ΠΑΡΑΓΩΓΗ ΠΥΘΑΓΟΡΕΙΩΝ ΤΡΙΑΔΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΓΩΓΗ ΠΥΘΑΓΟΡΕΙΩΝ ΤΡΙΑΔΩΝ"

Transcript

1 ΠΑΡΑΓΩΓΗ ΠΥΘΑΓΟΡΕΙΩΝ ΤΡΙΑΔΩΝ 1. Η πλέον γνωστή σχέση παραγωγής Πυθαγορείων τριάδων είναι η: m -n, mn, m +n, όπου m, n, φυσικοί αριθμοί με m>n, Ισχύει πάντα (m -n ) +(mn) =m -m n +n +4m n =m +m n +n 4 =( m +n ) Εφαρμογή, αν m=5 και n=4 θα έχομε: m -n =5-4 =5-16=9 mn =*5*4=40 m +n =5 +4 =5+16=41 είναι = =1681=41 δηλαδή θα έχουμε την Πυθαγόρεια τριάδα (9,40,41). Ένας άλλος τρόπος είναι η σχέση: κλ, κ>λ, που από αποδίδεται στους Πυθαγόρειους. Πάντα ισχύει: (κ.λ) + 1 ( η απόδειξη είναι εύκολη). εφαρμογή: αν κ=7 και λ=3 θα έχουμε κλ=7*3=1 = = = = = = 0 = = 9 Δηλαδή θα έχουμε την Πυθαγόρεια τριάδα (1,0,9),, όπου κ, λ περιττοί φυσικοί με Παρατήρηση: Αν οι περιττοί κ,λ είναι πρώτοι μεταξύ τους τότε οι Πυθαγόρειες τριάδες που προκύπτουν είναι πρώτες Πυθαγόρειες τριάδες, δηλαδή οι αριθμοί τους έχουν μέγιστο κοινό διαιρέτη το 1 3. Η τριάδα (ν+1, ν²+ν, ν²+ν+1), με ν N, είναι πυθαγόρεια (Πρόκλος 1 ). Αποδεικνύεται εύκολα η καθολική ισχύ της. Παράγει πάντα αρχέγονες ή Μοναδιαίες Πυθαγόρειες Τριάδες για τις οποίες θα μιλήσουμε παρακάτω, π.χ. αν ν= έχουμε: ν+1=5, ν +ν=1, ν²+ν+1=13 και 5 +1 =13, έχουμε την Πυθαγόρεια τριάδα (5,1,13) 4. Η σχέση a 1 a 1 a αποδίδεται προσωπικά στον ίδιο τον Πυθαγόρα (Όπου α περιττός φυσικός>1) 5. Η σχέση 1 1 αποδίδεται στον ίδιο τον Πλάτωνα 4 4 (Όπου β φυσικός πολλαπλάσιο του 4) 1 Διευθυντής της Πλατωνικής Ακαδημίας, διαδέχθηκε στη θέση αυτή τον δάσκαλό του Συριανό. Η σχέση του αυτή ταυτίζεται με εκείνη του Πυθαγόρα, χρησιμοποιεί όμως όλους τους φυσικούς, ενώ ο Πυθαγόρας μόνον περιττούς. Ο Πρόκλος έζησε περίπου μια χιλιετία μετά τον Πυθαγόρα.

2 Οι δύο πρώτες σχέσεις παράγουν όλες τις Πυθαγόρειες τριάδες, ενώ η σχέση του Πυθαγόρα, αυτή του Πυθαγόρειου Πλάτωνα και του Πρόκλου δίδουν ειδικές μόνο Πυθαγόρειες τριάδες. Γιατί άραγε διάλεξαν αυτές τις σχέσεις ενώ γνώριζαν την η σχέση ;;;;; Η σχέση του Πυθαγόρα δίνει μόνον τις αρχέγονες ή μοναδιαίες Πυθαγόρειες τριάδες, που παράγονται από τον δεύτερο τύπο, αυτόν των Πυθαγορείων, όταν το λ είναι ίσο με το 1 (γι αυτό τις ονόμασα μοναδιαίες). Ένα ερώτημα που με βασάνιζε χρόνια ήταν γιατί ο Πυθαγόρας επέλεξε την συγκεκριμένη σχέση και γιατί ο Πλάτωνας θέλησε να διαφοροποιηθεί με μια δεύτερη σχέση; Σας παραθέτω δύο πίνακες, ο πρώτος με μοναδιαίες Πυθαγόρειες τριάδες και ο δεύτερος με Πλατωνικές για να κρίνετε και εσείς. ο παρακάτω πίνακας προκύπτει από τη σχέση του Πυθαγόρα: a α/α ΜΠΠΤ ΠΠΔ β.γ α υπόλοιπο υ ν =β ν.γ ν /α ν a 1 κ+(-1) ν όπου ν ο α/α a 1 υ ν -υ ν-1 1 ( 5, 4, 3 ) ( 1, 3 ) 4.3=1 5 =.1 ( 13, 1, 5 ) ( 1, 5 ) 1.5= = ( 5, 4, 7 ) ( 1, 7 ) 4.7= = ( 41, 40, 9 ) ( 1, 9 ) 40.9= = ( 61, 60, 11 ) ( 1, 11) 60.11= = ( 85, 84, 13 ) ( 1, 13) 84.13= = ( 113, 11, 15 ( 1, 15) 11.15= = (145, 144, 17) ( 1, 17) = 14 18= (181,180,19) ( 1, 19) = = (1, 0, 1) ( 1, 1) 0.1=4 00= Όπου ΠΠΔ είναι η Πρώτη Πυθαγόρεια Δυάδα (λ,κ) με (λ,κ)=1. Εδώ το λ είναι σταθερά ίσο με 1 και όπου ΜΠΠΤ είναι η Μοναδιαία Πρώτη Πυθαγόρεια Τριάδα. Την ονομάζουμε Μοναδιαία γιατί παράγεται απευθείας από τη μονάδα, το 1 (βλ. κόκκινη μονάδα). Θα παρατηρήσετε ότι οι τελευταίες στήλες δίνουν την κατανομή των ηλεκτρονίων όχι μόνο σε φλοιούς, αλλά και σε υποφλοιούς και είναι η πρώτη φορά στον κόσμο που παρουσιάζεται. Παρατηρείστε ότι οι φλοιοί συμπληρώνονται με,8,18,3, = ν ηλεκτρόνια, ενώ οι υποφλοιοί συμπληρώνονται με, 6, 10, 14. α ν -γ ν Ο Πλάτωνας αγόρασε τα βιβλία του Πυθαγόρειου Φιλολάου και μυήθηκε έτσι στον Πυθαγορισμό. Ταξίδεψε στη Ιταλία και γνώρισε εκεί και άλλους Πυθαγόρειους όπως ο Αρχύτας. Είχε δύο σπουδαίους δασκάλους, πρώτον τον Σωκράτη, οπαδό του αμετάβλητου Πυθαγορικού όντος (ον), που είχε μυηθεί στον Πυθαγορισμό από τους μαθητές του Φιλολάου, τον Κέβη και τον Σιμία, ίσως και από τον ίδιο τον Φιλόλαο, που μετά την καταστροφή της σχολής του Κρότωνα διέμενε στην Θήβα. Τους δύο αυτούς, τον Κέβη και τον Σιμία συναντάμε στο πλευρό του Σωκράτη κατά τις τελευταίες του στιγμές στο δεσμωτήριο (βλ. Απολογία Σωκράτους). Δεύτερο δάσκαλο είχε τον Κρατύλο, μαθητή του Ηρακλείτου και οπαδό του μη όντος, δηλαδή οπαδό της ροής και μεταβολής (μη ον). Όμως δεν σταμάτησε εδώ, προχώρησε ακόμα περισσότερο, αφού η διάνοιά του συνειδητοποίησε την «Πυθαγόρεια μουσική», την μουσική της παλλόμενης χορδής, επινόησε ένα τρίτο ον, το παλλόμενο ον, που το εισάγει στον Κρατύλο, αρχικά με τον Τάνταλο, που σημαίνει ταλαντεύομαι και ύστερα ολοκληρώνει ξεκάθαρα με την Παλλάδα, που διευκρινίζει ότι σημαίνει πάλλομαι-κραδαίνομαι. Έτσι ο Πλάτωνας μπορεί να θεωρηθεί ως ο κορυφαίος επιστήμονας στον μετά τον Πυθαγόρα κόσμο. ( αναλυτικότερα βλ. εργασία μου «Περι Γενέσεως και φθοράς» )

3 Ας πάμε και στη σχέση του Πλάτωνα εδώ το β= πολ.4 α/α ΠΠΔ Πλατωνική ΠΠΤ (α+γ)/4 κ+(-1) ν (λ,κ) (α,β,γ) (*) 1 1,3 5,4,3 (5+3)/4==.1 3,5 17,8,15 (17+15)/4=8= ,7 37,1,35 (37+35)/4=18= ,9 65,16,63 (65+63)/4=3= ,11 101,0,99 (101+99)/4=50= ,13 145,4,143 ( )/4=7= ,15 197,8,195 ( )/4=98=.7 14 Οι δύο τελευταίες στήλες των Πλατωνικών Πρώτων Πυθαγορείων τριάδων μας δίνουν πάλι την κατανομή των ηλεκτρονίων τόσο σε στιβάδες όσο και υποστιβάδες! Το αξιοπερίεργο είναι ότι και οι δύο Πίνακες, τόσο με τις τριάδες του Πυθαγόρα, όσο και του Πλάτωνα δίνουν τις κατανομές σε στιβάδες και υποστιβάδες με την πρώτη τους επτάδα. Πέραν των επτά είναι οι κατανομές των τεχνητών στοιχείων του περιοδικού συστήματος. Όμως το 7 είναι ο ιερός αριθμός του Απόλλωνα, ο αριθμός της δημιουργίας 3. Για μας τα μόνα απόκρυφα είναι η δυάδα της αιωνιότητας (αεί ον) και η υλοποίηση της ζωγονικής τριάδας 4, όπως έχουμε επισημάνει στην εργασία μας η Πυθαγορική Πλατωνική ζωογονία. Πρέπει να προσέξουμε ιδιαίτερα την δυάδα αυτή που παράγει στη συνέχεια την ζωογονική, δηλαδή την (1,3). Βλ. πίνακα Πυθαγόρα. Είναι η υπερουράνια δυάδα που εκπορεύεται από την υπερτάτη μονάδα και δημιουργεί την ζωογονική τριάδα ή τριάδα της κόρης την (3,4,5). Ενώνει τον υπέρτατο Δία με την Κόρη-Ον 5 για να παράξει στην συνέχεια την ζωογονική τριάδα. Αλλά και στις Πλατωνικές τριάδες, παρ όλο που χρησιμοποιούμε διαφορετικό τύπο η (1,3) παράγει πάλι τη ζωογονική και μάλιστα είναι πάλι πρώτη στη σειρά δημιουργίας! Για να ολοκληρώσουμε την Πλατωνική διαφοροποίηση στην παραγωγή Πυθαγορείων τριάδων θα σας παραθέσω τον παρακάτω πίνακα, όλων των πρώτων Πυθαγορείων τριάδων [υπενθυμίζω ότι με την έκφραση: «πρώτων Πυθαγορείων τριάδων», εννοώ τις πυθαγόρειες τριάδες που οι αριθμοί τους έχουν μέγιστο κοινό διαιρέτη το 1]. 3 Βλ. Περί του εν Δελφοίς ΕΙ του Πλουτάρχου, 391 F 4 Σήμερα η υλοποίηση των στοιχειωδών σωματιδίων που απαρτίζουν τον μικρόκοσμο, αποτελεί ένα άλυτο πρόβλημα. Οι επιστήμονες ψάχνουν εναγωνίως στους επιταχυντές το σωματίδιο Highs, ή σωματίδιο του Θεού. Είναι εκείνο που θα μεταφέρει σ αυτά, τα νοητά Πλατωνικά-μαθηματικά πρότυπα, την ύλη, που όλοι αντιλαμβανόμαστε με τις αισθήσεις μας. Ακόμα όμως δεν έχει εντοπιστεί. Πιθανότερη αιτία οι πολύ υψηλές ενέργειες που απαιτούνται στους επιταχυντές για την δημιουργία του. Στην αρχαιότητα, ζωογόνος της ύλης είναι η ψυχή και θεωρούμε ότι συμφωνούσαν όλοι επ αυτού, Πλάτωνας, Πυθαγόρας, Ορφέας. 5 Την Αθηνά. Κόρος (κόρη) είναι ο αμόλυντος-καθαρός νους (βλ. Κρατύλος), έτσι η παρθένος Αθηνά είναι ο υπέρτατος νους του Διός που κατά την παράδοση ξεπετάχθηκε από το κεφάλι του και εκδήλωσε τριαδικά την θέλησή του πατρός της, με την ζωογονική τριάδα. Πρώτα δημιουργήθηκε η υπερούσια τριάδα: Δίας (Β ), Ποσειδών και Πλούτων που αναφέρει ο Όμηρος, οι δημιουργοί του κόσμου.

4 ΠΑΡΑΤΗΡΕΙΣΤΕ ΟΤΙ ΚΑΘΕ ΠΛΑΤΩΝΙΚΗ ΠΠΤ ΕΧΕΙ ΠΑΝΤΑ ΕΠΟΜΕΝΗ, ΤΗΝ ΕΠΟΜΕΝΗ ΜΟΝΑΔΙΑΙΑ ΠΠΤ (α/α) A/A ΠΠΤ ΕΜΒΑΔΟ ΠΠΔ ΜΠΠΤ ΠΠΠΤ 1 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

5 38 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ΕΙΝΑΙ ΜΙΑ ΤΥΧΑΙΑ ΣΥΜΠΤΩΣΗ Ή Ο ΠΛΑΤΩΝΑΣ ΣΥΝΑΝΤΑ ΣΚΟΠΙΜΑ ΤΟΝ ΠΥΘΑΓΟΡΑ ;

6 Στην προσπάθειά μου να εξηγήσω το αμετάβλητο Πυθαγόρειο ον, γνωστό και ως αμετάβλητο Παρμενιδικό ον, δημιούργησα τους μετασχηματισμούς (Α), από το αρχικό γράμμα του επωνύμου μου (Αδαμάκος). Αυτοί μετασχηματίζουν πυθαγόρειες τριάδες σε αρχέγονες ή Μοναδιαίες Πυθαγόρειες τριάδες. Απέδειξα έτσι ότι κάθε μη μοναδιαία Πυθαγόρεια τριάδα μετασχηματίζεται σε μια μοναδιαία, δηλαδή ότι επιστρέφει στο σύνολο των Μοναδιαίων Πυθαγορείων τριάδων, που είναι οι ΕΙΔΗΤΙΚΟΙ ΑΡΙΘΜΟΙ του Πλάτωνα. Το σύνολο αυτό είναι αμετάβλητο κάτω από τους μετασχηματισμούς (Α), αποτελώντας το αμετάβλητο Πυθαγόρειο-Παρμενίδειο ον. (βλ. Τι γίνεται όμως άμα βάλουμε στους μετασχηματισμούς αυτούς τις Πλατωνικές Πυθαγόρειες τριάδες; Συμβαίνει κάτι το φοβερό..., μία-μία οι Πλατωνικές πυθαγόρειες τριάδες μετασχηματίζονταν στις αντίστοιχες του Πυθαγόρα!!! Η πρώτη του Πλάτωνα είναι η ζωογονική και είναι η ίδια με την πρώτη του Πυθαγόρα. Η δεύτερη του Πλάτωνα μετασχηματίζεται στη δεύτερη του Πυθαγόρα, η Τρίτη του Πλάτωνα στην Τρίτη του Πυθαγόρα κ.ο.κ.!!!!!!!!!! Επιπλέον, για τη ζωογονική τριάδα (3,4,5), η τριάδα της κόρης (Αθηνάς), απέδειξα για πρώτη φορά στον κόσμο, ότι περικλείει την σταθερά της λεπτής υφής, τον σπουδαιότερο αριθμό της δημιουργίας και δικαιολόγησα έτσι την ονομασία της ως ζωογονική, τον δε αριθμό 6 (εμβαδό του ζωογονικού τριγώνου) δικαιολόγησα αδιάσειστα την ονομασία του, ως ο ψυχογονικός αριθμός των Πυθαγορείων. (βλ. Πριν πολλά χρόνια, είχα μια συνάντηση με τον καθηγητή του Μαθηματικού τμήματος του πανεπιστημίου Αθηνών κ. Ζαχαρίου, στα πλαίσια μιας διάλεξης και του έδωσα την εργασία μου «περί Πυθαγορείων Τριάδων», δηλαδή το καθαρά μαθηματικό μέρος, με πολλά θεωρήματα πορίσματα και εικασίες. Στο πολύ μικρό χρονικό διάστημα του διαλείμματος της διάλεξης εξήγησα στον καθηγητή την περίληψη της εργασίας μου. Μου απάντησε ότι το θέμα των Πυθαγορείων τριάδων το έχει εξαντλήσει αυτός στην μεγάλη Σοβιετική εγκυκλοπαίδεια και ότι δεν πιστεύει ότι έχω κατορθώσει αυτά που του είπα. Τον παρακάλεσα ευγενικά να ασχοληθεί λίγο με την εργασία μου. Φυσικά δεν έλαβα καμία απάντηση μέχρι σήμερα!!!! Βέβαια η εργασία μου είναι σε άλλη διάσταση από αυτήν του κ. Ζαχαρίου. Μερικές φορές έλεγα ότι έφθασα στην πλήρη αποκρυπτογράφηση των Πυθαγορείων τριάδων και αυτόματα ερχόταν στη μνήμη μου ο κ. Ζαχαρίου που είχε «εξαντλήσει» το θέμα και προσγειωνόμουν. Αυτές τις μέρες ένας ηλεκτρονικός φίλος, ο κ. Λεωνίδας Πατσουράκος μου έστειλε έναν νέο τρόπο για την εύρεση Πυθαγορείων τριάδων από την ακολουθία του Φιμπονάτσι.και θυμήθηκα τον κ. Ζαχαρίου που είχε εξαντλήσει το θέμα!! Κάθησα και το μελέτησα και σας το παρουσιάζω, αφιερώνοντας το στον Λεωνίδα. Η ακολουθία του Fibonacci είναι η: 0,1,1,,3,5,8,13,1,34,55,89,, εκείνο που πρέπει να προσέξετε είναι ότι ο επόμενος όρος της ακολουθίας προκύπτει από την πρόσθεση των δύο προηγουμένων όρων (εκτός των δύο πρωτων), έτσι αν θέλουμε να βρούμε τον επόμενο θα πρέπει να προσθέσουμε στο 55 το 89 και θα βρούμε το 144 συνεχίστε αν θέλετε Αξιοπρόσεκτο είναι ότι η ακολουθία Φιμπονάτσι σχετίζεται με τον χρυσό αριθμό 6 και τις Πυθαγόρειες τριάδες 6 Ο χρυσός αριθμός Φ= =1, , είναι υπερβατικός αριθμός

7 Όμως, τι σχέση μπορεί να έχει αυτή η ακολουθία με το χρυσό αριθμό; Κάντε το παρακάτω πείραμα: πάρτε ένα κομπιουτεράκι και διαιρέστε οποιοδήποτε νούμερο με το αμέσως προηγούμενό του. Όσο προχωράτε στην ακολουθία, το πηλίκο θα προσεγγίζει ολοένα και περισσότερο τον χρυσό αριθμό. Σε μαθηματική ορολογία σημαίνει ότι η ακολουθία που δημιουργείται από τη διαίρεση κάθε αριθμού Φιμπονάτσι με τον αμέσως προηγούμενό του έχει ως όριο το χρυσό αριθμό. Ας δούμε όμως τι σχέση έχει με τις Πυθαγόρειες τριάδες. Ο κ. Πατσουράκος μου έστειλε το παρακάτω μήνυμα: η τριάδα (αδ), (βγ), (β +γ ) που δημιουργείται από τέσσερεις διαδοχικούς όρους της ακολουθίας του Φιμπονάτσι είναι μια Πυθαγόρεια τριάδα, με βιβλιογραφία «Η χρυσή τομή Fernando Corbalan εκδόσεις 4π ελληνική έκδοση 011 σελ.40» και ότι ισχύει και για άλλες ακολουθίες με την ίδια δομή. Ας συμβολίσουμε με χ, ψ τους δύο πρώτους από τους τέσσερες διαδοχικούς όρους μιας ακολουθίας τύπου Φιμπονάτσι. Τότε οι άλλοι δύο επόμενοι όροι θα είναι οι χ+ψ και ψ+χ+ψ, δηλαδή έχουμε την τετράδα χ, ψ, χ+ψ, χ+ψ. Το α εδώ αντιστοιχεί με το χ, το β με το ψ, το γ με το χ+ψ και το δ με το χ+ψ. Εμείς πρέπει να αποδείξουμε ότι: [χ(χ+ψ)] +[ψ(χ+ψ)] =[ψ +(χ+ψ) ] (χ +χψ) +(χψ+ψ ) = [ψ +(χ+ψ) ] ή (χ +4χ ψ+4χ ψ )+(4χ ψ +8χψ +4ψ )=(ψ +χ +χψ+ψ ) ή χ +4χ ψ+4χ ψ +4χ ψ +8χψ +4ψ =(ψ +χ +χψ) χ +4χ ψ+4χ ψ +4χ ψ +8χψ +4ψ =4ψ +χ +4χ ψ +4χ ψ +8χψ +4χ ψ και εδείχθη, δηλαδή μια συνεχόμενη τετράδα όρων ακολουθίας τύπου Φιμπονάτσι παράγει πάντα μια Πυθαγόρεια τριάδα! Εφαρμογή: ας πάρουμε μια ακολουθία τύπου Φιμπονάτσι, την 3, 4, 7, 11, 18, 9, 47, 76,, που κάθε όρος της προκύπτει από το άθροισμα των δύο προηγουμένων και, ας πάρουμε τους τέσσερεις πρώτους, δηλαδή τους 3, 4, 7, 11 για να εφαρμόσουμε τον παραπάνω νέο τύπο [(αδ), (βγ), (β +γ )] Η πυθαγόρεια τριάδα που παράγετε είναι: (3*11), (*4*7), (4 +7 ) ή 33, 56, 65 πράγματι 33 = =3136 και 65 =45 Σύνολο 45 Ας δούμε τώρα πως μπορεί να συνδέεται μια τέτοια ακολουθία τύπου Φιμπονάτσι με τον χρυσό αριθμό φ=1,618 Έστω χ, ψ οι δύο πρώτοι όροι της, τότε αυτή θα είναι: Χ,ψ, (χ+ψ), [ψ+(χ+ψ)]ή (χ+ψ), [(χ+ψ)+(χ+ψ)] ή (χ+3ψ), [(χ+ψ)+(χ+3ψ)] ή (3χ+5ψ), [(χ+3ψ)+(3χ+5ψ)] ή (5χ+8ψ), [(3χ+5ψ)+(5χ+8ψ)] ή (8χ+13ψ), (13χ+1ψ), (1χ+34ψ), (34χ+55ψ), (55χ+89ψ), (89χ+144ψ), (144χ+33ψ).. Αυτή η διαδικασία είναι ίδια με αυτήν της εύρεση της τετραγωνικής ρίζας που επινόησαν οι Πυθαγόρειοι και διέδωσε ο Θέων ο Σμυρναίος και ο Ήρωνας ο Αλεξανδρεύς, μέθοδο που εξωτερίκευσε από την σχολή του Κρότωνα ο Πυθαγόρειος Αρχύτας. Η διαδικασία έχει ως εξής: προσθέτουμε στην πλευρά ενός τετραγώνου την διαγώνιό του και

8 δημιουργούμε την πλευρά ενός νέου τετραγώνου και ούτω καθεξής, η διαδικασία βασίζεται στους πλευρικούς και διαμετρικούς αριθμούς και είναι η μέθοδος (αλγόριθμος) που χρησιμοποιούν οι Η-Υ σήμερα για την εύρεση των ριζών. Για περισσότερα βλ. οι άρρητοι στην αρχαιότητα. Σε κάθε παρένθεση της παραπάνω ακολουθίας (κίτρινες) υπάρχει ένας αριθμός (συντελεστής) για το χ και ένας για το ψ. Σχηματίζουμε τους λόγους των συντελεστών της κάθε παρένθεσης, που τελικά συγκλίνουν στο χρυσό αριθμό Φ=1,618. συντελεστής του ψ προς συντελεστή του χ 1 η παρένθεση η >> 3 η >> 4 η >> 5 η >> 6 η >> 7 η >> 8 η >> 9 η >> 10 η >> 11 η >> 1 η >> = 1 = = 1,5 = 1,666 = 1,6 = 1,65 = 1, = 1, = 1, = 1, = 1, = 1, Βιβλιογραφία Ιστοσελίδα Οι Άρρητοι στην Αρχαιότητα Π. Αδαμάκος Ευκλείδου Περί Ασυμμέτρων Στοιχεία ΒΙΒΛΙΟ Χ εκδ. ΟΕΔΒ Πρόκλου Περί της κατά Πλάτωνα θεολογίας εκδ. Κάκτος Ευχαριστώ τον κ. Λεωνίδα Πατσουράκο για την βοήθειά του. Π. Θ. Αδαμάκος Μαθηματικός 6-Απριλίου 01

Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου,

Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου, Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου, ISBN: 978-9963-0-4611-9) Και Βανδουλάκης Ι., Καλλιγάς

Διαβάστε περισσότερα

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών Ο χρυσός αριθμός φ Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών ΤΟ ΠΡΟΒΛΗΜΑ Το πρόβλημα της χρυσής τομής, σε απλή διατύπωση είναι το εξής: Να χωριστεί ένα τμήμα ΑΒ σε μέσο και άκρο λόγο δηλαδή

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 14.03.12 Χ. Χαραλάμπους Πριν: Σύμφωνα με την πυθαγόρεια αντιμετώπιση η διαγώνιος και η ακμή τετραγώνου δεν είναι συγκρίσιμα. Ορισμός Ευδόξου: δύο μεγέθη σχηματίζουν λόγο όταν (ακέραιο)

Διαβάστε περισσότερα

Ασκήσεις και δραστηριότητες

Ασκήσεις και δραστηριότητες Ασκήσεις και δραστηριότητες 1. Ποιος είναι ο Ευκλείδης, συγγραφέας των Στοιχείων; Πότε έζησε; Τι γνωρίζουμε γι αυτόν και για το έργο του; Από πού; Να διαβάσεις σχετικά σε μιαν εγκυκλοπαίδεια ή ένα βιβλίο

Διαβάστε περισσότερα

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό. Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ

Διαβάστε περισσότερα

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν. Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 18.03.14 Χ. Χαραλάμπους Πως ορίζονται αξιωματικά από το σύστημα των ρητών αριθμών οι πραγματικοί αριθμοί? Τομές του Dedekind (1831-1916) στους ρητούς: δημιουργία των άρρητων (αξιωματική

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 12.03.14 Χ. Χαραλάμπους Οι αριθμοί αποτελούν τη βάση του κόσμου. «Το παν είναι αριθμός» Τετράεδρο {3,3} ωδεκάεδρο, 12 έδρες, όλες κανονικα πεντάγωνα. Σε κάθε κορυφή συναντώνται ακριβώς

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί ΟΜΙΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ 2013-14 Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country. David Hilbert ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ Διαιρετότητα

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

Εύρεση ν-στού πρώτου αριθμού

Εύρεση ν-στού πρώτου αριθμού Εύρεση ν-στού πρώτου αριθμού Ορισμός Πρώτος αριθμός λέγεται κάθε φυσικός αριθμός (εκτός της μονάδας) που έχει φυσικούς διαιρέτες μόνο τον εαυτό του και τη μονάδα. Ερώτημα: Να υπολογιστεί ο ν-στός πρώτος

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 13.03.14 Χ. Χαραλάμπους Εντονες πυθαγόρειες επιδράσεις. Η Γεωμετρία και τα Μαθηματικά έχουν μια ξεχωριστή ξχ θέση. Ουδείς αγεωμέτρητος εισί Στον κόσμο των ιδεών τα μαθηματικά αντικείμενα

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 03 ΟΚΤ 2017 ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης

Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης Δημήτριος Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Σεραφείμ

Διαβάστε περισσότερα

ΜΟΥΣΙΚΗ & ΜΑΘΗΜΑΤΙΚΑ ΜΟΥΣΙΚΗ ΣΥΝΘΕΣΗ ΒΑΣΙΣΜΕΝΗ ΣΤΗΝ ΑΚΟΛΟΥΘΙΑ FIBONACCI

ΜΟΥΣΙΚΗ & ΜΑΘΗΜΑΤΙΚΑ ΜΟΥΣΙΚΗ ΣΥΝΘΕΣΗ ΒΑΣΙΣΜΕΝΗ ΣΤΗΝ ΑΚΟΛΟΥΘΙΑ FIBONACCI ΜΟΥΣΙΚΗ & ΜΑΘΗΜΑΤΙΚΑ ΜΟΥΣΙΚΗ ΣΥΝΘΕΣΗ ΒΑΣΙΣΜΕΝΗ ΣΤΗΝ ΑΚΟΛΟΥΘΙΑ FIBONACCI Θωμάς Μπουλούσης & Χρήστος Παπαχρήστου Επιβλέπουσα καθηγήτρια: Χατσοπούλου Παναγιώτα 1 ο Γυμνάσιο Πεύκων Θεσσαλονίκης ΠΕΡΙΛΗΨΗ Ο

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη.

Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη. ΜΕΡΟΣ Α 2.1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 16 2. 1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 Η εξίσωση αx+β=0 Κάθε εξίσωση της μορφής αx+β=0 όπως για παράδειγμα οι εξισώσεις x- 2=0, 4x=-,2x-2=x+6 ονομάζεται εξίσωση 1ου βαθμού με έναν άγνωστο

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.

Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών. 1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Μάθημα: Άλγεβρα Υπεύθυνος καθηγητής: κ. Σκοτίδας Τάξη: Β Λυκείου Τμήμα Β2 Ονοματεπώνυμο: Λαμπρινή Μαρίνα Λάππα Σχολικό έτος: 2010 2011 1 ΠΕΡΙΕΧΟΜΕΝΑ 1) Ποιο πρόβλημα

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποιες είναι οι ιδιότητες της πρόσθεσης; Ποιες είναι οι ιδιότητες του πολλαπλασιασμού; Τι ονομάζουμε νιοστή δύναμη του άλφα; Ποια είναι η βάση και ποιος ο εκθέτης; Ποια είναι η προτεραιότητα των πράξεων

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 6.03.14 Χ. Χαραλάμπους 1(και 60) 8 10 30 11 79883= (22*60 2 )+(11*60)+23 70 Δεν έχουν βρεθεί πίνακες για πρόσθεση. Έχουν βρεθεί πολλοί πίνακες για τον πολλαπλασιασμό: Έτσι ένας πίνακας

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται

Διαβάστε περισσότερα

B τάξη Γυμνασίου : : και 4 :

B τάξη Γυμνασίου : : και 4 : Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 2: Παραγοντοποίηση LU Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β Ημερήσιου και Γ Εσπερινού Γενικού Λυκείου II. Διαχείριση διδακτέας ύλης Κεφάλαιο 7 ο (Προτείνεται να διατεθούν 6 διδακτικές ώρες). 7.1-7.6 Στις παραγράφους αυτές γίνεται πρώτη

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 8.03.12 Χ. Χαραλάμπους Θαλής ο Μιλήσιος ( 630-550π.Χ.) Πυθαγόρας o Σάμιος (570-490) Ζήνωνας ο Ελεάτης ( 490-430) Δημόκριτος o Αβδηρίτης (c. 460-370) Πλάτων (427-347 π.χ.) Ιστορικές

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015

Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015 ΘΕΜΑ Α Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015 Α1.Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα να σημειώσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Τετραγωνική ρίζα πραγματικού αριθμού

Τετραγωνική ρίζα πραγματικού αριθμού Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :

Διαβάστε περισσότερα

Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.

Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. ΜΕΡΟΣ Α. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 69. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. Για παράδειγμα ο αριθμός που στην προηγούμενη

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a.

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a. 1. Τα θεμελιώδη αριθμητικά συστήματα Με τον όρο θεμελιώδη αριθμητικά συστήματα εννοούμε τα σύνολα N των φυσικών αριθμών, Z των ακεραίων, Q των ρητών και R των πραγματικών. Από αυτά, το σύνολο N είναι πρωτογενές

Διαβάστε περισσότερα

Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1

Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1 ΟΔΗΓIEΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Α. ΘΕΩΡΙΑ Οι μαθητές υποχρεούνται σε διαπραγμάτευση ενός απλού από δύο τιθέμενα θέματα θεωρίας της διδαγμένης ύλης. Ένα θέμα από την Άλγεβρα και

Διαβάστε περισσότερα

Πρόβλημα 29 / σελίδα 28

Πρόβλημα 29 / σελίδα 28 Πρόβλημα 29 / σελίδα 28 Πρόβλημα 30 / σελίδα 28 Αντιμετάθεση / σελίδα 10 Να γράψετε αλγόριθμο, οποίος θα διαβάζει τα περιεχόμενα δύο μεταβλητών Α και Β, στη συνέχεια να αντιμεταθέτει τα περιεχόμενά τους

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα