Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:"

Transcript

1 Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια ενός ισχυρισμού Ρ(ν) για ν = 1 και η μετάβαση από την αλήθεια Ρ(ν) στην αλήθεια του Ρ( ν + 1) διασφαλίζουν την αλήθεια του ισχυρισμού για κάθε θετικό ακέραιο ν. τη γνωστή ταυτότητα της ευκλείδειας διαίρεσης μόνο στην περίπτωση των θετικών ακεραίων. Με τη διδασκαλία του κεφαλαίου αυτού επιδιώκεται η άσκηση των μαθητών στην αποδεικτική διαδικασία και η κατανόηση της έννοιας του αλγορίθμου. Με την επίλυση των ασκήσεων και των προβλημάτων, αυτού ιδιαίτερα του κεφαλαίου, θα δοθεί η ευκαιρία εξάσκησης των μαθητών: Στη μέθοδο της μαθηματικής επαγωγής. Στη ευθεία απόδειξη. Στη μέθοδο της εις άτοπον απαγωγής.

2 1. Θεωρία αριθμών Τύποι - Βασικές έννοιες ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ : Τύποι - Βασικές έννοιες Μαθηματική επαγωγή Θεώρημα Έστω P( ν ) ένας ισχυρισμός που αναφέρεται στους θετικούς ακέραιους. Αν α. ο ισχυρισμός είναι αληθής για τον ακέραιο 1 δηλαδή ο P1 () είναι αληθής και β. η αλήθεια του P( ν ) συνεπάγεται την αλήθεια του P( + 1) για κάθε ν. Τότε ο ισχυρισμός P( ν ) αληθεύει για όλους τους θετικούς ακέραιους ν. Ευκλείδια διαίρεση Θεώρημα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρημα και διατυπώνεται ως εξής : Αν α και β ακέραιοι με β 0, τότε υπάρχουν μοναδικοί ακέραιοι κ και υ τέτοιοι ώστε: α= κβ+ υ, 0 υ< β Η διαδικασία εύρεσης των κ, υ λέγεται ευκλείδεια ή αλγοριθμική διαίρεση του α με τον β και συμβολίζουμε α : β. Η ισότητα α = κβ + υ με 0 υ<β, λέγεται ταυτότητα της αλγοριθμικής διαίρεσης του α με τον β. Ο κ λέγεται πηλίκο και ο υ υπόλοιπο της διαίρεσης αυτής, ενω ο α διαιρετέος και ο β διαιρέτης. Η διαίρεση λέγεται τέλεια αν το υπόλοιπο είναι ίσο με 0. Βασικές προτάσεις - Το άθροισμα ή η διαφορά δύο άρτιων είναι άρτιος. - Το άθροισμα ή η διαφορά δύο περιττών είναι άρτιος. - Αν η διαφορά δύο ακέραιων είναι άρτιος τότε και το άθροισμα είναι άρτιος και αντίστοιχα, αν η διαφορά δύο ακέραιων είναι περιττός τότε και το άθροισμα είναι περιττός. - Το άθροισμα ή η διαφορά ενός άρτιου και ενός περιττού είναι περιττός. - Το γινόμενο δύο άρτιων είναι άρτιος. - Το γινόμενο δύο περιττών είναι περιττός.

3 Τύποι - Βασικές έννοιες Θεωρία αριθμών Το γινόμενο ενός άρτιου και ενός περιττού είναι άρτιος. - Το γινόμενο δύο διαδοχικών ακέραιων είναι άρτιος. - Αν α άρτιος τότε α ν, ν * Ν είναι άρτιος. - Αν α περιττός τότε α ν *, ν Ν είναι περιττός. - Το άθροισμα πεπερασμένου πλήθους άρτιων είναι άρτιος. - Το άθροισμα άρτιου πλήθους περιττών είναι άρτιος. - Το άθροισμα περιττού πλήθους περιττών είναι περιττός. - Το γινόμενο δύο ή περισσοτέρων ακέραιων είναι άρτιος, αν και μόνο αν, ένας τουλάχιστον παράγοντας είναι άρτιος. - Το γινόμενο δύο ή περισσοτέρων ακεραίων είναι περιττός, αν και μόνο αν, όλοι οι παράγοντες είναι περιττοί. Διαιρετότητα Ορισμός Έστω α,β δυο ακέραιοι με β 0. Θα λέμε ότι ο β διαιρεί τον α και θα γράφουμε β α όταν η διαίρεση του α με τον β είναι τέλεια. Δηλαδή όταν υπάρχει ακέραιος κ ώστε α = κβ Στην περίπτωση αυτή λέμε ακόμη ότι: α διαιρείται με τον β α πολλαπλάσιο του β β είναι διαιρέτης του α β είναι παράγοντας του α Αν β δεν διαιρεί τον α τότε γράφουμε β α Επισήμανση : Στο εξης όταν χρησιμοποιείται ο συμβολισμός β α οι αριθμοί α, β είναι ακέραιοι και β 0, αν αυτό δεν αναφέρεται. Συνέπειες του ορισμού Αν β α τότε β α ± 1 α, α Ζ, ± α α,α Ζ* β 0 για κάθε β Ζ* β α τότε κβ κα, κ Ζ*

4 14. Θεωρία αριθμών Τύποι - Βασικές έννοιες Θεώρημα Έστω α,β,γ ακέραιοι.ισχύουν τα παρακάτω: Αν α β και β α τότε: α = ±β Αν α β και β γ τότε: α γ Αν α β τότε α λβ για κάθε λ Ζ Αν α β και α γ τότε: α (β + γ) Αν α β και β 0 τότε: α β Σαν συνέπεια του πιο πάνω θεωρήματος ισχύει: Αν α/β και α/γ τότε α / ( κβ + λγ), για κάθε κ, λ Ζ δηλ.ότι αν ένας ακέραιος α διαιρεί δύο άλλους ακεραίους β και γ διαιρεί και ένα οποιοδήποτε γραμμικό συνδυασμό των β και γ. Πρόταση 1 Θεωρούμε την ευκλείδεια διαίρεση του α με τον β και έστω κ και υ το πηλίκο και το υπόλοιπο αντίστοιχα. i. Αν ένας ακέραιος x διαιρεί και τον α και τον β τότε διαιρεί και τον υ. ii. Αν ένας ακέραιος x διαιρεί και τον β και τον υ τότε διαιρεί και τον α. Πρόταση Έστω α, β, γ, x, y ακέραιοι. Αν γ α και γ ( xα yβ) ± τότε γ yβ

5 Βήμα 1 ο Θεωρία αριθμών 15. 1,,. : (i),. (ii) (iii) (i) (),.,., ( ). 0,. (i),,,,, µ, 1, µ 1 1,. (ii),.,,,, (iii),,,. (i), ( ) ( ).,,,, () 0, 0 µ. µ,, 1.

6 16. Θεωρία αριθμών Βήμα ο Α. Από το σχολικό βιβλίο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ έκδοση Α Ομάδα: 3 Β Ομάδα: 1 4. Α Ομάδα: 1, Β Ομάδα: 1, 3, Α Ομάδα: 3 Β Ομάδα: 1,, 5, 6 Β. Από τα Βιβλιομαθήματα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ εκδόσεις ΟΡΟΣΗΜΟ Βιβλιομάθημα 11 ο : Λυμένες ασκήσεις: 3, 4 Προτεινόμενες ασκήσεις: 3, 4, 6 Βιβλιομάθημα 1 ο : Λυμένες ασκήσεις: 1,, 4, 5 Προτεινόμενες ασκήσεις: 3, 4, 8, 9, 10

7 Βήμα 3 ο Θεωρία αριθμών Να δείξετε ότι για κάθε ν θετικό ακέραιο ισχυεί: ( ν 1) = ν Λύση: Έστω P( ν ) η ισότητα που θέλουμε να δείξουμε. Η P( ν ) αληθεύει για ν = 1 αφού ( 1 1) = 1. Θα δείξουμε ότι αν P( ν ) είναι αληθής δηλαδή ισχύει ( ν 1) = ν (1). θα είναι επίσης αληθής η P( ν+ 1). Δηλαδή με τη βοήθεια της (1) θα δείξουμε ότι ( ν 1) + ( ν+ 1) = ( ν+ 1) με τη βοήθεια της (1) έχουμε διαδοχικά: ( ν 1) + ( ν + 1) = ν + ν + 1= ( ν + 1). Άρα η πρόταση αληθεύει για κάθε θετικό ακέραιο.. Έστω ( ) Ρ ν ο ισχυρισμός ν = ν( ν+ 1) 1 i. Να δείξετε ότι η αλήθεια του Ρ(ν) συνεπάγεται την αλήθεια του P( ν+ 1). ii. Αληθεύει τελικά ο ισχυρισμός Ρ( ν ) για κάθε θετικό ακέραιο; Λύση i. Επειδή ο Ρ( ν ) είναι αληθής, διαδοχικά έχουμε: ν+ ( ν+ 1) = ν( ν+ 1) 1+ ( ν+ 1) = ( ν+ 1)( ν+ ) 1 άρα ο Ρ( ν+ 1) είναι αληθής. ii. Όχι, διότι θα έπρεπε να είναι αληθής ο ισυρισμός και για ν = 1 η ισότητα γράφεται = 1 1 = 1, που δεν ισχύει. ν ν+ 3. Να δείξετε ότι για κάθε θετικό ακέραιο ισχύει = 9 μ, όπου μ ακέραιος. Λύση Έστω Ρ(ν) η ισότητα που θέλουμε να δείξουμε για ν = 1, επειδή:

8 18. Θεωρία αριθμών Βήμα 3 ο = = 07 = 3 9, άρα Ρ(1) αληθής. ν ν+ Θα δείξουμε ότι αν Ρ(ν) αληθής δηλαδή αν = 9 μ (1) Θα είναι επίσης αληθής και η Ρ( ν+ 1). Δηλαδή θα δείξουμε ότι: ν+ 1 ( ν+ 1) = 9 ρ (ρ ακέραιος) ν ν+ Από τη σχέση (1) έχουμε: 10 = 9μ 34 5 () ( ) Άρα: ν+ 1 ν+ 1 + ν ν = = = ( ) ν+ ν+ 10 9μ = ν+ ν+ = 90 μ = ν+ ν+ = 90μ = 9( 10μ 4 5) = 9 ρ όπου ν+ ρ 10μ 4 5 = είναι ακέραιος αριθμός. 4. Να δείξετε ότι το άθροισμα τεσσάρων διαδοχικών ακέραιων είναι άρτιος αλλά δεν διαιρείται ακριβώς με το 4. Λύση: Αν α, β, γ, δ διαδοχικοί ακέραιοι πρέπει β= α+ 1, γ= α+ και δ= α+ 3 έστω λ = α + β + γ + δ = α + α + 1+ α + + α + 3 = 4α + 6, τότε λ = ( α+ 3), άρα άρτιος, ενώ λ = 4α+ 4+ = 4( α+ 1) + δηλαδή αν διαιρεθεί με το 4 αφήνει υπόλοιπο. 5. Να βρείτε το υπόλοιπο της διαίρεσης με το 8. Λύση: = ( 9 1) ( ) = 8 μ όπου = ( 5 1) ( ) = 3 8 ν 4 3 μ = ακέραιος όπου ν= ακέραιος άρα = 8μ ν+ 1 8( μ 3ν) 5 9 = + +, δηλαδή το υπόλοιπο της διαίρεσης του με το 8 είναι το. 6. Να βρείτε όλους τους ακέραιους αριθμούς ν για τους οποίους ο αριθμός ( ) 1 + ν ν + Α = είναι ακέραιος. 4

9 Βήμα 3 ο Θεωρία αριθμών 19. Λύση: Είναι ν = 4κ+ υ, όπου υ = 0,1, ή 3. Αν υ= 0 τότε Αν υ=1 τότε ν = 4κ+ 1 τότε: 1+ ν( ν + ) 1+ 4κ ( 16κ + ) ( ) 1 Α= = = κ 16κ + + Ζ ( ) ( ) 1 + ( 4κ + 1 ) ( 4ρ + 3 ) 1+ 4κ+ 1 16κ + 8κ+ 1+ Α= =, όπου 4 4 ( ) ρ= 4κ + κ, ρ Ζ 1+ 16κρ + 1κ + 4ρ κρ + 3κ + ρ + 1 Άρα: Α = =, άρα Α= 4κρ+ 3κ+ ρ+ 1 Ζ 4 4 Όμοια δείχνουμε ότι αν ν = 4κ + ή ν = 4κ + 3 ο A δεν είναι ακέραιος. Άρα πρέπει ν = 4κ+ 1, με κ Ζ Δείξτε ότι για κάθε ν *. Λύση: Θέτουμε Ρ() την ισότητα = =πολ64 1 Για = 1 η ισότητα Ρ(1) είναι = 64=πολ64 αληθής. Έστω ότι η ισότητα Ρ() είναι αληθής δηλ. υποθέτουμε ότι ισχύει: = πολ = 64κ 9 9 = κ με κ θα δείξουμε ότι η ισότητα Ρ(ν+1) είναι επίσης αληθής δηλ. θα δείξουμε ότι ισχύει: + 1 πράγματι: ( ) x = x= x = 9( κ) 8 17 ( ) πολ64 + = x = κ 8 17 x = 9 64κ x = 64( 9κ+ + 1) x = 64ζ με ζ = 9κ+ + 1 άρα 64 x Δείξτε ότι για κάθε *.

10 130. Θεωρία αριθμών Βήμα 3 ο Λύση: Θέτουμε ( ) P την ισότητα 3 + = = πολ11 Για = 1 η ισότητα Ρ(1) είναι = 09 = πολ11 αληθής. Έστω ότι η ισότητα P( ) είναι αληθής δηλ. υποθέτουμε ότι ισχύει πολ11 + = = 11κ 9 9 = 11κ 64 μεκ θα δείξουμε ότι και η ισότητα P( + 1) είναι επίσης αληθής δηλ. θα δείξουμε ότι ισχύει: = πολ11 πράγματι: x = x = + ( ) x = 9 11κ x 11 9κ = + x = 11 9κ ( ) x = 11 9κ x = 11ζ με ζ = 9κ άρα 11 x. 9.α. Αν ακέραιος α διαιρείται με το 10 και αφήνει υπόλοιπο 7, βρείτε το υπόλοιπο της διαίρεσης του α με τους, 5, 0. β. Το 55 διαιρείται με τον θετικό ακέραιο β και δίνει πηλίκο 19. Βρείτε το β και το υπόλοιπο της διαίρεσης. γ. Αν α,β, γ Ν και ισχύει α+ 4β+ 1γ = 31 ενώ ακόμα ισχύουν α< 4 και β < 3, βρείτε τα α, β, γ. δ. Ο ακέραιος x διαιρείται με το 11 και αφήνει υπόλοιπο 3 ενώ όταν διαιρείται με το 8 αφήνει υπόλοιπο. Βρείτε το υπόλοιπο της διαίρεσης του x με το 88. Λύση: α. Ισχύει α = 10κ+ 7 με κ Ζ οπότε α = 10κ+ 6+ 1= ( 5κ+ 3) + 1= ρ+ 1 με ρ= 5κ+ 3 Ζ άρα το υπόλοιπο της διαίρεσης του α με το είναι 1. α= 10κ+ 5+ = 5( κ+ 1) + = 5f + με f = κ+ 1 Ζ άρα το υπόλοιπο της διαίρεσης του α με το 5 είναι. Ισχύει α = 10κ+ 7 με κ Ζ άρα κ = λ ή κ = λ+ 1 με λ Ζ οπότε αν:

11 Βήμα 3 ο Θεωρία αριθμών 131. i. κ = λ έχουμε α = 0λ+ 7. ii. κ = λ+ 1 έχουμε α= 10( λ+ 1) + 7= 0λ+ 17 άρα το υπόλοιπο είναι ή 7 ή 17. β. Ισχύει 55 = 19β+ υ με 0 υ< β άρα θα ισχύει: 55 β > 55 19β< β β< β 55 19β 0 55 β 19 Άρα β = 7 οπότε υ = = = = 4( β+ 3γ) + α γ. Ισχύουν άρα το 4 διαιρεί το 31 και δίνει πηλίκο β+ 3γ και με 0 α < 4 υπόλοιπο α όμως άρα α = 3 και β+ 3γ = 57 οπότε πάλι ισχύουν 57 = 3γ+ β με 0 β < 3 άρα το 3 διαιρεί το 57 και δίνει πηλίκο γ και υπόλοιπο β όμως άρα β = 0 και γ= 19. δ. Ισχύουν: x = 11κ+ 3 (με κ Ζ) άρα 8x = 88κ+ 4 οπότε: x = 8λ+ (με λ Ζ) άρα 11x = 88λ+ x = 33x 3x x = 3 11x 4 8x x = 3( 88λ+ ) 4( 88κ+ 4) x = 3 88λ κ 96 x = 3 88λ κ 96 x = 3 88λ 4 88κ x = 88( 3λ 88κ 1) + 58 x = 88f + 58 με f = 3λ 88κ 1 Ζ άρα το 88 διαιρεί τον x και αφήνει υπόλοιπο α. Δείξτε ότι για κάθε α κάθε α Ζ το κλάσμα Ζ ισχύει ( 3 α α + 5) (ή αλλιώς δείξτε ότι για ( ) είναι ακέραιος) α α β. Βρείτε για ποιες τιμές του α Ζ ισχύει 4 3α+ 5 (ή αλλιώς βρείτε α Ζ ώστε το κλάσμα 3α να είναι ακέραιος)

12 13. Θεωρία αριθμών Βήμα 3 ο γ. Βρείτε για ποιες τιμές του α Ζ ισχύει ( α+ )( 3α+ 1) (ή αλλιώς βρείτε α Ζ ώστε το κλάσμα 3α + 1 να είναι ακέραιος) α+ δ. Βρείτε για ποιες τιμές του α Ζ ισχύει ( )( 3 α+ 1 α + α+ 5) (ή αλλιώς βρείτε 3 α + α+ 5 α Ζ ώστε το κλάσμα να είναι ακέραιος) α+ 1 Λύση: α. α Ζ άρα α = 3κ ή α = 3κ+ 1 ή α = 3κ+. Αν α = 3κ τότε ( ) ( x = α α + 5 = 3κ 9κ + 5) = 3f με ( f = κ 9κ + 5) Ζάρα 3 x. Αν α = 3κ+ 1 τότε: ( ) ( )( = + = ) = ( )( ) x α α 5 3κ 1 9κ 6κ 1 5 3κ+ 1 9κ + 6κ+ 6 = ( )( ) = με ( )( σ 3κ 1 3κ κ ) = + τότε: ( ) ( )( = + = ) = ( )( ) 3 3κ 1 3κ κ 3σ Αν α 3κ x α α 5 3κ 9κ 1κ 4 5 = άρα 3 x. 3κ+ 9κ + 1κ+ 9 = ( )( 3 3κ+ 3κ + 4κ+ 3) = 3φ με ( )( φ = 3κ+ 3κ + 4κ+ 3) άρα 3 x. Δηλαδή ( 3 α α + 5) για κάθε α Ζ. β. α Ζ άρα α = 4κ+ υ με υ = 0,1,,3 τότε x = 3α+ 5 x = 3( 4κ+ υ) + 5 x = 1κ+ 3υ+ 5 x = 1κ+ 4+ 3υ+ 1 x = 4( 3κ+ 1) + 3υ+ 1= 4ρ+ 3υ+ 1με ρ= 3κ+ 1 Ζ Αν υ= 0 τότε x = 4ρ+ 1 άρα 4 x. Αν υ 1 = τότε x 4ρ 4 x 4( ρ 1) = + = + άρα 4 x. Αν υ= τότε x = 4ρ+ 7 x = 4ρ+ 8+ x = 4( ρ+ ) + άρα 4 x. Αν x = 4ρ+ 10 x = 4ρ+ 8+ x = 4( ρ+ ) + άρα 4 x. Οπότε 4 3α+ 5 αν και μόνο αν α = 4κ+ 1. γ. Ισχύει 3α+ 1= 3α+ 6 5= 3( α+ ) 5 άρα το κλάσμα 3α = είναι ακέραιος αν και μόνο αν α+ 5, άρα: α+ α+ α+ = 1 ή α+ = 1 ή α+ = 5 ή α+ = 5 α = 1 ή α = 3 ή α = 3 ή α = 7 δ. Με τη βοήθεια του σχήματος Horner βρίσκουμε ότι: ( )( ) 3 α + α+ 5= α+ 1 α α+ 3 +

13 Βήμα 3 ο Θεωρία αριθμών 133. Οπότε: = α α α α 5 α+ 1 α+ 1 οπότε: α+ 1= 1 ή α+ 1= 1 ή α+ 1= ή α+ 1= α = 0 ή α = ή α = 1 ή α = 3., θα είναι ακέραιος αν και μόνο αν α α. Αν 7 3α+ με α Ζ δείξτε ότι α = 7λ+ 4 (δηλ. το α διαιρείται με το 7 και αφήνει υπόλοιπο 4). β. Αν 17 3α+ β με α,β Ζ δείξτε ότι 17 5α+ 9β. γ. Δίνονται οι ακέραιοι α, β. Αν οι 3α, β διαιρούμενοι με το 5 δίνουν το ίδιο υπόλοιπο δείξτε ότι 5 α+ 3β και 5 3α + 8αβ 3β. δ. Αν α,β Ζ και 3 α+ β και 3 5α+ 3β δείξτε ότι 9 αβ. Λύση α. Ισχύει 7 3α+ άρα 3α+ = 7κ (με κ Ζ) 7κ κ α = α = κ+ όμως α Ζ άρα κ Ζ άρα 3 κ άρα κ = 3λ (με λ Ζ) οπότε κ = 3λ+ άρα: 3λ+ α = ( 3λ+ ) + α = 6λ+ 4+ λ α = 7λ+ 4 3 β. Ισχύει 17 3α+ β άρα: 3α+ β = 17κ με κ Ζ 17κ 3α β = ή κ α β = 8κ α+ Όμως β Ζ άρα κ α Ζ οπότε κ α άρα κ α = λ (με λ Ζ) οπότε α = κ λ άρα β = 7κ+ 3λ οπότε: x 5α 9β x = 5 κ λ + 9 7κ+ 3λ = + ( ) ( ) x = 5κ 10λ + 63κ + 7λ x = 68κ+ 17λ x = 17( 4κ+ λ) x = 17ζ με ζ = ( 4κ + λ) Ζ, άρα 17 x= 5α+ 9β. γ. Ισχύουν 3α = 5κ+ υ β = 5λ+ υ με κ,λ Ζ και 0 υ 4 < άρα 3α β 5( κ λ) = ή 3α β = 5ρ με ρ= κ λ Ζ, β = 3α 5ρ

14 134. Θεωρία αριθμών Βήμα 3 ο οπότε: x = α+ 3β x = α + 3( 3α 5ρ) x = 10α 15ρ x = 5( α 3ρ) x = 5φ με φ= α 3ρ Ζ άρα 5 α+ 3β Ισχύουν 5 3α β 5 α+ 3β άρα 5 5 ( 3α β)( α 3β) + ή 5 3α + 8αβ 3β δ. Ισχύουν 3 α+ β 3 5α+ 3β άρα 3 ( 5α+ 3β) 5( α+ β) = β Ισχύουν 3 α+ β 3 5α+ 3β άρα 3 3( α+ β) ( 5α+ 3β) = α άρα 3 α 3 β οπότε 9 αβ 1.α. Αν ο ακέραιος α είναι άρτιος δείξτε ότι: i. 8 ( α 1) + 1 ii. ( ) ( ) 1 α + α+ 1 + α+ 3 α+ β. Αν λ Ζ και x = 3λ+ και y = 5λ+ 4: i. Βρείτε τους κοινούς διαιρέτες των x, y. ii. Δείξτε ότι 4x y. iii. Η διαίρεση του x με το 3 και αφήνει υπόλοιπο 1. γ. i. Αν ρ περιττός δείξτε ότι ii. Αν α, β, γ περιττοί δείξτε ότι Λύση α. Ο α είναι άρτιος άρα α = κ με κ Ζ i. τότε ( ) ( ) 4 18 ρ + 6ρ 7. Α = α+ 1 1= κ+ 1 1= 4κ + 4κ = 4κ( κ+ 1) όμως* ( ) Άρα Α 4 ζ 8ζ * οι κ, κ 1 στο βιβλίο) κ κ+ 1 = ζ, με ζ Ζ. = = ( ) 8 Α = α α + β γ. + είναι διαδοχικοί ακέραιοι άρα ( ) κ κ+ 1 = ζ με ζ Ζ (εφαρμογή

15 Βήμα 3 ο Θεωρία αριθμών 135. ii. Τότε: ( ) ( ) Β= α + α+ 1 + α+ 3 α+ Β= α + α + α+ 1+ α + 6α+ 9 α+ Β= 3α + 6α+ 1 Β= 1κ + 1κ+ 1 ( ) Β = 1 κ + κ + 1 = 1φ με φ = κ + κ+ 1 Ζ Άρα ( ) ( ) 1 α + α+ 1 + α+ 3 α+ β.i. Έστω δ κοινός διαιρέτης των x, y τότε δx= 3λ+ δy= 5λ+ 4 οπότε δ =± 1 ή δ =± άρα δ3( 5λ+ 4) 5( 3λ+ ) = ii. Έχουμε: Γ x y ( 3λ ) ( 5λ 4) = = + + = 9λ + 1λ+ 4 5λ 40λ 16= ( ) 16λ 8λ 1 = 4 4λ 7λ 3 = 4σ με iii. Έχουμε: ( ) x = 9λ + 1λ+ 4= 9λ + 1λ+ 3+ 1= 3 3λ + 4λ = 3μ+ 1 με μ = 3λ + 4λ+ 1 Ζ σ= 4λ 7λ 3 Ζ άρα 4 Γ = x y Άρα το 3 διαιρεί το x και αφήνει υπόλοιπο 1 γ.i. Αν ρ περιττός τότε ρ = 8+ 1 με Ζ (εφαρμογή στο βιβλίο) 4 άρα Δ = ρ + 6ρ 7 = ( 8ν+ 1) + 6( 8ν+ 1) 7 = * ν, ν 1 64ν + 16ν ν = 64ν + 64ν = 64ν( ν+ 1) = 64 ζ = 18ζ άρα 18 Δ ν ν+ 1 = ζ + διαδοχικοί ακέραιοι άρα ( ) ii. α, β, γ περιττοί άρα α = 8κ+ 1, β = 8λ+ 1 και γ = 8μ+ 1 οπότε Ε = α + β γ Ε = κ+ 1+ 8λ+ 1 16μ Ε = 8( κ+ λ μ) άρα 8 Ε

16 136. Θεωρία αριθμών Βήμα 4 ο 1. Να δείξετε ότι για κάθε θετικό ακέραιο ν ισχύει: ν( ν+ 1) ν( ν+ 1) ( ν+ ) = 6. Να δείξετε ότι ο ισχυρισμός Ρ( ν ): < (εμφανίζονται ν ριζικά) είναι αληθής για κάθε θετικό ακέραιο ν.

17 Βήμα 4 ο Θεωρία αριθμών Έστω α1 = και αν+ 1= 4+ α να δείξετε ότι: ν α > + α ii. αν < 3 για κάθε ν= 1,,3,... i. ν 1 ν 4. Να αποδείξετε ότι ν 3 3 > ν για κάθε ν 4 3 ν 3 > ν για κάθε ν 4 (ν ακέραιος). Στη συνέχεια να αποδείξετε ότι 5. Να δείξετε ότι για κάθε θετικό ακέραιο ισχύει: ημν x ν ημx

18 138. Θεωρία αριθμών Βήμα 4 ο 6. Να δείξετε ότι ισχύει η ισότητα: ν ( 3ν 1) = ν ( ν+ 1) για κάθε θετικό ακέραιο. 7. Να δείξετε ότι το γινόμενο τριών διαδοχικών ακεραίων είναι πάντα πολλαπλάσιο του Να βρεθούν οι θετικοί ακέραιοι οι οποίοι όταν διαιρούνται δια 3 δίνουν πηλίκο διπλάσιο του υπολοίπου.

19 Βήμα 4 ο Θεωρία αριθμών i. Αν α Ζ και ii. Αν 3 α τότε και 9 α. 3 α να δείξετε ότι 3 α. 10. Έστω α,β Ζ και β>. Να αποδείξετε ότι αν βα + 1 τότε ο β δεν διαιρεί τον 4 α Αν α,β,x είναι ακέραιοι τέτοιοι ώστε α β= πολ και x = α + β δείξτε ότι το x είναι άθροισμα τερταγώνων δύο ακεραίων αριθμών.

20 140. Θεωρία αριθμών Βήμα 4 ο 1. Να βρεθεί ακέραιος α αν είναι γνωστό ότι η διαίρεση του α με το 7 δίνει πηλίκο έναν άρτιο αριθμό λ και υπόλοιπο 3 λ. 13. Να βρείτε τη μορφή των ακεραίων ρ για τους οποίους ισχύει 4ρ+ 1= 3λ, λ Ζ. 14. Αν α και β θετικοί ακέραιοι με α> β να αποδειχθεί ότι το υπόλοιπο της διαίρεσης του α με το β είναι μικρότερο του α.

21 Βήμα 4 ο Θεωρία αριθμών Αν β ακέραιος, να βρεθούν όλοι οι πιθανοί ακέραιοι που διαιρούν συγχρόνως τον 5β+ 3 και β 1. 3ν+ ν Να δείξετε ότι για κάθε θετικό ακέραιο ν ισχύει: ν+ 1 ν+ 17. Να δείξετε ότι για κάθε θετικό ακέραιο ν ισχύει: 73 +

22 14. Θεωρία αριθμών Βήμα 4 ο 18. Αν ο ν είναι θετικός περιττός ακέραιος τότε να δείξετε ότι: ( ν! = 1 3 ν ) ν( ν+ 1) ν!

23 Βήμα 5 ο Θεωρία αριθμών 143. Θέμα 1 ο Έστω α, β, γ ακέραιοι. Αποδείξτε ότι: Αν α β και α γ, τότε α ( β+ γ). (Μονάδες 5) Θέμα 0 Να δείξετε ότι για κάθε φυσικό αριθμό ισχύει: ( ) ν ν = 1 (Μονάδες 5)

24 144. Θεωρία αριθμών Βήμα 5 ο Θέμα 3 0 Να δείξετε ότι για κάθε ν Ζ ισχύουν: i. ν + ν ii. ν ν (Μονάδες 5) Θέμα 4 0 Aν ένας ακέραιος α, δεν είναι πολλαπλάσιο του 5, να δείξετε ότι η διαίρεση του α με το 5 δίνει υπόλοιπο 1 ή 4. Στη συνέχεια να δείξετε ότι αν οι ακέραιοι αριθμοί x 4 4 και y δεν είναι πολλαπλάσια του 5 τότε 5x y. (Μονάδες 5)

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 13 ιαιρετότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έστω α,β δυο ακέραιοι µε β 0. Θα λέµε ότι ο β διαιρεί τον α και θα γράφουµε β/α όταν η διαίρεση του α µε τον β είναι τέλεια. ηλαδή όταν υπάρχει ακέραιος

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

Η Ευκλείδεια διαίρεση

Η Ευκλείδεια διαίρεση 1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,

Διαβάστε περισσότερα

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν. Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 4. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤH Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εάν ζητείται να δειχθεί ισότητα ή ανίσωση

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής 1. * Η µέθοδος της µαθηµατικής επαγωγής χρησιµοποιείται για την απόδειξη προτάσεων Ρ (ν), όταν Α. ν R Β. ν Q Γ. ν R*. ν N Ε. κανένα από τα προηγούµενα 2. * Για τους ακεραίους

Διαβάστε περισσότερα

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς :

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ 1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : 1. Αν μια πρόταση Ρ(ν) αληθής για ν = 3 και με την υπόθεση ότι Ρ(ν) είναι αληθής αποδείξουμε ότι και η Ρ(ν+1)

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων . ιαίρεση Πολυωνύμων 1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Η διαίρεση δύο πολυωνύμων στηρίζεται στο παρακάτω θεώρημα: «Για κάθε ζεύγος Δ ( x) και δ ( x) με δ ( x)

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα :

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : Βήμα 1 ο : Δείχνουμε ότι η πρόταση Ρ( ν ) είναι αληθής για το μικρότερο φυσικό για τον οποίο ζητείται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή 49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ 158 44 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ Μέγιστος Κοινός Διαιρέτης Έστω α, β δύο ακέραιοι Ένας ακέραιος δ λέγεται κοινός διαιρέτης των α και β, όταν είναι διαιρέτης και του α και του

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

K. Μυλωνάκης Αλγεβρα B Λυκείου

K. Μυλωνάκης Αλγεβρα B Λυκείου ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 Ο : ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Η ιδιότητα α+ β = β+ α λέγεται.. 2. Η ιδιότητα α ( β γ) ( ) + + = α+ β + γ λέγεται. 3. Ο αριθμός 0 είναι το..της πρόσθεσης φυσικών αριθμών αφού ισχύει:

Διαβάστε περισσότερα

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή.

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή. Ερωτήσεις ανάπτυξης 1. * Παρατηρούµε ότι: 1 11 ( + = 1 ) 1+ = ( + 1) 1 3 33 ( + + + = 1 ) Ποιο νοµίζετε ότι θα είναι το άθροισµα 1 + + 3 +... + ν; Αποδείξτε την ισότητα που συµπεράνατε µε επαγωγή.. * Μετράµε

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 41 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εισαγωγή Η Θεωρία Αριθμών, δηλαδή η μελέτη των ιδιοτήτων των θετικών ακεραίων, έθεσε από πολύ νωρίς τους μαθηματικούς μπροστά στο εξής πρόβλημα: Κάποια πρόταση

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

(x) = δ(x) π(x) + υ(x)

(x) = δ(x) π(x) + υ(x) Μάθηµα 12 Κεφάλαιο 4ο: Πολυώνυµα Πολυωνυµικές Εξισώσεις Θεµατικές Ενότητες: Α. ιαίρεση Πολυωνύµων Β. Σχήµα Horner Η ταυτότητα της Ευκλείδειας διαίρεσης Αν ( χ), δ ( χ) δύο πολυώνυµα µε δ ( χ) 0 και βαθµούς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι

Διαβάστε περισσότερα

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

Φροντιστήριο #4 Λυμένες Ασκήσεις Μαθηματική Επαγωγή 13/3/2018

Φροντιστήριο #4 Λυμένες Ασκήσεις Μαθηματική Επαγωγή 13/3/2018 Φροντιστήριο #4 Λυμένες Ασκήσεις Μαθηματική Επαγωγή 1//018 Σημείωση: Όλες οι παρακάτω αποδείξεις ακολουθούν την επαγωγική μέθοδο. Κάποια από τα παραδείγματα έχουν αποδειχθεί και με άλλες μεθόδους στο Φροντιστήριο

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Εύρεση ν-στού πρώτου αριθμού

Εύρεση ν-στού πρώτου αριθμού Εύρεση ν-στού πρώτου αριθμού Ορισμός Πρώτος αριθμός λέγεται κάθε φυσικός αριθμός (εκτός της μονάδας) που έχει φυσικούς διαιρέτες μόνο τον εαυτό του και τη μονάδα. Ερώτημα: Να υπολογιστεί ο ν-στός πρώτος

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x. ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Ξένος Θ., Eκδόσεις Zήτη, Απρίλιος 2010, Θεσσαλονίκη

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Ξένος Θ., Eκδόσεις Zήτη, Απρίλιος 2010, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Με το συγγραφέα επικοινωνείτε: Tηλ. 310.348.086, e-mail: thaasisxeos@yahoo.gr ISBN 978-960-456-08-4 Copyright: Ξένος Θ., Eκδόσεις Zήτη, Απρίλιος 010,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις

ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ 2016-17 Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις Άσκηση 1. Να εξετάσετε ποιες από τις παρακάτω ισότητες παριστάνουν Ευκλείδειες διαιρέσεις α) 80 = 9 8 +8 β)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 234 Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος» 1. Λ 17. Σ 32. Σ 47. Σ 62. Σ 2. Σ 18. Σ 33. Λ 48. Λ 63. Σ 3. Λ 19. Λ 34. Σ 49. Σ 64. Λ 4.

Διαβάστε περισσότερα

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να διαιρέσουμε δύο πολυώνυμα Δίνονται τα πολυώνυμα: P x x x x 8x 4 = + +4 και δ ( x) = x x α) Να βρεθεί το πηλίκο και το υπόλοιπο της διαίρεσης

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης. 14/2/2012

Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης.  14/2/2012 Πολυώνυμα Πολυωνυμικές εξισώσεις Άλγεβρα 01 Β Λυκείου Athens 01 13 14//01 1. Περί πολυωνύμων (Α) Πολυώνυμα P x a x a x... a x a v v 1 Πολυώνυμο ονομάζουμε κάθε παράσταση της μορφής: όπου a v, a v-1,,a

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί ΟΜΙΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ 2013-14 Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country. David Hilbert ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ Διαιρετότητα

Διαβάστε περισσότερα

Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4.1 πωλυωνυμα Η έννοια του πολυωνύμου Έστω x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε πραγματική τιμή. Καλούμε μονώνυμο του x κάθε παράσταση της μορφής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 / Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv)

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv) ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ 1. Σε κάθε μία από τις παρακάτω προτάσεις να κυκλώσετε το γράμμα Α, αν θεωρείτε ότι ο ισχυρισμός που διατυπώνετε είναι αληθής, ενώ αν θεωρείτε ότι είναι ψευδής να κυκλώσετε το Ψ. Οι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ Στα παρακάτω γίνεται μία προσπάθεια, ομαδοποίησης των ασκήσεων επίλυσης εξισώσεων και ανισώσεων, συναρτησιακών μορφών, συνεχών συναρτήσεων,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 015 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ 0. ΕΙΣΑΓΩΓΗ - ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Περιεχόμεα 0. ΕΙΣΑΓΩΓΗ - ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 1. ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ... 5. ΕΥΚΛΕΙΔΙΑ ΔΙΑΙΡΕΣΗ... 1. ΔΙΑΙΡΕΤΟΤΗΤΑ... 1 4 ΜΕΓΙΣΤΟΣ

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)! ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι

Διαβάστε περισσότερα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 / Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα