RAF301G Merki og kerfi Miðmisserispróf, lausn
|
|
- Σωφρόνιος Βασιλόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 RAF301G Merki og kerfi Miðmisserispróf, lausn Miðvikudaginn 20. okóber 2010, kl. 08:20-09:50 Leyfileg hjálpargögn: reiknivél og ei A-blað með hverju sem er (innan marka heilbrigðrar skynsemi) á báðum hliðum. Prófíminn er einn klukkuími og uugu mínúur. Vægi spurninga er jafn, íu sig hver. Prófið inniheldur spurningar (gangið úr skugga um að þær séu allar il saðar), samals 0 sig. Ráðis fyrs í þær spurningar sem ykkur virðas auðveldari. Skýrið og röksyðjið svör ykkar vandlega þannig sé ég líka beur hvað er á seyði ef þið hugsið ré en gerið smávægileg misök. Að röksyðja svar þýðir í þessu samhengi að sannfæra mig um að þið skiljið hvers vegna þea er svarið, og séuð ekki bara að giska. Svarið í þea prófhefi og skilið því (skrifið afan á síðurnar ef ykkur vanar pláss). Gangi ykkur vel! Nafn: Spurning 1: Spurning 2: Spurning 3: Spurning : Sig samals: Einkunn:
2 1 Eiginleikar kerfa Skoðum íma-sakræna kerfið sem myndar úmerkið y[n] úr innmerkinu x[n] þannig: y[n] = sin(x[n 1]) Er þea kerfi: (a) minnislaus? (b) andhverfanleg? (c) orsakaeng? (d) BIBO-söðug? (e) ímaóháð? (f) línuleg? (1 sig) (1 sig) (a) Nei. y[n] er reiknað ú frá gildi merkisins x við íma n 1 < n. (b) Nei. Þegar 0 kemur ú úr sin-fallinu er ógerleg að via hvor gildið sem fór inn í það var 0 eða π eða 2π eða 37π. Ferðin í gegnum sin-fallið hendir því upplýsingum um x; það er ekki hæg að finna hver innmerkið var, ú frá gefnu úmerki y[n]. (c) Já. y[n] fer ekki efir neinu gildi innmerkisins öðru en x[n 1], og er þar með ekki háð neinu gildi innmerkisins við íma > n. (d) Já. y[n] = sin(x[n 1]) 1 óháð innmerki. Úmerkið er því akmarkað hvenær sem innmerkið er akmarkað (og reyndar líka þegar innmerkið er ekki akmarkað, en það skipir ekki máli fyrir BIBO-söðugleika). RAF301G Merki og kerfi 2 Miðmisserispróf 2010, lausn
3 (e) Já. Gefum okkur að innmerkið x 1 gefi úmerkið y 1, þ.e.: y 1 [n] = sin(x[n 1]) Skilgreinum x 2 [n] = x 1 [n N] og reiknum úmerkið y 2 [n] = sin(x 2 [n 1]) = sin(x 1 [(n 1) N]) = sin(x 1 [(n N) 1]) = y 1 [n N] Að hliðra innmerkinu veldur sem sag bara samsvarandi hliðrun úmerkis. Með öðrum orðum, kerfið er ímaóháð. (f) Nei. Að vöfalda x skilar sér.d. ekki sem vöföldun þess sem kemur ú úr sin-fallinu. Gefum okkur.d. að x sé fasamerkið x[n] = π. Þá er 2 y[n] = 1. En ef við vöföldum x, búum il x [n] = 2x[n] = π, þá er úmerkið y [n] = 0 2y[n]. Kerfið er því ólínuleg. RAF301G Merki og kerfi 3 Miðmisserispróf 2010, lausn
4 2 Földun Að eikna nákvæmlega felur hér í sér að gefa upp hni helsu punka svo að skýr sé hvaða fall er eiknað. Gefin eru merkin x(), y(), og z() sem sjás á myndinni. x() y() z() (a) Teiknið merkið w 1 () = (x y)() nákvæmlega ( sig) w 1 () RAF301G Merki og kerfi Miðmisserispróf 2010, lausn
5 (b) Teiknið merkið w 2 () = (x z)() nákvæmlega ( sig) w 2 () Láum nú x, y, og z vera impúlssvaranir LTI kerfanna T x, T y, og T z. (c) Eru einhver kerfanna orsakaengd? Hver þeirra? Hvernig veisu? (1 sig) : Kerfi T x er orsakaeng, þar sem impúlssvörunin (x()) er 0 fyrir öll < 0. Hin vö kerfin eru óorsakaengd, vegna þess að impúlssvaranir þeirra (y() og z()) ná inn í neikvæðan íma (eru ekki 0 fyrir öll < 0). (d) Eru einhver kerfanna söðug? Hver þeirra? Hvernig veisu? (1 sig) : Öll kerfin eru BIBO-söðug, þar sem allar impúlssvaranirnar eru alegranlegar (egrið = h() d samleiið). RAF301G Merki og kerfi 5 Miðmisserispróf 2010, lausn
6 3 Mismunajafna og LTI kerfi Tímasakrænu LTI kerfi er lýs með mismunajöfnunni y[n]+y[n 1] = x[n] og upphafsskilyrðinu y[ 1] = 0. (a) Er kerfið FIR eða IIR? (b) Reiknið og eiknið impúlssvörun kerfisins, h[n]. (c) Er þea kerfi BIBO-söðug? (1 sig) (5 sig) (d) Er hæg að breya svarinu við (c) með því að skala innmerkið? (a) Kerfið er IIR, impúlssvörunin óendanleg, vegna afurverkunarinnar (y[n] fer efir y[n 1], sem fer efir y[n 2], og þannig koll af kolli, og hver þessara y[n k] fer efir x[n k]; þannig gæir áhrifa hvers gildis innmerkisins óendanlega lengi). (b) Sejum inn x[n] = δ[n]: y[n] = x[n] y[n 1] y[0] = 1 0 = 1 y[1] = 0 1 = 1 y[2] = 0 ( 1) = 1 y[3] = 0 1 = 1. y[n] = ( 1) n u[n] (c) Nei, kerfið er ekki BIBO-söðug. Impúlssvörunin er augljóslega ekki alegranleg. RAF301G Merki og kerfi 6 Miðmisserispróf 2010, lausn
7 (d) Nei. (Nema með því að skala það með núll, en það er vafasamur skilningur á skölunťť.) Það væri hins vegar hæg að breya svarinu með því að skala il afurverkunarliðinn (y[n 1]) en um það var ekki spur. RAF301G Merki og kerfi 7 Miðmisserispróf 2010, lausn
8 Samhverfueiginleikar Fourier-raðar Munið að röksyðja öll svör. Merkið x() hefur Fourier-röð með suðla: a k = j k = 0 ( ) 1 1 k 2 k 2 k 0 Ábending: ummyndunin á milli ímaframseningar merkis og Fourier-raðar þess er línuleg ummyndun og það gildir líka um margföldun með j. (a) Er x() hrein raungil, eða hrein þvergil, eða hvorug? (b) Er x() jafnsæ, eða oddsæ, eða hvorug? (c) Er merkið dx d (d) Er merkið dx d hrein raungil, eða hrein þvergil, eða hvorug? jafnsæ, eða oddsæ, eða hvorug? (e) Hver er orkan í einni lou af merkinu dx d? (a) Það er hrein þvergil. Þessi suðlaruna,a k, er samokasamhverf suðlaruna margfölduð með j. Samokasamhverf Fourier-suðlaruna samsvarar raungildu ímamerki, og margföldun með ölu (il dæmis j) virkar eins hvor sem er í íma eða íðni (Fourier-röð er línuleg aðgerð). Þea ímamerki er því raungil merki margfaldað með j þ.e. þvergil merki. (b) Tímamerkið er þvergil. Ef það væri líka oddsæ, þá væri suðlarunan raungild og oddsæð. Ef það væri líka jafnsæ, þá væri suðlarunan þvergild og jafnsæð. En hún er hvorug, og því er ímamerkið hvorug. (Einföld leið il að hugsa um þessar samhverfureglur: það þarf bara að muna að raungil merki hefur samokasamhverf róf, þar sem jafnsæði hlui merkisins á raunhlua rófsins, og oddsæði hluinn á þverhlua rófsins. Þvergil merki er síðan bara raungil merki sinnum j, og vegna línuleika margfaldas þá rófið líka bara með j, og skipir því á raunhlua og þverhlua.) RAF301G Merki og kerfi 8 Miðmisserispróf 2010, lausn
9 (c) og (d) dx d hefur suðla b k = jkω 0 a k = jω 0 ( k = 0 ) k 2 k 0 Þessi suðlaruna er greinilega þvergild og jafnsæð, þ.e. j sinnum raungild og jafnsæð suðlaruna. Tímamerkið er því þvergild og jafnsæ líka (j sinnum raungil og jafnsæ ímamerki). Reyndar mái líka alveg sjá að merkið hlyi að vera hrein þvergil, þar sem það er afleiðan af öðru merki sem við vium úr lið (a) að er hrein þvergil. (e) Orkan ert 0 k= infy b k 2. Illu heilli gerði ég þau misök að noa suðlarunu sem er ekki auðveldlega summanleg! Full sig fyrir liðinn fengus því fyrir að komas svona lang. Algeng misök voru að margfalda ekki með T 0 (þ.e. gefa meðalafl í sað orku), sleppa ölugildinu, o.fl. RAF301G Merki og kerfi 9 Miðmisserispróf 2010, lausn
x(t) = T 0 er minnsta mögulega gildi á T
Fyrir x(t) = u(t) þá fáum við lim t y(t) = lim t tu(t) = sem er óstöðugt. (oft er gott að skoða hvort impúlssvörunin sé alsamleitin, ef svo er, þá er kerð stöðugt). Tímaóháð Ker er tímaóháð ef það kemur
Þriggja fasa útreikningar.
Þriggja asa útreikningar. Hér þurum við að byrja á því að skilgreina 4 hugtök. 1. Netspenna er spenna sem við mælum á milli tveggja asa.. Netstraumur er straumurinn í hverjum asaleiðara.. Fasaspenna er
Reikniverkefni VII. Sævar Öfjörð Magnússon. 22. nóvember Merki og ker Jónína Lilja Pálsdóttir
Reikniverkefni VII Sævar Öfjörð Magnússon 22. nóvember 25 8.3.4 Merki og ker Jónína Lilja Pálsdóttir KAFLI 9.2 Pólar 2. stigs kerfa Í þessum kaa vinnum við með 2. stigs ker á forminu H(s) = ω 2 n. ()
Meðalmánaðardagsumferð 2009
Meðalmánaðardagsumferð 2009 Almennt Á meðfylgjandi stöplaritum gefur að líta, hvernig umferð um 74 staði/snið dreifist hlutfallslega eftir mánuðum yfir árið 2009. Í upphafi var ákveðið að velja alla talningarstaði,
Bústólpi ehf - Nýtt kjarnfóður H K / APRÍL 2014
Bústólpi ehf - Nýtt kjarnfóður H K / APRÍL 2014 Nýtt kjarnfóður frá Bústólpa PREMIUM PRO-FIT 17 PREMIUM PRO-FIT 13 Nýtt kjarnfóður frá Bústólpa PREMIUM PRO-FIT 17 Kjarnfóður sem ætlað er að hámarka fitu,
6. júní 2016 kl. 08:30-11:00
Sveinsprófsnefnd sterkstraums Rafmagnsfræði, stýrikerfi og búnaður 6. júní 2016 kl. 08:30-11:00 Nafn: Kennitala: Heimilisfang:_ Hjálpargögn: Skriffæri, reglustika, og reiknivél. Nota má bókina Formúlur
PRÓFBÚÐIR Í LÍNULEGRI ALGEBRU VIÐ HR VOR 2014 HERKÚLES
PRÓFBÚÐIR Í LÍNULEGRI ALGEBRU VIÐ HR VOR 2014 HERKÚLES GUÐMUNDUR EINARSSON Herkúles Prófbúðir April 8, 2014 1 / 52 OUTLINE 1 Grunnhugtök, einfaldar aðgerðir og innfeldi Grunnhugtök Innfeldi Jafna Línu
Líkindi Skilgreining
Líkindi Skilgreining Ω = útkomumengi = mengi allra hugsanlegra útkoma. Atburður er hlutmengi í Ω. Ω A Skilgreining: Atburðir A og B kallast sundurlægir (ósamræmanlegir) ef A B =. Ω A B Skilgreining: Líkindi
Eðlisfræði 1. Dæmi 5.2 (frh.) Dæmi Dæmi (frh.) d) P = W tog. = 0, 47kW. = 9, 4kJ
S I S Menntakólinn Dæi 5. frh. - 5.3 R E Y K SIGILLUM J A V SCHOLÆ I C E N í Reykjavík 5. frh. d P W tog t 9,4kJ 0 0, 47kW Eðlifræði Kafli 5 - Vinna og orkuvarðveila Óleyt dæi 5. nóveber 006 Kritján Þór
Menntaskólinn í Reykjavík
Menntakólinn í Reykjaík Jólaróf 006, fötudaginn 5. de. kl. 9 0 Eðlifræði í 6.M og S náttúrufræðideild I Sör erkefnið er á 5 töluettu blaðíðu. Leyfileg hjálargögn eru hjálagt forúlublað og aareiknir. otaðu
Undirstöðuatriði RC-tengds magnara Ólafur Davíð Bjarnason og Valdemar Örn Erlingsson 28. apríl 2009
Háskóli Íslands Vor 2009 Kennari: Vilhjálmur Þór Kjartansson Undirstöðuatriði RC-tengds magnara 28. apríl 2009 1 Magnari án forspennu Notuð var rás eins og á mynd 1. Við bárum saman uce og ube á sveiflusjá.
t 2 c2 2 Φ = 0. (2.1)
2 Bylgjuaflfræði Eftir að de Broglie setti fram tilgátu sína og í ljós kom að hún átti við rök að styðjast var ljóst að finna þyrfti bylgjujöfnu sem þessar bylgjur hlíttu. Rafsegulbylgjur, hljóðbylgjur
FRÆÐSLUSKRIFSTOFA RAFIÐNAÐARINS
FÆÐSLSKIFSTOF FIÐNÐINS FOMÚL VEGN SVEINSÓFS Í FIÐNM Útgáfa SVEINSÓFSNEFND FIÐN STEKSTMS Fræðsuskrifstofa rafiðnaðarins Sveinsprófsnefnd sterkstraums FOMÚL FOMÚLTEXTI ρ Δ cosϕ I ρ Δ ρ Δ Spenna V I Straumur
4.01 Maður ekur 700 km. Meðalhraðinn er 60 km/klst fyrstu 250 km og 75 km/klst síðustu 450 km. Hver er meðalhraðinn?
4. kafli, dæmi og vör með útreikningum Skrifað út 9..4; :34 4. Maður ekur 7 km. Meðalhraðinn er 6 km/klt fyrtu 5 km og 75 km/klt íðutu 45 km. Hver er meðalhraðinn? S S Sv.: Hér þarf að reikna tímann fyrir
Span og orka í einfaldri segulrás
Rafmagnsvélar 1 - RAF601G 1 Span og orka í einfaldri segulrás Inductance and energy in a simple magnetic circuit Rafmagnsvélar 1 - RAF601G 2 Lögmál Faradays spansegulviðnám Lögmál Faradays er hluti af
H2S loftgæðamælingar í Norðlingaholti og í Hveragerði
H2S loftgæðamælingar, Norðlingaholt, Hveragerði, 1. og 2. ársfjórðungur 2015 Bls. 1 Skýrsla nr. 14 16. júlí 2015 H2S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir janúar til
H 2 S loftgæðamælingar í Norðlingaholti og í Hveragerði
H 2 S loftgæðamælingar, Norðlingaholti og Hveragerði, 1. - 3. ársfjórðungur 2016 Bls. 1 Skýrsla nr. 24 19. október 2016 H 2 S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og Nesjavallavirkjun
H 2 S loftgæðamælingar á Hellisheiði og Nesjavöllum, 1. ársfjórðungur 2018 Bls. 1 Skýrsla nr. 42 3. maí 2018 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og Nesjavallavirkjun Skýrsla um mælingar fyrir
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun
H 2 S loftgæðamælingar, Hellisheiði og Nesjavöllum, 1. ársfjórðungur 2016 Bls. 1 Skýrsla nr. 21 26. apríl 2016 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar
Iðjuþjálfun LIE0103 Hrefna Óskarsd.
Intraplural fluid alveoli P atm = O mmhg P alv P ip = P alv = O mmhg Lung elastic recoil 4 mmhg Chest wall P ip = -4 mmhg að anda inn og út. útöndun án mikils krafts, þ.e. af ákveðnu hlutleysi, og getum
H2S loftgæðamælingar í Norðlingaholti og í Hveragerði
H2S loftgæðamælingar, Norðlingaholti og Hveragerði, fyrir árið 2015 Bls. 1 Skýrsla nr. 18 18. janúar 2016 H2S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir árið 2015 Unnið
Kaplan Meier og Cox. Aðferðafræði klínískra rannsókna haustið 2010 Fimmtudagur 11 nóvember. Thor Aspelund Hjartavernd og Háskóla Íslands
Kaplan Meier og Cox Aðferðafræði klínískra rannsókna haustið 2010 Fimmtudagur 11 nóvember Thor Aspelund Hjartavernd og Háskóla Íslands Tími að atburði í heilbrigðisvísindum Í heilbrigðisvísindum er útkoman
Aðskilnaður breytistærða í rúmi
Kai 9 Aðskinaður breytistærða í rúmi 9.1 Bygjujafna í skífu 2 u = c 2 2 u, x 2 + y 2 < a 2 t 2 js: u = 0, x 2 + y 2 = a 2 us: u u t=0 = ϕ, = ψ t=0 t 9.1) Geymum upphafsskiyrðin us) beitum aðskinaði breytistærða
Orkuumbreyting milli raforku og hreyfiorku
1 Orkuumbreyting milli raforku og hreyfiorku Electromechanical energy conversion principles Umbreyting milli raforku og hreyfiorku Umbreytingin getur almennt gengið í hvora áttina sem er: Umbreyting úr
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun
H2S loftgæðamælingar, Hellisheiði og Nesjavöllum, 1. og 2. ársfjórðungur 2015 Bls. 1 Skýrsla nr. 15 16. júlí 2015 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar
H2S mælingar í Norðlingaholti og Hveragerði Skýrsla um mælingar árið 2013 Unnið fyrir Orkuveitu Reykjavíkur
Bls. 1 Skýrsla nr. 2 (útgáfa 2) 12. janúar 2014 H2S mælingar í Norðlingaholti og Hveragerði Skýrsla um mælingar árið 2013 Unnið fyrir Orkuveitu Reykjavíkur Höfundur: Andrés Þórarinsson Verkfræðistofan
Ályktanir um hlutföll og tengslatöflur
Ályktanir um hlutföll og tengslatöflur LAN 203G & STÆ209G Anna Helga Jónsdóttir Sigrún Helga Lund Háskóli Íslands Anna Helga og Sigrún Helga (HÍ) Ályktanir um hlutföll og tengslatöflur 1 / 27 Helstu atriði:
1) Birgðabreyting = Innkaup - Sala + Framleiðsla - Rýrnun - Eigin notkun. Almennari útgáfa af lögmálinu hér fyrir ofan lítur svona út:
Massajöfnunarkerfi Svokölluð jöfnunarkerfi eru notuð til að fylgjast með magni efnis þegar það fer í gegnum ferli. Slík kerfi eru útgáfur af lögmálinu um varðveislu massans. Einfaldasta jöfnunarkerfið
Forritunarkeppni Framhaldsskólanna 2014
2014 Morpheus deild - eftir hádegi Háskólinn í Reykjavík 20. mars 2014 Verkefni 1 Á Milli Skrifið forrit sem les inn þrjár heiltölur a, b og c. Skrifið út Milli ef talan b er á milli a og c á talnalínunni.
Guðbjörg Pálsdóttir Guðný Helga Gunnarsdóttir NÁMSGAGNASTOFNUN
Guðbjörg Pálsdóttir Guðný Helga GunnarsdóttirNÁMSGAGNASTOFNUN Til nemenda Námsefnisflokkurinn 8 tíu er ætlaður nemendum í 8. 10. bekk. Grunnbókin 8 tíu 5 skiptist í átta meginkafla. Í hverjum kafla er
CHEMISTRY. Bylgjueðli ljóss. Bylgjueðli ljóss. Rafeindabygging atóma. Bylgjueðli ljóss. Bylgjueðli ljóss. Bylgjueðli ljóss
CHEMISTRY The Central Science 9th Edition Rafeindabygging atóma David P. White Allar bylgjur hafa einkennandi bylgjulengd, λ, og útslag, A. Tíðni bylgju, ν, er fjöldi heilla bylgna sem fara yfir línu á
Almenn Efnafræði V, EFN301G ******************************************* 2. Hlutapróf haustannar 2014 Þriðjudagur 21. Október 2014
Háskóli Íslands Raunvísindadeild Almenn Efnafræði V, EFN301G ******************************************* 2. Hlutapróf haustannar 2014 Þriðjudagur 21. Október 2014 Kennari: Oddur Ingólfsson Prófið er 90
Eðlisfræði II: Riðstraumur. Kafli 11. Jón Tómas Guðmundsson 10. vika vor 2016
Eðlisfræði II: Riðstraumur Kafli 11 Jón Tómas Guðmundsson tumi@hi.is 10. vika vor 2016 1 Inngangur Grafið sem sýnir augnabliksgildi rafmerkis sem fall af tíma er nefnt bylgjuform merkis Gjarnan eru bylgjuform
Viðskipta- og Hagfræðideild Tölfræði II, fyrirlestur 6
Viðskipta- og Hagfræðideild Tölfræði II, fyrirlestur 6 Háskóli Íslands Helgi Tómasson Líkindafræði kafli 2-9 Berið saman við líkindafræðina í Newbold. Tilgangur líkindafræði í tölfræðinámsskeiði er að
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun
H2S loftgæðamælingar, Hellisheiði og Nesjavöllum, fyrir árið 2015 Bls. 1 Skýrsla nr. 19 18. janúar 2016 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar fyrir
fyrirlestrapunktar vor 2009 Háskóli Íslands Mælingar tengdar í tíma. Kafli 7 (muna 5.5. og k. 1-4)
Viðskipta- og Hagfræðideild fyrirlestrapunktar vor 2009 Háskóli Íslands Hagrannsóknir II, Helgi Tómasson Mælingar tengdar í tíma. Kafli 7 (muna 5.5. og k. 1-4) Nokkur hugtök Stationarity: Weak/Strong.
Gagnasafnsfræði Venslaalgebra og bestun fyrirspurna. Hallgrímur H. Gunnarsson
Gagnasafnsfræði Venslaalgebra og bestun fyrirspurna Hallgrímur H. Gunnarsson Inngangur SQL: SQL er declarative mál, segir bara hvað á að reikna, en ekki hvernig. Það er undir gagnasafnskerfinu komið að
Rafbók. Loftnetskerfi. Verkefnahefti A
Loftnetskerfi Verkefnahefti A Þetta hefti er án endurgjalds á rafbókinni. Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni. Þetta hefti er þýtt með góðfúslegu leyfi
Vísandi mælitæki (2) Vísandi mælitæki. Vísandi mælitæki (1) Vísandi mælitæki (3)
1 2 Vísandi mælitæki (2) Vísandi mælitæki Fjöldi hliðrænna tækja byggir á því að rafsegulsvið myndast umhverfis leiðara með rafstraumi. Við það færist vísir: Með víxlverkun síseguls og segulsviðs umhverfis
Nokkur valin atriði úr aflfræði
Einföld sveifluhreyfin Nour valin atriði úr aflfræði Soðum raftajöfnuna fyrir orm með ormstuðul sem má rita á eftirfarandi formi: mẍ = x sem er óhliðruð. stis diffurjafna. Umritum hana yfir á eftirfarandi
Hugtakalisti fyrir 10. bekk. Listinn er ekki tæmandi!!!
