) ϕ( x, M), M Δ ϕ+ ϕ < τ ϕ > d( M) < τ M > < Mϕ > M
8 1 ϕ 1 ϕ Δϕ t τ ˆ ϕ i 4 ϕ x p op x τ x ϕ 4 op op 4op p M p 4 Lagrange invariant p dx
9 E(p) b a M b M a p //
10 E M ˆ p pˆ p
11 t dσ dt dx ds s τ ˆ dx dx ˆ ds dt dx x
12 CHEMIN OPTIQUE & PRINCIPE DE FERMAT ν S p dx E dt p dx dl + g p p M ν ν,,1,,3 E ν E E dt h dx (3) λdb g g p Hamilton-Jaobi g φ φ M / équation d'ionale si M ν dl f i dx i dx f i g i g i g g λ ( 3) db E g h M
13 CHEMIN OPTIQUE & PRINCIPE DE FERMAT 1 ϕ ˆϕ ϕ τ équation d'ionale à 5D ( ˆ, νˆ,1,,3, 4): g ˆ ν ˆ φ ˆ ˆ ν φ dl (4) hφ p dx ˆ E dt + dx ˆ g g dl f i (4) i fidx dx + d τ ( 4 ) g i g i g g λ h E g g
14 BASICS OF ATOM /PHOTON OPTICS Paraboli approximation of slowly varying phase and amplitude E(p) 4 E M * Massive partiles M E M + E M E(p) p p ω 3 Photons ω / 1 k p
15 BASICS OF ATOM /PHOTON OPTICS Shroedinger-like equation for the atom /photon field: * ϕ M ν i ϕ p p * + p p 4 ϕ+ p h p * νϕ t M M p i p i p M * ; 4 τ ; ( ω / for photons) - gravitation field: h g. q/ q. γ. q/ - rotation field: h α. q/ - gravitational wave: h β δ + + * * * Hext p. α( t). q p. β( t). p/ M M q. γ( t). q/ M gq. f. p
16 ABCDξφ LAW OF ATOM OPTICS + + * * * Hext p. α( t). q p. β( t). p/ M M q. γ( t). q/ M gq. f. p wavepaket ( q, t ) exp isl / exp ip ( t) q q ( t) / F q q ( t), X ( t), Y ( t) p ( p, p, p, M); q ( x, y, z, τ ) ( ) exp ip () t ( q q () t )/ F ( q q (), t X(), t Y() t ) x y z q t Aq t Bp t M t t * ( ) ( ) + ( )/ + ξ (, ) p t M Cq t Dp t M t t * * ()/ ( ) + ( )/ + φ(, ) X() t AX( t ) + BY( t ) Yt ( ) CXt ( ) + DYt ( ) Framework valid for Hamiltonians of degree in position and momentum
17 Hamilton s equations for the external motion + + * * * Hext p. α( t). q p. β( t). p/ M M q. γ( t). q/ M gq. f. p M q χ * dhext p/ M d dp χ α() t β() t f() t χ + Γ () t χ +Φ() t dt 1 dhext γ() t α() t g() t * M dq ( tt) ( ) ( ) ( ) ( ) ( ) ( ) A tt, Btt, ξ tt, χ() t χ( t ) + C t, t D t, t φ t, t ( ) ( ) t T ( ) ( ) t Att, Btt, α(') t β(') t, exp dt' C t, t D t, t γ(') t α(') t ( tt, ) ( tt, ) ξ t ( tt, ') ( t') dt' φ M Φ t
18 Laser beams Atoms Total phaseation integral+end splitting+beam splitters
19 GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM INTERFEROMETER k β1 k β k βn β 1 M β1 β M β β N M βn βd k α1 k α k αn α 1 M α1 α M α α N M αn α D t 1 t 1 N 1 t N ( ) ( ) + 1 α + 1 δϕ Sβ t, t S t, t / N + ( k ) ( ) ( ) β qβ kα qα ωβ ωα t ϕβ ϕα ( ) ( ) + p q q p q q βd βd αd αd t D
20 The four end-points theorem β1 M β β x M α α p ( p α1 x, py, pz) q y z t 1 T t - t 1 t qβ qα qβ1 qα1 ( τβ τα) p β + p α p β1+ p α1 + Mβ + Mα ( ) ( ) ( ) ( ) ( ) Lagrange Invariant ( ) ( τ τ ) ( ) τ τ τ + τ S S M M ( M M ) ( M M ) β α β α β α ( β τβ α τα) β + α β α ( ) ( q q ) ( ) ( q q ) + p β + p α p β1+ p α1 ( Mβ Mα) β α β1 α1 β α p dx
21 GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM/PHOTON INTERFEROMETER k β1 k β k βn β 1 M β1 β M β βn M βn βd k α1 k α k αn α 1 M α1 α M α α N M αn α D N 1 ( ) ( k ) ( q k q k k β β α α β α )( qβ qα ) δϕ + ( τβ + τα ) ( ) ω ω t ω + ϕ ϕ () β α βα β α ( ) ω () βα Mβ Mα / /
22 GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM/PHOTON INTERFEROMETER N (5) (5) ( k. q ) 1 δϕ δ + δϕ () (5) (5) k ω ω ( kx, ky, kz, ), ; q ( x, y, z, ), t (5) (5) δ k k k ; q q + q / ( ) (5) (5) (5) (5) β α β α [ τ ]
23 Atomi Gravimeter Spae oordinat e z * v ' z 1 z 1 v 1 A( Tz)( 1 zat ( g)( / zγ ) + gb/ ( γ ) T+ ) Bp ( T/ )v M + g /γ τ * * * 1 armp / IM C( T)( z g/ γ ) + D( T) p / M + k/ M z v τ T Time oordinate t arm II z 1 ' v 1 ' τ 4 τ 3 T' z ' v ' z v * z ( ) ( ) z' M τ1+ τ3 τ τ4 + p + k+ p' 1 δϕ kz ( z z' + z) + kz ( z' )/ 1 1 p dx
24 Exat phase shift for the atom gravimeter δϕ kz ( z z' + z) + kz ( z' )/ 1 1 k sinh ( ( ')) sinh ( ) k γ T T γt + v + * γ M ( ( )) ( ) g γ + γ 1+ osh γ T + T' osh γt z whih an be written to first-order in γ, with TT : 7 k δϕ M kgt kγt gt v T z * Referene: Ch. J. B., Theoretial tools for atom optis and interferometry, C.R. Aad. Si. Paris,, Série IV, p , 1
25 ARBITRARY 3D TIME-DEPENDENT GRAVITO-INERTIAL FIELDS * * Hamiltonian: H p. α( t). q+ p. β( t). p/ M M q. γ( t). q/ Hamilton's equns: A B α β T exp dt C D γ α Example: Phase shift indued by a gravitational wave Einstein oord.: β 1+ hos ξt + φ, γ, with h h ( ) { i} ( ) h ( t ) Fermi oord.: β 1, γ ξ / os ξ + φ Einstein oord.: Fermi oord.: A 1 h B t + sin ( ξt φ) sinφ ξ + h hξ t A 1 os( ξt+ φ) osφ sinφ h ht B t+ sin ( ξt+ φ) sinφ os( ξt+ φ) + osφ ξ
26 Atomi phase shift indued by a gravitational wave δϕ khv ξ T sin ξt + φ sin ξt / khq ( ) ( ) / os T + os T + + os ( ) ( ) ξ φ ξ φ φ khv T os( T + ) os( T + ) + + ξ φ ξ φ ϕ ϕ ϕ 1 k V p + / M * Ch.J. Bordé, Gen. Rel. Grav. 36 (Marh 4) Ch.J. Bordé, J. Sharma, Ph. Tourren and Th. Damour, Theoretial approahes to laser spetrosopy in the presene of gravitational fields, J. Physique Lettres 44 (1983) L983-99
27
28
29 Bordé-Ramsey interferometers Laser beams Atom beam ( )T M M M a b b / ) ( * * * 1 + ω δϕ ( ) 1 1 * 1 k p M M b b + + ( ) 1 1 * k p M M b b + 1 * p M M a a +
