Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας"

Transcript

1 Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015

2 ΚΑΤΩΦΛΙΩΣΗ

3 Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες με βάση κριτήρια διαχωρισμού Συχνά το εφαρμόζουμε σε ακμές

4 Κατωφλίωση Με Βάση το Ιστόγραμμα Μπορούμε να εξάγουμε χρήσιμη πληροφορία από τη μορφή του ιστογράμματος για το που να ορίσουμε το κατώφλι Άνω 15% Σημαντικά χαμηλότερες συγκεντρώσεις

5 Ο ΑΝΙΧΝΕΥΤΗΣ ΑΚΜΩΝ CΑΝΝΥ

6 Canny Edge Detector Ο Canny edge detector προσπαθεί να απομονώσει ακμές που Να αποτελούν υποψήφια περιγράμματα χρήσιμων περιοχών της εικόνας Ιδιότητες: Απόρριψη μικρών και απομονωμένων ακμών Καταστολή θορύβου Ελάττωση πάχους ακμών κρατάμε μόνο τις τοπικές κορυφές της μετάπτωσης

7 Πηγή: Wikipedia Canny Edge Detector - Παράδειγμα

8 Canny Edge Detector - Βήματα Εξομάλυνση της εικόνας και απομάκρυνση θορύβου Έτσι, ανιχνεύονται μόνο σημαντικές μεταπτώσεις φωτεινότητας Εφαρμογή ενός διαφορικού τελεστή ώστε: Να βρεθεί το μέτρο της κλίσης (gradient) Να βρεθεί η γωνία της κλήσης Maximum Value Suppression για εκλέπτυνση Κατωφλίωση της εικόνας: μια συντηρητική και μια ισχυρή Συνένωση σημαντικών ακμών και απόρριψη των υπολοίπων με υστέρηση

9 Canny E.D. Εξομάλυνση και Διαφόριση Εφαρμόζουμε ένα φίλτρο Gauss για την εξομάλυνση II (xx, yy) = GG(xx, yy) II(xx, yy) Εφαρμόζουμε ένα διαφορικό τελεστή για να βρούμε τις μερικές παραγώγους: gg xx = II, gg xx yy = II yy Π.χ. μπορούμε να χρησιμοποιήσουμε τις μάσκες Sobel:

10 Canny E.D. Εξομάλυνση και Διαφόριση Η ακτίνα (τυπική απόκλιση και αντίστοιχα μέγεθος μάσκας) του φίλτρου πρέπει να είναι συγκρίσιμη με το μέγεθος του διαφορικού τελεστή Αρχική εικόνα Sobel+Gauss (σ=0.8) Sobel+Gauss (σ=2.5) Sobel+Gauss (σ=5.1)

11 Canny E.D. Gradient Κρατάμε το μέτρο και τη γωνία του gradient: II (xx, yy) = gg xx, gg yy MM xx, yy aa xx, yy MM xx, yy = gg xx 2 + gg yy 2 aa xx, yy = aaaaaaaaa(gg yy, gg xx )

12 Canny E.D. Εκλέπτυνση (1) Για κάθε Pixel, βρίσκουμε τις γειτονικές τιμές πάνω στο gradient, Με βάση τη γωνία a Αν το μέτρο Μ στο τρέχον Pixel είναι μεγαλύτερο από αυτό των γειτόνων, κρατάμε το Pixel, αλλιώς το απορρίπτουμε (μηδενίζουμε) Ο υπολογισμός των τιμών στην κατεύθυνση του gradient μπορεί να γίνει με: παρεμβολή από τα πλησιέστερα Pixels (ακριβέστερο αλλά αργό) Επιλογή διακριτής διεύθυνσης (4 συνολικά)

13 Canny E.D. Εκλέπτυνση (2) Παράδειγμα:

14 Canny E.D. Εκλέπτυνση (3) Παράδειγμα:

15 Canny E.D. Κατώφλι (1) Θέλουμε να κρατήσουμε σίγουρα τις ακμές που ξεπερνάνε σε ένταση ένα ψηλό κατώφλι ΤΤ ΗΗ Πιθανά μας ενδιαφέρουν και ακμές χαμηλότερης έντασης (TT HH > ΙΙ > ΤΤ LL ) που όμως συνδέονται με ισχυρές ακμές! Δημιουργούμε 2 σύνολα: ΙΙ ΤΤ ΗΗ II(xx, yy) ΙΙ ΗΗ xx, yy = 0, II xx, yy TT HH ooooooooooooooooo TT HH > ΙΙ > ΤΤ LL ΙΙ LL xx, yy = II xx, yy ΙΙ ΗΗ xx, yy 0, II xx, yy TT LL ooooooooooooooooo

16 Canny E.D. Κατώφλι (2) Παράδειγμα: Binary(II LL ) Binary(II HH )

17 Canny E.D. Hysteresis Thresholding Κρατάμε όλα τα Pixels της ΙΙ ΗΗ Κρατάμε ένα Pixel της ΙΙ LL, μόνο αν είναι γειτονικό σε κάποιο της ΙΙ ΗΗ

18 Αποτελέσματα Canny E.D.

19 Αποτελέσματα Canny E.D.

20 Αποτελέσματα Canny E.D.

21 HOUGH TRANSFORM

22 Ολική Ανίχνευση Μορφών Συχνά προσπαθούμε να βρούμε δομή μέσα σε μια εικόνα Συνήθως εικόνα ακμών Θέλουμε να ανιχνεύσουμε στοιχειώσεις γεωμετρικές δομές και Να τις συσχετίσουμε Αναγνώριση μορφών

23 Ο Μετασχηματισμός Hough Πρόκειται για μια μέθοδο ψηφοφορίας που μας λέει αν τα Pixels που έχουμε κείνται επί καμπυλών που χαρακτηρίζονται από κάποιο συγκεκριμένο σχήμα Απλούστερη περίπτωση: Ευθείες

24 H.T.: Παραμετροποίηση (1) Ας πάρουμε την απλή εξίσωση ευθείας στο επίπεδο: yy = aaaa + bb bb = aaaa + yy Οι παράμετροι a,b ορίζουν κι αυτές ένα επίπεδο, τον παραμετρικό χώρο (xx, yy) bb yy = aaaa + bb aa

25 H.T.: Παραμετροποίηση (2) Από ένα σημείο στο επίπεδο της εικόνας περνάνε άπειρες ευθείες Οι παράμετροι των άπειρων ευθειών σχηματίζουν μια ευθεία στον παραμετρικό χώρο yy bb xx aa

26 H.T.: Παραμετροποίηση (3) Για 2 σημεία, από τις άπειρες διερχόμενες ευθείες από αυτά μόνο μία είναι κοινή: Εκφράζεται ως τομή των ευθειών παραμέτρων (κοινό σημείο) στον παραμετρικό χώρο: yy bb xx aa

27 H.T.: Η Κεντρική Ιδέα (1) Όταν παραπάνω από 2 σημεία είναι συνευθειακά, δηλαδή βρίσκονται στο ίδιο ευθύγραμμο τμήμα, τότε οι παραμετρικές τους ευθείες περνάνε όλες από το ίδιο σημείο Ψηφίζουν την ίδια παραμετρική συντεταγμένη περισσότερες φορές απ ότι άλλες!

28 H.T.: Η Κεντρική Ιδέα (2) bb 3 ψήφοι aa 3 συνευθειακά σημεία

29 H.T.: Η Κεντρική Ιδέα (3) Επειδή: τα εικονοστοιχεία είναι διακριτά Οι ακμές δεν είναι ακριβώς ευθύγραμμες δεν υπάρχει απόλυτη σύμπτωση με μια μαθηματική ευθεία Διακριτοποιούμε τον παραμετρικό χώρο σε κελιά

30 H.T.: Παρατήρηση (1) Επειδή η παράμετρος a (κλίση) μπορεί να πάρει τιμές ±, χρησιμοποιούμε μια άλλη μορφή της εξίσωσης επιπέδου: Ως προς γωνία θ και απόσταση ρ από την αρχή των αξόνων: yy ρρ ρρ = xx cos θθ + yy sin θθ θθ xx

31 H.T.: Παρατήρηση (2) Πηγή:

32 Ο Αλγόριθμος του Hough Δημιούργησε και μηδένισε έναν συσσωρευτή Α ΜΧΝ κελιών για τις διακριτές παραμέτρους (θθ, ρρ) Για κάθε Pixel ακμής (xx, yy): Για κάθε διακριτή τιμή της παραμέτρου θθ Υπολόγισε την εξίσωση ρρ = xx cos θθ + yy sin θθ Αύξησε το κελί του Α που περιέχει το ζεύγος θθ, ρρ Επέβαλε κατώφλι στον Α (ελάχιστος αριθμός Pixels πάνω σε μια γραμμή)

33 H.T. Παράδειγμα (1) Hough Transform Canny Edge Detector

34 H.T. Παράδειγμα (2)

35 H.T. Παράδειγμα (3)

36 Συνδεσιμότητα Γραμμών Για να κρατήσουμε τα Pixels που πατάνε πάνω σε συνεχόμενα τμήματα, μετά την εκτέλεση του H.T.: Για κάθε γραμμή (ζεύγος παραμέτρων), μετά την κατωφλίωση: Βρες τα Pixels που πατάνε σε κάθε γραμμή Ταξινόμησέ τα κατά μήκος της γραμμής Μέτρησε τις αποστάσεις ανά δύο Πρόσθεσε Pixel σε ένα τμήμα όσο η απόστασή του από το προηγούμενο είναι μικρότερη από ένα κατώφλι (διάκενο) Κράτησε το τμήμα αν έχει μήκος μεγαλύτερο του επιθυμητού

37 ΑΝΑΠΑΡΑΣΤΑΣΗ ΠΕΡΙΓΡΑΜΜΑΤΟΣ

38 Γιατί Χρειαζόμαστε μια Αναπαράσταση; Μας δίνει τη δυνατότητα να περιγράψουμε και να κωδικοποιήσουμε τη μορφή του σχήματος Μετά, μπορούμε να συγκρίνουμε αναπαραστάσεις Αναγνώριση (ταυτοποίηση) σχημάτων Κατηγοριοποίηση σχημάτων Απλοποίηση Κατάτμηση

39 Είσοδος και Έξοδος Ως είσοδο παίρνουμε τη δυαδική (0/1) αναπαράσταση είτε ενός περιγράμματος είτε μιας περιοχής (π.χ. από κατωφλίωση) Η έξοδος είναι μια υπογραφή (signature) που χαρακτηρίζει το σχήμα Τυπικά, μια ακολουθία τιμών

40 Κριτήρια Καταλληλότητας Αναπαράστασης Ανεξαρτησία από μετατόπιση, περιστροφή και κλιμάκωση σχήματος Ανεκτικότητα στη λεπτομέρεια και το θόρυβο Διαχωρισιμότητα σχημάτων

41 Περιγράμματα Raster Για την αρχική περιγραφή ενός περιγράμματος ψηφιακής εικόνας (raster), μια κοινή διαδικασία είναι η παρακολούθηση περιγράμματος (boundary tracing) Εφαρμόζεται σε επίπεδο κελιού (Π.χ. Pixel) Αποδίδει ένα κλειστό όριο

42 Παρακολούθηση Περιγράμματος (1) Για κάθε Pixel cc, παίρνουμε τους 8 γείτονές του nn kk, kk = 0 7 Ξεκινάμε από το άνω αριστερό άκρο (θα δούμε πώς στη συνέχεια): cc = cc 0, το οποίο και το καταχωρούμε Διαλέγουμε ως πρώτο υπό εξέταση σημείο ένα σίγουρα ανοιχτό (τιμή 0): bb = το αριστερό του cc 0 bb cc 0

43 Παρακολούθηση Περιγράμματος (2) Διατρέχουμε κυκλικά όλους τους γείτονες του cc ξεκινώντας από το bb, μέχρι να συναντήσουμε ενεργό Pixel nn kk Αν cc== cc 0 KAI nn kk είναι o επόμενος του cc 0, έχουμε ολοκληρώσει το περίγραμμα bb cc 0 cc 0 bb Αλλιώς: θέτουμε cc= nn kk και bb = nn kk 1 και επαναλαμβάνουμε bb cc 0

44 Κώδικας Αλυσίδας (1) Για την περιγραφή της παραπάνω ακολουθίας σημείων χρησιμοποιείται ένας κώδικας αλυσίδας: Κωδικοποιούνται οι 4 ή 8 κατευθύνσεις με έναν αριθμό Αποδίδεται ένας αριθμός σε κάθε μετάπτωση Συνδέουμε και το τελευταίο με το πρώτο cc

45 Κώδικας Αλυσίδας (2) Στον παραπάνω κώδικα οι αρίθμηση εξαρτάται από το αρχικό σημείο Μπορούμε να κανονικοποιήσουμε τον κώδικα, παίρνοντας πάντα εκείνη την κυκλική αντιμετάθεση του κώδικα που αναπαριστά το μικρότερο αριθμό: 90 o normalize normalize

46 Κώδικας Αλυσίδας (3) Στον παραπάνω κώδικα οι αρίθμηση εξαρτάται από τον προσανατολισμό του σχήματος Αφαιρούμε αυτή την εξάρτηση αν καταγράψουμε τις αλλαγές κατεύθυνσης: ή dd ii = cc ii cc ii 1 mmmmmm 4 dd ii = cc ii cc ii 1 mmmmmm 8

47 Κώδικας Αλυσίδας (3) cc

48 Πολυγωνικά Περιγράμματα (1) Η αναπαράσταση ενός περιγράμματος σημείο προς σημείο: Είναι δαπανηρή: μεγάλες αλυσίδες Είναι ευαίσθητη στο θόρυβο και μικροδιαταραχές Είναι ευαίσθητη στην κλίμακα του σχήματος (διαφορετικό μήκος) Μπορούμε να φτιάξουμε πολυγωνικά περιγράμματα Αραιή δειγματοληψία του περιγράμματος Γραμμική προσέγγιση μεταξύ δειγμάτων

49 Πολυγωνικά Περιγράμματα (2) Ένας τρόπος παραγωγής: Διαδικασία διαχωρισμού Ξεκινάμε από έναν αριθμό από ισαπέχοντα (στην αλυσίδα) σημεία (π.χ. 3-4) Σταδιακή πολυγωνική προσέγγιση του σχήματος, π.χ. με εισαγωγή κόμβου στο μακρινότερο σημείο από τμήμα, μέχρι ένα επίπεδο σφάλματος

50 Πολυγωνικά Περιγράμματα (3) Τα πολυγωνικά περιγράμματα μπορούμε στη συνέχεια: Να τα δειγματοληπτήσουμε με άλλο ρυθμό (π.χ ομοιόμορφα) Να τα εξομαλύνουμε (κινούμενος μέσος όρος, παρεμβολή κλπ)

51 Άλλες Υπογραφές Περιγράμματος (1) Γενικεύοντας τους διαφορικούς κώδικες για 4 και 8 γειτονία, στις πολυγωνικές αναπαραστάσεις μπορούμε να μετρήσουμε: Τη γωνία στροφής (προσημασμένη) των διαδοχικών ευθυγράμμων τμημάτων

52 Άλλες Υπογραφές Περιγράμματος (2) Μια χρήσιμη υπογραφή για αναγνώριση βασικών σχημάτων είναι το διάγραμμα αποστάσεων (π.χ. από το κέντρο βάρους του σχήματος): ρρ ρρ θθ θθ ρρ θθ ρρ θθ

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

6-Aνίχνευση. Ακμών - Περιγράμματος

6-Aνίχνευση. Ακμών - Περιγράμματος 6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών

Διαβάστε περισσότερα

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων: KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας

Διαβάστε περισσότερα

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. 1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή

Διαβάστε περισσότερα

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #07 Γραμμές και Πολύγωνα: Εισαγωγή Αναπαράσταση 2D και 3D Χρωματισμός πολυγώνων

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας

Διαβάστε περισσότερα

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της

Διαβάστε περισσότερα

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη

Διαβάστε περισσότερα

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57 Ακμή ή περίγραμμα (edge) σε μια εικόνα Χ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ

Διαβάστε περισσότερα

Απόκριση σε Αρμονική Διέγερση

Απόκριση σε Αρμονική Διέγερση Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χαρακτηριστικά Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Σύνθεση Πανοράµατος Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή

Διαβάστε περισσότερα

Ανάγκη Ανάπτυξης Μοντέλων και Δομών Χωρικών Δεδομένων

Ανάγκη Ανάπτυξης Μοντέλων και Δομών Χωρικών Δεδομένων Ανάγκη Ανάπτυξης Μοντέλων και Δομών Χωρικών Δεδομένων Η περιγραφή των γεωγραφικών δεδομένων, η σύνδεση και διαχείριση γεωμετρικής πληροφορίας, η οποία αναφέρεται σε: μετρητικές ιδιότητες που αναφέρονται:

Διαβάστε περισσότερα

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. 1 Πίνακες Ορίζουσες Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. Παράδειγμα (χορήγηση Βαλασικλοβιρης (αντιυπερτασικό) σε νήπια) Ηλικία (μήνες) Μέσο Cmax (μg/ml) Μέσο βάρος

Διαβάστε περισσότερα

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit.

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit. Α ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: A ΧΕΙΜΕΡΙΝΟ 2011-2012 ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ ΚΑΙ ΗΧΟΣ (7-2-2012) Διάρκεια εξέτασης: 2.0 ώρες (08:00 10:30)

Διαβάστε περισσότερα

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά

Διαβάστε περισσότερα

Συμπίεση Πολυμεσικών Δεδομένων

Συμπίεση Πολυμεσικών Δεδομένων Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Αλγόριθμοι Σχεδίασης Γραμμών

Γραφικά Υπολογιστών: Αλγόριθμοι Σχεδίασης Γραμμών 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αλγόριθμοι Σχεδίασης Γραμμών Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Τι είναι το pixel; Δειγματοληψία

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,

Διαβάστε περισσότερα

Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας

Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ενότητα 11: Επεξεργασία εικόνας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μωσαϊκά-Συρραφή Εικόνων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Παράθυρα των εγγράφων Επιφάνεια του σχεδίου. Σχεδιάστε εδώ νέα αντικείμενα με τα εργαλεία σημείων, διαβήτη, σχεδίασης ευθύγραμμων αντικειμένων και κειμένου.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

Καµπύλες Bézier και Geogebra

Καµπύλες Bézier και Geogebra Καµπύλες Bézier και Geogebra Κόλλιας Σταύρος Ένα από τα προβλήµατα στη σχεδίαση δυσδιάστατων εικόνων στα προγράµµατα γραφικών των υπολογιστών είναι η δηµιουργία οµαλών καµπυλών. Η λύση στο πρόβληµα αυτό

Διαβάστε περισσότερα

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Θεωρητικό και Μαθηματικό Υπόβαθρο

Ε.Α.Υ. Υπολογιστική Όραση. Θεωρητικό και Μαθηματικό Υπόβαθρο Ε.Α.Υ. Υπολογιστική Όραση Θεωρητικό και Μαθηματικό Υπόβαθρο Γεώργιος Παπαϊωάννου 2015 ΠΡΑΞΕΙΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ ΤΗΣ ΕΙΚΟΝΑΣ Γείτονες ενός Εικονοστοιχείου Το σύνολο ΝΝ 4 (pp) των 4 οριζόντιων

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το

Διαβάστε περισσότερα

Γραφικά με Η/Υ / Εισαγωγή

Γραφικά με Η/Υ / Εισαγωγή Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr

Διαβάστε περισσότερα

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 2 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 3 ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ 4 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 5 ΓΕΩΡΓΙΟΣ ΘΕΟΔΩΡΟΥ Καθηγητής Α.Π.Θ. ΧΡΙΣΤΙΝΑ ΘΕΟΔΩΡΟΥ Μαθηματικός ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ

Διαβάστε περισσότερα

Σφάλματα φακών (Σφαιρικό - Χρωματικό).

Σφάλματα φακών (Σφαιρικό - Χρωματικό). O12 Σφάλματα φακών (Σφαιρικό - Χρωματικό). 1. Σκοπός Στην άσκηση αυτή υπολογίζονται πειραματικά δυο από τα πιο σημαντικά οπτικά σφάλματα (η αποκλίσεις) που παρουσιάζονται όταν φωτεινές ακτίνες διέλθουν

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Αναπαράσταση & Απλοποίηση Μοντέλων

Αναπαράσταση & Απλοποίηση Μοντέλων Γραφικά & Οπτικοποίηση Κεφάλαιο 6 Αναπαράσταση & Απλοποίηση Μοντέλων Εισαγωγή Οι 3Δ εικόνες στα Γραφικά αποτελούνται από διάφορα σχήματα & δομές: Γεωμετρικά σχήματα (π.χ. σφαίρες) Μαθηματικές επιφάνειες

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις

Ευθύγραμμες Κινήσεις Οι παρακάτω σημειώσεις διανέμονται υπό την άδεια: Creaive Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές. 1 Θέση και Σύστημα αναφοράς Στην καθημερινή μας ζωή για να περιγράψουμε

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Γραφικά Υπολογιστών & Εικονική Πραγματικότητα. Μετασχηματισμός απεικόνισης & Αλγόριθμοι αποκοπής

Γραφικά Υπολογιστών & Εικονική Πραγματικότητα. Μετασχηματισμός απεικόνισης & Αλγόριθμοι αποκοπής Γραφικά Υπολογιστών & Εικονική Πραγματικότητα Μετασχηματισμός απεικόνισης & Αλγόριθμοι αποκοπής Βασικές λειτουργίες απεικόνισης μετατροπή του παγκόσμιου συστήματος συντεταγμένων, ενός αντικειμένου, σε

Διαβάστε περισσότερα

Μέθοδοι Αναπαράστασης Περιοχών

Μέθοδοι Αναπαράστασης Περιοχών KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιοχών ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Χαρακτηριστικά χώρου Χαρακτηριστικά από µετασχηµατισµό

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ ΚΕΦΑΛΑΙΟ : ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ Μια εικόνα μπορεί να περιγραφεί με πολλούς τρόπους. Αν υποθέσουμε ότι έχουμε μια προβολή ψηφιδοπλέγματος, μια εικόνα καθορίζεται πλήρως από το σύνολο των

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ 12 Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ Εισαγωγή Στο παρόν Κεφάλαιο περιγράφεται η λειτουργία και απόδοση του πρότυπου ανιχνευτή ΝΕΣΤΩΡ κατά τη λειτουργία του στη βαθιά θάλασσα. Συγκεκριμένα

Διαβάστε περισσότερα

Τα ρομπότ στην βιομηχανία

Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Δρ. Φασουλάς Γιάννης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Τα ρομπότ στην

Διαβάστε περισσότερα

Τεράστιες ανάγκες σε αποθηκευτικό χώρο

Τεράστιες ανάγκες σε αποθηκευτικό χώρο ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 3: Μηχανικές δυνάμεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Περιγραφή και παρουσίαση μηχανικών δυνάμεων Βαρύτητα Τριβή (στατική και ολίσθησης) Τάση

Διαβάστε περισσότερα

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί με τρόπους το ολοκλήρωμα I d d 0 Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω στο ορθογώνιο χωρίο R 0,,

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"

Σημειώσεις για το μάθημα Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM) ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα

Διαβάστε περισσότερα

Αποκοπή 4.1. Εργα: : & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ - ΥΠΕΠΘ) Τµήµα Πληροφορικής 1 2 (SCS) Θέση παρατηρητή. Θέσεις αντικειµένων και φωτεινών πηγών

Αποκοπή 4.1. Εργα: : & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ - ΥΠΕΠΘ) Τµήµα Πληροφορικής 1 2 (SCS) Θέση παρατηρητή. Θέσεις αντικειµένων και φωτεινών πηγών Αποκοπή Αποκοπή αντικειµένου (π.χ. πολυγώνου) ως προς αντικείµενο αποκοπής (π.χ. πολύγωνο, πυραµίδα, κύβος). Για αποφυγή αντεστραµµένης εµφάνισης αντικειµένων όπισθεν παρατηρητή. Για σηµαντική µείωση όγκου

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering)

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Υφή Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3D Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης Απομάκρυνση Πίσω Επιφανειών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM Ενότητα # 6: Γραφικά Δημήτριος Τσελές Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο Ι.Μ. Δόκας Επικ. Καθηγητής Εμβαδά Υπολογισμός του εμβαδού μιας επιφάνειας γίνεται πάντα στο οριζόντιο επίπεδο με τις παρακάτω μεθόδους: Από τις επίπεδες καρτεσιανές συντεταγμένες

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες

Διαβάστε περισσότερα

Ο ειδικός μετασχηματισμός του Lorentz

Ο ειδικός μετασχηματισμός του Lorentz Ο ειδικός μετασχηματισμός του Lorentz Με αφετηρία τις δυο απαιτήσεις της Ειδικής Θεωρίας Σχετικότητας του Einstein θα βρούμε τον ειδικό μετασχηματισμό του Lorentz Πρώτη απαίτηση: Όλοι οι αδρανειακοί παρατηρητές

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η 1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την ταχύτητα, την επιτάχυνση, τη θέση ή το χρόνο κίνησης ενός κινητού.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία

Διαβάστε περισσότερα

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1 Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

Πρόλογος. Κατάλογος Σχημάτων

Πρόλογος. Κατάλογος Σχημάτων Περιεχόμενα Πρόλογος Κατάλογος Σχημάτων v xv 1 ΜΔΕ πρώτης τάξης 21 1.1 Γενικότητες........................... 21 1.2 Εισαγωγή............................ 24 1.2.1 Γεωμετρικές θεωρήσεις στο πρόβλημα της

Διαβάστε περισσότερα