Hugtakalisti fyrir 10. bekk. Listinn er ekki tæmandi!!! Tölur o Talnamengin eru fjögur: N, Z, Q og R. o Náttúrulegar tölur (N) Allar jákvæðar heilar tölur. ATH. ekki 0. o Heilar tölur (Z) Allar heilar
BLDC mótorstýring. Lokaverkefni í rafmagnstæknifræði BSc. Halldór Guðni Sigvaldason
BLDC mótorstýring Halldór Guðni Sigvaldason Lokaverkefni í rafmagnstæknifræði BSc 2014 Höfundur: Halldór Guðni Sigvaldason Kennitala: 201266-2979 Leiðbeinandi: Baldur Þorgilsson Tækni- og verkfræðideild
Kafli 1: Tímastuðull RC liður. Dæmi 1.1 A: 3,3ms B: 7,56V Dæmi 1.2 A: 425µF B: 1s Dæmi 1.3 A: 34,38V B: 48,1V Dæmi 1.4 A: 59,38s
Kafli 1: Tímastuðull RC liður Dæmi 1.1 A: 3,3ms B: 7,56V Dæmi 1.2 A: 425µF B: 1s Dæmi 1.3 A: 34,38V B: 48,1V Dæmi 1.4 A: 59,38s Kafli 2: NTC, PTC, LDR, VDR viðnám Dæmi 2.1 A: Frá vinstri: NTC viðnám, VDR
FOUCAULT þrír textar 2014
FOUCAULT þrír textar www.starafugl.is 2014 Inngangur: Listaverk er ekki hlutur, það er lífið Nanna Hlín Halldórsdóttir Núna þegar niðurnjörvaður prófessjónalismi er búinn að gelda svo margt fallegt er
9 x 2 x 2 x 3 = 19 (9 + 2) 2 3 = 19
Verkefnablað 7.35 Horfin aðgerðartákn Settu aðgerðartákn (+,, :, ) og sviga á rétta staði þannig að svörin verði rétt. Dæmi: 9 x 2 x 2 x 3 = 19 (9 + 2) 2 3 = 19 a 9 x 8 x 3 x 2 = 7 b 16 x 9 x 5 x 5 = 10
Spurningar úr Raforkudreifikerfum. e. Ófeig Sigurðsson.
Spurningar úr Raforkudreifikerfum. e. Ófeig Sigurðsson. 1. Vinnsla og flutningur raforku 1. Hvað er raforkuver? 2. Hvaða atriði hafa áhrif á nýtni raforkukerfa? 3. Hvað er blik (kóróna) í raforkukerfi?
Stillingar loftræsikerfa
Stillingar loftræsikerfa Apríl 009 Stillingar loftræsikerfa Höfundar: og Útgefandi: IÐAN fræðslusetur ehf IÐAN fræðslusetur Skúlatúni 105 Reykjavík Fyrsta útgáfa 004 Önnur útgáfa 008 Þriðja útgáfa 009
Borðaskipan í þéttefni
Eðlisfræði þéttefnis I: Borðaskipan í þéttefni Kafli 7 Jón Tómas Guðmundsson tumi@hi.is 8. vika haust 2017 1 Inngangur Sú nálgun sem gerð var með einnar rafeindar nálguninni og með því að gera ráð fyrir
Skilaverkefni 1. Skil á þriðjudaginn
Nafn: Skilaverkefni 1 Skil á þriðjudaginn 1. Bíll ekur frá Reykjavík á Selfoss. Ferðin tekur 45 mínútur og vegalendin sem bíllinn fer er 50 Km. Hver er meðalhraði bílsins á leiðinni í m/s og Km/klst? 2.
Stærðfræði. Lausnir. Lausnir. 8tíu. NÁMSGAGNASTOFNUN 20. apríl 2009
4 1 2 3 5 6 Lausnir Lausnir 8tíu NÁMSGAGNASTOFNUN 20. apríl 2009 Átta Lausnir 2007 Björgvin Sigurðsson, Guðbjörg Pálsdóttir og Guðný Helga Gunnarsdóttir Ritstjóri: Hafdís Finnbogadóttir Öll réttindi áskilin
Tölfræði II Samantekt vor 2010
Tölfræði II Samatekt vor 00 Ályktuartölfræði Hvað er ályktuartölfræði (iferetial statistics)? Öryggisbil (cofidece iterval) Marktektarpróf Ályktuartölfræði: Hverig er öryggisbil reikað? Gerum ráð áðfyrir
16 kafli stjórn efnaskipta
16 kafli stjórn efnaskipta Stjórnun efnaskipta kodhydrata, próteina og fitu Þegar við erum búin að koma næringu úr meltingarveginum og út í blóðið, þarf að koma næringunni áfram yfir í þær frumur sem eiga
Ósjálfráða taugakerfið - Autonomic Nervous System Kafli. ( Sjálfvirka taugakerfið - Dultaugakerfið )
Ósjálfráða taugakerfið - Autonomic Nervous System - 20. Kafli. ( Sjálfvirka taugakerfið - Dultaugakerfið ) Ósjálfráða taugakerfið stjórnar starfsemi innri líffæra. Nánar tiltekið stjórnar það starfsemi
Hagrannsóknir I. Glósur úr fyrirlestrum og dæmatímum Haustönn 2004
Hagrasókr I Glósur úr fyrrlesrum og dæmaímum Hausö 004 Erledur Davíðsso Efsyfrl FYRIRLESUR 6.09.004...4 3. KAFLI...4 FYRIRLESUR 3.09.004...6 5. KAFLI...6 Ma og melar...6 Sklvrk (e. effcecy)...8 Eglekar
Tölfræði II. Lausnahefti við völdum dæmum. Haustönn 2004
Tölfræð II Lausaheft vð völdum dæmum Haustö 4 Erledur Davíðsso 5 Erledur Davíðsso Efsyfrlt Dæm Slembbreytur, líkdafræð...4 Dæm - Þéttföll...4 Dæm 3 Ýmsar drefgar...4 Dæm 4 - Vætgld...5 Dæm 5 Vægsframleðarar...5
HÖNNUN Á STRENGLÖGN 11KV ÞINGVALLASVEIT
HÖNNUN Á STRENGLÖGN 11KV ÞINGVALLASVEIT Ágúst Jónsson Lokaverkefni í rafiðnfræði 2016 Höfundur: Ágúst Jónsson Kennitala:290174-4659 Leiðbeinandi: Lárus Einarsson Tækni- og verkfræðideild School of Science
Iðjuþjálfun LIE0103 Hrefna Óskarsd.
Frumur í blóði Blóð samanstendur af vökva og frumum sem fljóta í vökvanum. Blóðvökvinn er rúmlega helmingur af rúmmáli blóðsins. Þetta er gulleitur vökvi sem er að mestu leyti vatn en inniheldur líka mörg
Stær fræ i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu. NÁMSGAGNASTOFNUN 15. febrúar 2007
4 1 2 3 5 6 Kennsluleiðbeiningar Kennsluleiðbeiningar 8tíu NÁMSGAGNASTOFNUN 15. febrúar 2007 Átta tíu Stærðfræði 4 Kennsluleiðbeiningar 2007 Guðbjörg Pálsdóttir og Guðný Helga Gunnarsdóttir 2007 teikningar
1 Aðdragandi skammtafræðinnar
1 Aðdragandi skammtafræðinnar 1.1 Inngangur Fram yfir aldamótin 1900 töldu flestir eðlisfræðingar að aflfræði Newtons og rafsegulfræði Maxwells dygðu til að gera grein fyrir gangi náttúrunnar. Á síðustu
Annar kafli Hraði, hröðun, kraftur og massi
Annar kafli Hraði, hröðun, kraftur og massi Markmið kaflans eru að kunna: Hraða, hröðun Stigstærð, vektorstærð Reikna krafta sem verka á hluti með hliðsjón af massa og hröðun hans Geta reiknað lokahraða
Landskeppni í eðlisfræði 2014
Landskeppni í eðlisfræði 2014 Forkeppni 18. febrúar 2014, kl. 10:00-12:00 Leyleg hjálpargögn: Reiknivél sem geymir ekki texta. Verkefnið er í tveimur hlutum og er samtals 100 stig. Gættu þess að lesa leiðbeiningar
Sæmundur E. Þorsteinsson, TF3UA
Sæmundur E. Þorsteinsson, TF3UA Flutningslínur Á formlegri ensku heita þær Transmission Lines Líka oft kallaðar Feeder lines Fæðilínur Flutningslínur, merkjaflutningslínur Flutningslína flytur afl (merki)
Lauf_P :26 Page 1 Laufblaðið Gefið út af Landssamtökum áhugafólks um flogaveiki 2. tölublað 9. árg. 2001
Laufblaðið Gefið út af Landssamtökum áhugafólks um flogaveiki 2. tölublað 9. árg. 2001 Laufblaðið Gefið út af: Landssamtökum áhugafólks um flogaveiki LAUF Hátúni 10b 105 Reykjavík Sími: 551-4570 Bréfsími:
SKALI STÆRÐFRÆÐI FYRIR UNGLINGASTIG KENNARABÓK. Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth
SKALI KENNARABÓK STÆRÐFRÆÐI FYRIR UNGLINGASTIG Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth Menntamálastofnun 8542 3B Skali 3B Kennarabók Heiti á frummálinu: Maximum
Skrifað út ; 18:59 gk. 6. kafli, dæmi og svör með útreikningum
6. kafli, dæmi og svör með útreikningum Skrifað út 30.3.2005; 18:59 6.1 Brennsluspritt hefur eðlismassann 0,8/cm 3. Hversu langa pípu þyrfti að nota í loftvog til að samsvara loftþrýstingi miðað við 76
Efnasamsetning vatns úr holu ÓS-01, Ósabotnum og útfellingar vegna blöndunar við vatn frá Þorleifskoti. OS-2002/078 Desember 2002
Verknr.: 8-610811 Magnús Ólafsson Steinunn Hauksdóttir Selfossveitur Efnasamsetning vatns úr holu ÓS-01, Ósabotnum og útfellingar vegna blöndunar við vatn frá Þorleifskoti Unnið fyrir Selfossveitur OS-2002/078
Hagrannsóknir II fyrirlestraglósur
Hagrannsóknir II fyrirlestraglósur hluti I Björn Arnar Hauksson bah@hi.is Vor 2003 Útdráttur Efni þessa glósurits er ritað í fyrirlestrum í Hagrannsóknum II, vorið 2003. Kennt af Helga Tómassyni. Engin
Kennsluleiðbeiningar Tungutak - Málsaga handa framhaldsskólum
Kennsluleiðbeiningar Tungutak - Málsaga handa framhaldsskólum Markmiðin með kennslubókinni Tungutak - Málsaga handa framhaldsskólum eru í grófum dráttum eftirfarandi: Fá nemendur til þess að hugsa um tungumálið
Efnatengi og uppbygging sameindanna
Námsmarkmið. Nemendur geti: Efnatengi og uppbygging sameindanna Notað rafeindaskipan frumefnanna til að skýra hversvegna málmar mynda frekar katjónir og málmleysingjar anjónir. Útskýrt orkubreytinguna
Rit LbhÍ nr Áhrif aldurs áa, þunga, holda og framleiðsluára. á gagnasafni Hestbúsins
Rit LbhÍ nr. 110 Áhrif aldurs áa, þunga, holda og framleiðsluára á frjósemi áagreining á gagnasafni Hestbúsins 2002-2013 Jóhannes Sveinbjörnsson Emma Eyþórsdóttir Eyjólfur K. Örnólfsson 2018 Rit LbhÍ nr.
Greinargerð Trausti Jónsson. Sveiflur IV. Árstíðasveiflur í háloftunum yfir Keflavík
Greinargerð 44 Trausti Jónsson Sveiflur IV Árstíðasveiflur í háloftunum yfir Keflavík VÍ-VS4 Reykjavík Mars 24 Árstíðasveifla ýmissa veðurþátta í háloftunum yfir Keflavík Inngangur Hér verður fjallað um
Um tölvur stýrikerfi og forritun
Um tölvur stýrikerfi og forritun Tölvur Fyrstu tölvurnar voru smíðaðar um miðja síðustu öld. Þær voru gríðarstórar á okkar tíma mælikvarða og fylltu stóra sali. Grunnhlutar tölva hafa frá þessum fyrstu
FYLGISEÐILL FYRIR. PHENOLEPTIL 100 mg töflur fyrir hunda
FYLGISEÐILL FYRIR PHENOLEPTIL 100 mg töflur fyrir hunda 1. HEITI OG HEIMILISFANG MARKAÐSLEYFISHAFA OG ÞESS FRAMLEIÐANDA SEM BER ÁBYRGÐ Á LOKASAMÞYKKT, EF ANNAR Markaðsleyfishafi: Nafn: Le Vet B.V. Heimilisfang:
Verkefni 1: Splæsibrúun og jafnhæðarferlar
Verkefni 1: Splæsibrúun og jafnhæðarferlar Friðrik Freyr Gautason og Guðbjörn Einarsson I. SPLÆSIBRÚUN FORRITUÐ Hérna er markmiðið að útfæra forrit sem leyfir notanda að smella á teikniglugga eins oft
PRÓF Í VERÐBRÉFAVIÐSKIPTUM III. HLUTI
PRÓF Í VERÐBRÉFAVIÐSKIPTUM III. HLUTI Fjárfestingarferli, Samval verðbréfa og sjóðastýring Prófnúmer próftaka:... Námsgrein til prófs: Fjárfestingarferlið, Samval verðbréfa og sjóðastýring (50%) ATH. Prófið
Að setja fastan og kvikan texta í myndaglugga GeoGebru
Að setja fastan og kvikan texta í myndaglugga GeoGebru Vinnublað 5 Judith og Markus Hohenwarter www.geogebra.org Íslensk þýðing: ágúst 2010 Þýðendur Freyja Hreinsdóttir Guðrún Margrét Jónsdóttir Nanna
C Q T. þessu blaði. 5. tbl. 23. árg. des. 2005
C Q T F Í Þeir félagar Ársæll TF3AO og Bjarni TF3GB tóku þátt í CQ WW RTTY keppninni vestur í Otradal hjá Þorvaldi TF4M. Sjá nánar í grein í blaðinu. Myndina tók Þorvaldur Stefánsson TF4M þessu blaði 5.
Upplýsingar um innrigerð jarðar er fundið með jarðskjálftabylgjum og loftsteinum.
Storkuberg 1 Kafli 1 Upphaf jarðar er talið hafa verið fyrir um 4,6*10 9 árum þá sem aðsóp (accrection). Upplýsingar um innrigerð jarðar er fundið með jarðskjálftabylgjum og loftsteinum. Loftsteinum er
24 sem x stendur fyrir hluta í ppm og M er mólmassi efnisins. Skrifað út ; 19:01 gk. Skrifað út ; 19:01 gk
kafli, dæmi o svör með útreikninum 1 Brennsluspritt hefur eðlismassann 0,8/cm Hversu lana pípu þyrfti að nota í loftvo til að samsvara loftþrýstini miðað við cm háa kvikasilfurssúlu? Við finnum eðlismassa
Fylgiseðill: Upplýsingar fyrir notanda lyfsins. Daivobet 50 míkrógrömm/0,5 mg/g smyrsli. kalsípótríól/betametasón
Fylgiseðill: Upplýsingar fyrir notanda lyfsins Daivobet 50 míkrógrömm/0,5 mg/g smyrsli kalsípótríól/betametasón Lesið allan fylgiseðilinn vandlega áður en byrjað er að nota lyfið. Í honum eru mikilvægar
Niðurstöður aurburðarmælinga í Jökulsá í Fljótsdal árið 2003
Verknr.: 7-546763 Jórunn Harðardóttir Svava Björk Þorláksdóttir Niðurstöður aurburðarmælinga í Jökulsá í Fljótsdal árið 2003 Unnið fyrir Landsvirkjun OS-2004/010 Apríl 2004 ISBN 9979-68-141-1 ORKUSTOFNUN
HÖNNUN BURÐARVIRKIS IÐNAÐARHÚSS SAMANBURÐUR Á MISMUNANDI BYGGINGAREFNUM
HÖNNUN BURÐARVIRKIS IÐNAÐARHÚSS SAMANBURÐUR Á MISMUNANDI BYGGINGAREFNUM Lokaverkefni í byggingartæknifræði BSc 2014 Höfundur: Kennitala: 110981-3929 Torfi G.Sigurðsson Tækni- og verkfræðideild School of
Grunnvatnsrannsóknir í Norðurþingi
LV-2010/010 Grunnvatnsrannsóknir í Norðurþingi 2007-2010 Undirtitill Ágúst 2010 EFNISYFIRLIT INNGANGUR... 5 AÐFERÐIR... 5 GAGNAÖFLUN OG SÝNATAKA... 5 NIÐURSTÖÐUR MÆLINGA... 6 Mæling aðalefna í vatnssýnum
11979 H: Lögum um aðildarskilmála og aðlögun að sáttmálunum aðild Lýðveldisins Grikklands (Stjtíð. EB L 291, , bls. 17),
4. FÉLAGARÉTTUR A. FÉLAGARÉTTUR 1. 31968 L 0151: Fyrsta tilskipun ráðsins 68/151/EBE frá 9. mars 1968 um samræmingu verndarráðstafana, sem ætlað er að vera jafngildar í bandalaginu og aðildarríki krefjast
ÞRAUTIR RÖKHUGSUN STÆRÐFRÆÐI
STÆRÐFRÆÐI ÞRAUTIR RÖKHUGSUN Á eftirfarandi síðum eru fjölbreyttar þrautir eða rökhugsunarverkefni sem ætluð eru nemendum grunnskóla. Efnið hentar einkum nemendum á mið- og unglingastigi. Það hefur verið
SAMANTEKT Á EIGINLEIKUM LYFS
SAMANTEKT Á EIGINLEIKUM LYFS 1. HEITI DÝRALYFS PHENOLEPTIL 25 mg töflur handa hundum 2. INNIHALDSLÝSING Hver tafla inniheldur Virk innihaldsefni mg Fenóbarbital 25 Hjálparefni: Sjá lista yfir öll hjálparefni
Vinkill. Lausnir. Ítarefni í stærðfræði fyrir 10. bekk
Vinkill 7. ágúst 008 Ítarefni í stærðfræði frir 0. bekk Um efnið Efnisfirlit Þetta efni er ætlað sem ítarefni í stærðfræði frir unglingastig. Efnið getur hentað til einstaklings- eða paravinnu í skólanum
FYLGISEÐILL. Dorbene Vet 1 mg/ml stungulyf, lausn fyrir hunda og ketti.
FYLGISEÐILL Dorbene Vet 1 mg/ml stungulyf, lausn fyrir hunda og ketti 1. HEITI OG HEIMILISFANG HANDHAFA MARKAÐSLEYFIS OG ÞESS FRAMLEIÐANDA SEM BER ÁBYRGÐ Á LOKASAMÞYKKT, EF ANNAR Laboratorios SYVA S.A.U.,
Fyrir að eða fyrir því að?
Háskóli Íslands Hugvísindasvið Íslenska sem annað mál Fyrir að eða fyrir því að? Um fornöfn í forsetningarliðum sem innleiða setningar Ritgerð til BA-prófs í íslensku sem öðru máli Mirko Garofalo Kt.:
Vinkill 3. Ítarefni í stærðfræði fyrir 10. bekk
Vinkill 3 Ítarefni í stærðfræði frir 0. bekk Um efnið Efnisfirlit Þetta efni er ætlað sem ítarefni í stærðfræði frir unglingastig. Efnið getur hentað til einstaklings- eða paravinnu í skólanum en einnig
Langan tíma tekur að rækta skóg og krefst mikillar þolinmæði
22 24 46 Mér leiddust heldur fjósverkin Langan tíma tekur að rækta skóg og krefst mikillar þolinmæði Skemmtum okkur vel á æfingum 8. tölublað 2014 miðvikudagur 16. apríl Blað nr. 417 20. árg. Upplag 31.000
Rafbók. Riðstraumsmótorar. Kennslubók
Kennslubók Þetta hefti er þýtt úr dönsku með góðfúslegu leyfi EVU í Danmörku. Íslensk þýðing: Sigurður H. Pétursson Mynd á kápu er fengin frá Guðna Þór í Rönning Umbrot: Ísleifur Árni Jakobsson Faglegur
Brúðkaup. Tilvonandi brúðhjón verið velkomin að skrá óskalistann hjá okkur. Öll brúðhjón fá gjöf og lenda í brúðhjónapotti. Persónuleg og góð þjónusta
Brúðkaup LAUGARDAGUR GU R 29. MARS 2014 Bónorð á tónleikum Jógvan Hansen bað Hrafnhildar Jóhannesdóttur á tónleikum Michaels Bublé síðastliðið sumar. SÍÐA 8 Blómatískan Brúðarveski, blómaarmbönd og ofurliljur
Meistararitgerð. Verðlagning langlífisáhættu
Meistararitgerð í hagfræði Verðlagning langlífisáhættu Rafn Sigurðsson Hagfræðideild Háskóla Íslands Leiðbeinendur: Helgi Tómasson, Birgir Hrafnkelsson Júní 2010 Útdráttur Í fyrri hluta verkefnisins er
ÁLFHÓLAR BURÐARÞOLSHÖNNUN STÁLGRINDARHÚSS
ÁLFHÓLAR BURÐARÞOLSHÖNNUN STÁLGRINDARHÚSS Jóhanna Bettý Durhuus Lokaverkefni í byggingartæknifræði BSc 011 Höfundur/höfundar: Jóhanna Bettý Durhuus Kennitala: 160584-3789 Leiðbeinandi: Jón Guðmundsson
Hvað er astmi? Hvað gerist við astma?
Astmi og Íþróttir Hvað er astmi? Astmi er sjúkdómur í öndunarfærum sem getur öðru hverju truflað öndun við mismunandi aðstæður. Þetta stafar af bólguviðbrögðum í slímhimnum öndunarfæranna en þeir sem hafa
Hætta af rafmagni og varnir
Hætta af rafmagni og varnir Leysir af hólmi bæklinginn "Námsefni úr Reglugerð um raforkuvirki" 1. Rafstraumur um líkamann Rafstraumurinn sem fer um líkamann er skaðvaldurinn og spennan að því marki sem
Vinkill2. Ítarefni í stærðfræði
Vinkill2 Ítarefni í stærðfræði Um efnið Þetta efni er ætlað sem ítarefni í stærðfræði fyrir unglingastig. Efnið getur hentað til einstaklings- eða paravinnu í skólanum en einnig má nýta það sem heimavinnuverkefni.
S t æ r ð f r æ ð i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu NÁMSGAGNASTOFNUN. 7. september 2006
2 3 4 5 6 S t æ r ð f r æ ð i Kennsluleiðbeiningar Kennsluleiðbeiningar 8tíu NÁMSGAGNASTOFNUN NÁMSGAGNASTOFNUN 2. útgáfa 2006 7. september 2006 Átta tíu Kennsluleiðbeiningar 2006 Guðbjörg Pálsdóttir og
Kafli 4 Línulegur kraftur og hreyfing
Kafli 4 Línulegur kraftur og hreyfing Kraftur (force) Ytri og innri kraftar. Við þurfum að beita miklum innri kröftum til mótvægis við ytri krafta og mikið álag á þessa innri krafta getur valdið vefjaskemmdum.