30 BORDÉ-RAMSEY INTERFEROMETERS
31 Atom Bordé-Ramsey interferometers Laser beams beam * M k T hos T + sin T * M ( ) ( ) δϕ ξ φ ξ
32 SF [ ] [ ] d dq p d X p d d x p τ τ ϕ MOLECULAR INTERFEROMETRY [ ] τ τ ϕ ˆ ˆ X d P d M X d P d d x p + +
33 What did you expet?
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)
NATURAL SCIENCES TRIPOS Part II Wednesday 3 January 200 0.30am to 2.30pm THEORETICAL PHYSICS I Answers (a) The kinetic energy of the rolling cylinder is T c = 2 ma2 θ2 + 2 I c θ 2 where I c = ma 2 /2 is
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability
Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Magnetic bubble refraction in inhomogeneous antiferromagnets
Magnetic bubble refraction in inhomogeneous antiferromagnets Martin Speight University of Leeds Nonlinearity 19 (006) 1565-1579 Plan Planar isotropic inhomogeneous antiferromagnetic spin lattices Continuum
Cosmological Space-Times
Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =
Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR
Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Analytical Mechanics ( AM )
Analytical Mechanics ( AM ) lecture notes part 10, Summary Olaf Scholten KVI, kamer v3.008 tel. nr. 363-355 email: scholten@kvi.nl Web page: http://www.kvi.nl/~scholten Book Classical Dynamics of Particles
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M
Maxwell' s Equations in vauum E ρ ε Physis 4 Final Exam Cheat Sheet, 7 Apil E B t B Loent Foe Law: F q E + v B B µ J + µ ε E t Consevation of hage: J + ρ t µ ε ε 8.85 µ 4π 7 3. 8 SI ms) units q eleton.6
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
B.6 k = +1; q 0 = B.5 k = 0 ; q 0 = 1/
! " # $#% &'(* !""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". The metri of Spae-Time... 5. The redshift...
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar
Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation
Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Inflation and Reheating in Spontaneously Generated Gravity
Univesità di Bologna Inflation and Reheating in Spontaneously Geneated Gavity (A. Ceioni, F. Finelli, A. Tonconi, G. Ventui) Phys.Rev.D81:123505,2010 Motivations Inflation (FTV Phys.Lett.B681:383-386,2009)
Name: Math Homework Set # VI. April 2, 2010
Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION
X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Fundamental Equations of Fluid Mechanics
Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
A. Two Planes Waves, Same Frequency Visible light
Interference 1 A. Two Planes Waves, Same Frequency EE 1 rr, tt = EE 0,1 cccccc αα 1 ωω tt αα 1 kk 1. rr + εε 1 EE 2 rr, tt = EE 0,2 cccccc αα 2 ωω tt αα 2 kk 2. rr + εε 2 ωω = 4.3 7.5 10 14 HHHH Visible
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Lecture 27. Relativity of transverse waves and 4-vectors
Lecture 27. Relativity of transverse waves and 4-vectors (Ch. 2-5 of Unit 2 4.5.12) Introducing per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation Reviewing the stellar aberration angle
You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
MATHEMATICAL TRIPOS Part III Monday 6 June, 2005 9 to 12 PAPER 60 GENERAL RELATIVITY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. The signature is ( + ),
Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors
BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,
Modelling the Furuta Pendulum
ISSN 28 5316 ISRN LUTFD2/TFRT--7574--SE Modelling the Furuta Pendulum Magnus Gäfvert Department of Automatic Control Lund Institute of Technology April 1998 z M PSfrag replacements θ m p, l p m a, l a
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
MA4445: Quantum Field Theory 1
MA4445: Quantum Field Theory 1 Dr. Samson Shatashvilli September 7, 01 1 Note These notes are absolutely awful, there was no way to definitely take down all of the equations, so... sorry? I will try to
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY
THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
1 Lorentz transformation of the Maxwell equations
1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz
Spin Precession in Electromagnetic Field
Spin Preession in Eletromagneti Field Eunil Won, eunil@{hep.korea,kaist}.a.kr v0150417 1 T-BMT Equation This note is an expliit alulation of the spin preession known as T-BMT equation. The method used
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20
Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο
Cosmology with non-minimal derivative coupling
Kazan Federal University, Kazan, Russia 8th Spontaneous Workshop on Cosmology Institut d Etude Scientifique de Cargèse, Corsica May 13, 2014 Plan Plan Scalar fields: minimal and nonminimal coupling to
Part 4 RAYLEIGH AND LAMB WAVES
Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:
Lorentz Transform of an Arbitrary Force Field on a Particle in its Rest Frame using the Hamilton-Lagrangian Formalism
B/IR#15-01 September, 2015; updated June, 2016 Lorentz Transform of an Arbitrary Force Field on a Particle in its Rest Frame using the Hamilton-Lagrangian Formalism C. Tschalär Abstract: A formalism is
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Relativistic particle dynamics and deformed symmetry
Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed
γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns
There is however one main difference in this chapter compared to many other chapters. All loss and gain coefficients are given for the intensity and not the amplitude and are therefore a factor of 2 larger!
Computing the Macdonald function for complex orders
Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Quantum Systems: Dynamics and Control 1
Quantum Systems: Dynamics and Control 1 Mazyar Mirrahimi and Pierre Rouchon 3 February 7, 018 1 See the web page: http://cas.ensmp.fr/~rouchon/masterupmc/index.html INRIA Paris, QUANTIC research team 3
σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t
ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +
2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011
2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT
THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT PHYSICS FORMULAE AND DATA BOOKLET This booklet is not to be removed from the examination room or marked in any way. THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Optical Feedback Cooling in Optomechanical Systems
Optical Feedback Cooling in Optomechanical Systems A brief introduction to input-output formalism C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum Stochastic differential
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall