Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε"

Transcript

1 ΓΑΤΕ 016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ. Ιδεντιφψ τηε χορρεχτ σπελλινγ ουτ οφ τηε γιϖεν οπτιονσ: (Α) Μαναγαβλε (Β) Μαναγεαβλε (Χ) Μανγαεβλε (D) Μαναγιβλε Θ.3 Πιχκ τηε οδδ ονε ουτ ιν τηε φολλοωινγ: 13, 3, 33, 43, 53 (Α) 3 (Β) 33 (Χ) 43 (D) 53 Θ.4 ΡD ισ α ροβοτ. ΡD χαν ρεπαιρ αεροπλανεσ. Νο οτηερ ροβοτ χαν ρεπαιρ αεροπλανεσ. Wηιχη οφ τηε φολλοωινγ χαν βε λογιχαλλψ ινφερρεδ φροm τηε αβοϖε στατεmεντσ? (Α) ΡD ισ α ροβοτ ωηιχη χαν ονλψ ρεπαιρ αεροπλανεσ. (Β) ΡD ισ τηε ονλψ ροβοτ ωηιχη χαν ρεπαιρ αεροπλανεσ. (Χ) ΡD ισ α ροβοτ ωηιχη χαν ρεπαιρ ονλψ αεροπλανεσ. (D) Ονλψ ΡD ισ α ροβοτ. Θ.5 Ιφ 9ψ 6 =3, τηεν ψ 4ψ/3 ισ. (Α) 0 (Β) +1/3 (Χ) 1/3 (D) υνδεφινεδ 1/3

2 ΓΑΤΕ 016 Q. 6 Q. 10 carry two marks each. Γενεραλ Απτιτυδε ΓΑ Σετ 8 Θ.6 Τηε φολλοωινγ γραπη ρεπρεσεντσ τηε ινσταλλεδ χαπαχιτψ φορ χεmεντ προδυχτιον (ιν τοννεσ) ανδ τηε αχτυαλ προδυχτιον (ιν τοννεσ) οφ νινε χεmεντ πλαντσ οφ α χεmεντ χοmπανψ. Χαπαχιτψ υτιλιζατιον οφ α πλαντ ισ δεφινεδ ασ ρατιο οφ αχτυαλ προδυχτιον οφ χεmεντ το ινσταλλεδ χαπαχιτψ. Α πλαντ ωιτη ινσταλλεδ χαπαχιτψ οφ ατ λεαστ 00 τοννεσ ισ χαλλεδ α λαργε πλαντ ανδ α πλαντ ωιτη λεσσερ χαπαχιτψ ισ χαλλεδ α σmαλλ πλαντ. Τηε διφφερενχε βετωεεν τοταλ προδυχτιον οφ λαργε πλαντσ ανδ σmαλλ πλαντσ, ιν τοννεσ ισ. Θ.7 Α πολλ οφ στυδεντσ αππεαρινγ φορ mαστερσ ιν ενγινεερινγ ινδιχατεδ τηατ 60 % οφ τηε στυδεντσ βελιεϖεδ τηατ mεχηανιχαλ ενγινεερινγ ισ α προφεσσιον υνσυιταβλε φορ ωοmεν. Α ρεσεαρχη στυδψ ον ωοmεν ωιτη mαστερσ ορ ηιγηερ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ φουνδ τηατ 99 % οφ συχη ωοmεν ωερε συχχεσσφυλ ιν τηειρ προφεσσιονσ. Wηιχη οφ τηε φολλοωινγ χαν βε λογιχαλλψ ινφερρεδ φροm τηε αβοϖε παραγραπη? (Α) Μανψ στυδεντσ ηαϖε mισχονχεπτιονσ ρεγαρδινγ ϖαριουσ ενγινεερινγ δισχιπλινεσ. (Β) Μεν ωιτη αδϖανχεδ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ βελιεϖε ωοmεν αρε ωελλ συιτεδ το βε mεχηανιχαλ ενγινεερσ. (Χ) Μεχηανιχαλ ενγινεερινγ ισ α προφεσσιον ωελλ συιτεδ φορ ωοmεν ωιτη mαστερσ ορ ηιγηερ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ. (D) Τηε νυmβερ οφ ωοmεν πυρσυινγ ηιγηερ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ ισ σmαλλ. /3

3 ΓΑΤΕ 016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Θ.8 Σουρψα χοmmιττεε ηαδ προποσεδ τηε εσταβλισηmεντ οφ Σουρψα Ινστιτυτεσ οφ Τεχηνολογψ (ΣΙΤσ) ιν λινε ωιτη Ινδιαν Ινστιτυτεσ οφ Τεχηνολογψ (ΙΙΤσ) το χατερ το τηε τεχηνολογιχαλ ανδ ινδυστριαλ νεεδσ οφ α δεϖελοπινγ χουντρψ. Wηιχη οφ τηε φολλοωινγ χαν βε λογιχαλλψ ινφερρεδ φροm τηε αβοϖε σεντενχε? Βασεδ ον τηε προποσαλ, (ι) Ιν τηε ινιτιαλ ψεαρσ, ΣΙΤ στυδεντσ ωιλλ γετ δεγρεεσ φροm ΙΙΤ. (ιι) ΣΙΤσ ωιλλ ηαϖε α διστινχτ νατιοναλ οβϕεχτιϖε. (ιιι) ΣΙΤ λικε ινστιτυτιονσ χαν ονλψ βε εσταβλισηεδ ιν χονσυλτατιον ωιτη ΙΙΤ. (ιϖ) ΣΙΤσ ωιλλ σερϖε τεχηνολογιχαλ νεεδσ οφ α δεϖελοπινγ χουντρψ. (Α) (ιιι) ανδ (ιϖ) ονλψ. (Χ) (ιι) ανδ (ιϖ) ονλψ. (Β) (ι) ανδ (ιϖ) ονλψ. (D) (ιι) ανδ (ιιι) ονλψ. Θ.9 Σηαθυιλλε Ο Νεαλ ισ α 60% χαρεερ φρεε τηροω σηοοτερ, mεανινγ τηατ ηε συχχεσσφυλλψ mακεσ 60 φρεε τηροωσ ουτ οφ 100 αττεmπτσ ον αϖεραγε. Wηατ ισ τηε προβαβιλιτψ τηατ ηε ωιλλ συχχεσσφυλλψ mακε εξαχτλψ 6 φρεε τηροωσ ιν 10 αττεmπτσ? (Α) (Β) (Χ) (D) Θ.10 Τηε νυmεραλ ιν τηε υνιτσ ποσιτιον οφ ισ. END OF THE QUESTION PAPER 3/3

4 Q. 1 Q. 5 carry one mark each. Q.1 With increase in airfoil thickness, the critical Mach number for an airfoil is likely to (A) decrease. (B) increase. (C) remain unchanged. (D) be undefined. Q. Due to a body in potential flow, the velocity at a point A in the flow field is 0 m/s while the free stream velocity is only 10 m/s. The value of coefficient of pressure (C p ) at the point A is. Q.3 Which of the following airfoil will have location of the maximum camber at half chord length from the leading edge? (A) NACA 51 (B) NACA 15 (C) NACA 15 (D) NACA 51 Q.4 For a laminar incompressible flow past a flat plate at zero angle of attack, the variation of skin friction drag coefficient C f with Reynolds number based on the chord length Re c can be expressed as (A) C f Re (B) C Re (C) C (D) C f f f 1 c c 1 Re Re c c Q.5 Which of the following statement is NOT TRUE across an oblique shock wave? (A) Static temperature increases, total temperature remains constant. (B) Static pressure increases, static temperature increases. (C) Static temperature increases, total pressure decreases. (D) Static pressure increases, total temperature decreases. Q.6 For a completely subsonic isentropic flow through a convergent nozzle, which of the following statement is TRUE? (A) Pressure at the nozzle exit > back pressure. (B) Pressure at the nozzle exit < back pressure. (C) Pressure at the nozzle exit = back pressure. (D) Pressure at the nozzle exit = total pressure. Q.7 Which of the following aircraft engines has the highest propulsive efficiency at a cruising Mach number of less than 0.5? (A) Turbofan engine (C) Turboprop engine (B) Turbojet engine (D) Ramjet engine Q.8 Air, with a Prandtl number of 0.7, flows over a flat plate at a high Reynolds number. Which of the following statement is TRUE? (A) Thermal boundary layer is thicker than the velocity boundary layer. (B) Thermal boundary layer is thinner than the velocity boundary layer. (C) Thermal boundary layer is as thick as the velocity boundary layer. (D) There is no relationship between the thicknesses of thermal and velocity boundary layers. AE 1/9

5 Q.9 Consider an eigenvalue problem given by Ax= i x. If i represent the eigenvalues of the nonsingular square matrix A, then what will be the eigenvalues of matrix A? (A) 4 i (B) i (C) 1/ i (D) 1/ i 4 Q.10 If A and B are both non-singular n n matrices, then which of the following statement is NOT TRUE. Note: det represents the determinant of a matrix. (A) det(ab) = det(a)det(b) (B) det(a+b) = det(a) + det(b) (C) det(aa -1 ) = 1 (D) det(a T ) = det(a) Q.11 The total number of material constants that are necessary and sufficient to describe the three dimensional Hooke s law for an isotropic material is. Q.1 Determine the correctness or otherwise of the following statements, [a] and [r]: [a]: In a plane stress problem, the shear strains along the thickness direction of a body are zero but the normal strain along the thickness is not zero. [r]: In a plane stress problem, Poisson effect induces the normal strain along the thickness direction of the body. (A) Both [a] and [r] are true and [r] is the correct reason for [a]. (B) Both [a] and [r] are true but [r] is not the correct reason for [a]. (C) Both [a] and [r] are false. (D) [a] is true but [r] is false. Q.13 Consider four thin-walled beams of different open cross-sections, as shown in the cases (i-iv). A shear force of magnitude F acts vertically downward at the location P in all the beams. In which of the following case, does the shear force induce bending and twisting? Case (i) Case (ii) Case (iii) Case (iv) (A) (i) (C) (iii) (B) (ii) (D) (iv)

6 Q.14 The effective stiffness of the spring-mass system as shown in the figure below is N/mm. Q.15 A structural member supports loads, which produce at a particular point, a state of pure shear stress of 50 N/mm. At what angles are the principal planes oriented with respect to the plane of pure shear? Q.16 (A) π/6 and π/3 (B) π/4 and 3π/4 (C) π/4 and π/ (D) π/ and π Let x be a positive real number. The function x has its minima at x=. Q.17 The vector u is defined as u yê x xê y, where ê x and ê y are the unit vectors along x and y directions, respectively. If the vector is defined as u, then u. Q.18 u u The partial differential equation, where α is a positive constant, is t x (A) circular. (B) elliptic. (C) hyperbolic. (D) parabolic. Q.19 Combustion in gas turbine engines is ideally represented as the following process: (A) Adiabatic (B) Isentropic (C) Isobaric (D) Isochoric Q.0 For a given chamber pressure, the thrust of a rocket engine is highest when (A) the rocket is operating at its design altitude. (B) the rocket is operating in vacuum. (C) the rocket is operating at sea-level. (D) there is a normal shock in the rocket nozzle. Q.1 The damping ratio in phugoid motion for gliders is usually less compared to powered aircraft because (A) gliders are unpowered. (B) gliders are light. (C) lift to drag ratio is higher for gliders. (D) gliders fly at low speed. Q. During an aircraft cruising flight, the altitude above the ground is usually measured using (A) dynamic pressure. (C) radar. f x 1 x (B) static pressure. (D) laser range finder. AE 3/9

7 Q.3 Indicated airspeed is used by a pilot during (A) take-off. (C) setting the engine RPM. (B) navigation. (D) setting the elevator angle. Q.4 The pitch angle and the angle of attack for a fixed wing aircraft are equal during (A) wings level constant altitude flight. (B) unaccelerated climb. (C) unaccelerated descent. (D) landing. Q.5 The load factor of an aircraft turning at a constant altitude is. The coefficient of lift required for turning flight as compared to level flight at the same speed will be (A) same (C) double (B) half (D) four times Q. 6 Q. 55 carry two marks each. Q.6 An un-mixed turbofan engine with a bypass ratio of 6.0, flies with a velocity of 00 m/s. The core and the bypass nozzles of the engine, that are both convergent nozzles, operate under choked condition and have exhaust static temperatures of 580 K and 95 K, respectively. The specific gas constant and the ratio of specific heats for both the streams are 87 J/kgK and 1.4, respectively. If the fuel-air ratio is negligible, the thrust per unit mass flow rate generated by the engine is Ns/kg. Q.7 A single-stage gas turbine operates with an axial absolute flow at the entry and exit from the stage. The absolute flow angle at the nozzle exit is 70 o. The turbine stage generates a specific work of 8 kj/kg when operating with a mean blade speed of 440 m/s. The absolute velocity at the rotor entry is (A) 75.7 m/s (B) m/s (C) m/s (D) m/s Q.8 An axial compressor operates such that it has an inlet and an exit total temperature of 300 K and 430 K, respectively. The isentropic efficiency of the compressor is 85 %. If the ratio of specific heats is 1.4, then the total pressure ratio across the compressor is. Q.9 The maximum value of coefficient of lift ( C l ) for a D circular cylinder, provided at least one stagnation point lies on the cylinder surface, is predicted by the potential flow theory to be (A) π/ (B) π (C) π (D) 4π AE 4/9

8 Q.30 The nozzle AB, as shown below, leading to the test section of a low speed subsonic wind tunnel, has a contraction ratio of 10:1. The pressure difference across the nozzle is maintained at 1000 N/m and the density of air is 1.3 kg/m 3. Assuming one-dimensional, steady, inviscid flow, the velocity in the test section as measured at point B is m/s. Q.31 The rate of change of moment coefficient with respect to the angle of attack, point of a thin airfoil, as per approximations from the thin airfoil theory is dc m, at half chord d (A) π/4 radian -1 (B) π/ radian -1 (C) π radian -1 (D) π radian -1 Q.3 An untwisted wing of elliptic planform and aspect ratio 6 consists of thin symmetric airfoil o sections. The coefficient of lift (C L ) at 10 angle of attack assuming inviscid incompressible flow is (A) π /16 (B) π /1 (C) π /8 (D) π/ Q.33 A gaseous mixture of air and fuel enters a constant area combustion chamber at a velocity of 100 m/s and at a static temperature of 300 K. The heat release due to combustion is 1000 kj/kg. The specific heat at constant pressure of the calorically perfect gas is 1000 J/kgK. The total temperature of air-fuel mixture after combustion is K. Q.34 Consider 1-D, steady, inviscid, compressible flow through a convergent nozzle. The total temperature and total pressure are T o, P o respectively. The flow through the nozzle is choked with a mass flow rate of m. If the total temperature is increased to 4 T, with total pressure remaining Q.35 o unchanged, then the mass flow rate through the nozzle (A) remains unchanged. (B) becomes half of m. (C) becomes twice of m. (D) becomes four times of m. o o o d y dy Consider a second order linear ordinary differential equation 4 4y 0, with the dx dx dy boundary conditions y(0) 1; 1. The value of y at x =1 is dx x 0 (A) 0 (B) 1 (C) e (D) e o

9 Q.36 Consider the following system of linear equations: x y + z = 1 3x 3y + 4z = 6 x y + 3z = 4 This system of linear equations has (A) no solution. (B) one solution. (C) two solutions. (D) three solutions. Q.37 A bar made of linear elastic isotropic material is fixed at one end and subjected to an axial force of 1 kn at the other end. The cross-sectional area of the bar is 100 mm, length is 100 mm and the Young s Modulus is N/mm. The strain energy stored in the bar is Nmm. Q.38 A cantilever beam-spring system is shown in the figure. The beam is made with a material of Young s modulus N/mm and geometry such that its moment of inertia is 100 mm 4 and length l = 100 mm. It is supported by a spring of stiffness K = 30 N/mm and subjected to a load of P = 100 N at the point B. The deflection at the point B due to the load P is mm. Q.39 Determine the correctness or otherwise of the following statements, [a] and [r], [a]: Ribs, used in airplane wings, increase the column buckling strength of the longitudinal stiffeners. [r]: Ribs distribute concentrated loads into the structure and redistribute stresses around discontinuities. (A) Both [a] and [r] are true and [r] is the correct reason for [a] (B) Both [a] and [r] are true but [r] is not the correct reason for [a] (C) Both [a] and [r] are false (D) [a] is true but [r] is false AE 6/9

10 Q.40 A channel section shown in the figure has uniform thickness. It is subjected to an anticlockwise torque of Nmm. The maximum possible thickness of the channel section, such that the shear stress induced in it does not exceed 100 N/mm, is mm. Q.41 The governing differential equation of motion of a damped system is given by d x dx m c kx 0 dt. If m = 1 kg, c = Ns/m and k = N/m then the frequency of the damped dt oscillation of this system is rad/s. Q.4 The two dimensional state of stress in a body is described by the Airy s stress function: x x y x y xy y E. The Airy s stress function will satisfy the equilibrium and the compatibility requirements if and only if the value of the coefficient E is. Q.43 The value of definite integral sin x 0 x dx is. Q.44 Use Newton-Raphson method to solve the equation: x e x 1. Begin with the initial guess x The solution after one step is x. Q.45 A wall of thickness 5 mm is heated by a hot gas flowing along the wall. The gas is at a temperature of 3000 K, and the convective heat transfer coefficient is 160 W/m K. The wall thermal conductivity is 40 W/mK. If the colder side of the wall is held at 500 K, the temperature of the side exposed to the hot gas is K. Q.46 A launch vehicle has a main rocket engine with two identical strap-on motors, all of which fire simultaneously during the operation. The main engine delivers a thrust of 6300 kn with a specific impulse of 48 s. Each strap-on motor delivers a thrust of 1000 kn with specific impulse of 9 s. The acceleration due to gravity is 9.81 m/s. The effective (combined) specific impulse of the vehicle is s. Q.47 A substance experiences an entropy change of s 0 in a quasi-steady process. The rise in temperature (corresponding to the entropy change s ) is highest for the following process: (A) isenthalpic (B) isobaric (C) isochoric (D) isothermal

11 Q.48 In a particular rocket engine, helium propellant is heated to 6000 K and 95% of its total enthalpy is recovered as kinetic energy of the nozzle exhaust. Consider helium to be a calorically perfect gas with specific heat at constant pressure of 500 J/kgK. The exhaust velocity for such a rocket for an optimum expansion is m/s. Q.49 An aircraft is flying level in the North direction at a velocity of 55 m/s under cross wind from East to West of 5 m/s. For the given aircraft C nβ = 0.01/deg and C nδr = /deg, where δr is the rudder deflection and β is the side slip angle. The rudder deflection exerted by pilot is degrees. Q.50 An aircraft weighing N is flying level at 100 m/s and it is powered by a jet engine. The thrust required for level flight is 1000 N. The maximum possible thrust produced by the jet engine is 5000 N. The minimum time required to climb 1000 m, when flight speed is 100 m/s, is s. Q.51 The aircraft velocity (m/s) components in body axes are given as [u, v, w] = [100, 10, 10]. The air velocity (m/s), angle of attack (deg) and sideslip angle (deg) in that order are (A) [10, 0.1, 0.1] (B) [100, 0.1, 0.1] (C) [ , 0.1, 5.73] (D) [ , 5.71, 5.68] Q.5 The Dutch roll motion of the aircraft is described by following relationship 0.6 r r The undamped natural frequency (rad/s) and damping ratio for the Dutch roll motion in that order are: (A) 4.68, 1.0 (B) 4.49, 1.0 (C).165, 0.35 (D).165, 1.0 Q.53 A glider weighing 3300 N is flying at 1000 m above sea level. The wing area is 14.1 m and the air density is 1.3 kg/m 3. Under zero wind conditions, the velocity for maximum range is m/s. α (deg) C L C D C L /C D Q.54 A rocket, with a total lift-off mass of kg, moves vertically upward from rest under a constant gravitational acceleration of 9.81 m/s. The propellant mass of 8400 kg burns at a constant rate of 100 kg/s. If the specific impulse of the rocket engine is 40 s, neglecting drag, the burnout velocity in m/s is (A) (B) (C) (D) AE 8/9

12 Q.55 A satellite is injected at an altitude of 350 km above the Earth s surface, with a velocity of 8.0 km/s parallel to the local horizon. (Earth radius=6378 km, µ E (GM=Gravitational constant Earth mass) = m 3 s - ). The satellite (A) forms a circular orbit. (C) escapes from Earth s gravitational field. (B) forms an elliptic orbit. (D) falls back to earth. END OF THE QUESTION PAPER AE 9/9

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξενόγλωσση Τεχνική Ορολογία Ενότητα: Principles of an Internal Combustion Engine Παναγιώτης Τσατσαρός Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

( ) Sine wave travelling to the right side

( ) Sine wave travelling to the right side SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

v R = c v 2 v P = R v = v 3 v n P = n 3 v 1 v = n 1 n P 1 P = c 1 c P 1 P = n 1 c 1 n 3 c = v 1 v 3 3 3 c P P = c v 4.5 P = c v 4 P = c v 3.5 v 1 = 24 v 2 = 18 c 1 c 1 4.5 = v 1 c 2 v 4.5 2 = 244.5 = 3.65

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

DETERMINATION OF FRICTION COEFFICIENT

DETERMINATION OF FRICTION COEFFICIENT EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Linearized Lifting Surface Theory Thin-Wing Theory

Linearized Lifting Surface Theory Thin-Wing Theory 13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. The magnetic flux through a coil of N turns is increased uniformly from zero to a maximum value in a time t. An emf, E, is induced across the coil. What is the maximum value

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα