ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ"

Transcript

1 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του και ποιο το τέλος. Π.χ. στο παρακάτω διάνυσμα, Α είναι η αρχή και Β είναι το τέλος, συμβολίζεται με AB και παριστάνεται από ένα βέλος που ξεκινάει από το Α και καταλήγει στο Β. Α Β Μηδενικό λέγεται το διάνυσμα στο οποίο η αρχή και το τέλος συμπίπτουν. Μέτρο του διανύσματος λέγεται το μήκος του ευθυγράμμου τμήματος ΑΒ και συμβολίζεται με AB Μοναδιαίο λέγεται το διάνυσμα με μέτρο το Φορέας ενός μη μηδενικού διανύσματος είναι η ευθεία πάνω στην οποία βρίσκεται το διάνυσμα. Φορέας του μηδενικού διανύσματος AA ευθεία που περνάει από το σημείο Α. Στα παρακάτω σχήματα : Στο (α) τα διανύσματα AB συμβολίζουμε AB ενώ στο (β) τα διανύσματα AB αντίρροπα και συμβολίζουμε AB θεωρείται κάθε,, είναι ομόρροπα και, είναι (α) (β) Δύο μη μηδενικά διανύσματα AB, που έχουν τον ίδιο φορέα ή παράλληλους φορείς, λέγονται παράλληλα ή συγραμμικά και συμβολίζεται AB // Δύο διανύσματα λέμε ότι είναι ίσα όταν έχουν το ίδιο μέτρο και είναι ομόρροπα, ενώ λέμε ότι είναι αντίθετα όταν έχουν το ίδιο μέτρο και είναι αντίρροπα. Αν τα διανύσματα AB Γενικά ισχύει: είναι αντίθετα γράφουμε AB, AB BA =-

2 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Έστω δύο μη μηδενικά διανύσματα,. Αν με αρχή ένα σημείο Ο πάρουμε τα διανύσματα OA και OB τότε την κυρτή γωνία ˆ που ορίζουν οι ημιευθείες ΟΑ και ΟΒ ονομάζεται γωνία των διανυσμάτων, και συμβολίζεται (, ) ή (, ). Αν (, )=90 0, τότε λέμε ότι τα διανύσματα, είναι κάθετα. ΠΡΟΣΘΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ Έστω δύο μη μηδενικά διανύσματα,. Με αρχή ένα σημείο Ο παίρνουμε τα διανύσματα OA και OB. Αν με αρχή το σημείο Α πάρουμε το διάνυσμα AM OB, τότε το διάνυσμα OM λέγεται άθροισμα των διανυσμάτων, ΙΔΙΟΤΗΤΕΣ ΠΡΟΣΘΕΣΗΣ ΔΙΑΝΥΣΜΑΤΩΝ () + = + () ( + )+ = +( + ) (3) + 0 = (4) +(- )= 0 Διαφορά - του διανύσματος από το διάνυσμα ορίζεται ως άθροισμα του με το -. Δηλαδή - = +(- )

3 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Διάνυσμα θέσης ενός σημείου Μ ή διανυσματική ακτίνα του Μ ως προς ένα σταθερό σημείο Ο του χώρου λέγεται το διάνυσμα OM. Κάθε διάνυσμα AB σημείων Α και Β και είναι AB = OB OA μπορεί να γραφεί συναρτήσει των διανυσμάτων θέσης των Α Ο Β Για δύο οποιαδήποτε διανύσματα ισχύει γενικά Αν τότε + = + Αν τότε - = + ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ Αν λ ένας πραγματικός αριθμός με λ 0 και ένα μη μηδενικό διάνυσμα τότε ονομάζουμε γινόμενο του λ με το και συμβολίζουμε λ ένα διάνυσμα το οποίο: Είναι ομόρροπο του, αν λ>0 και αντίρροπο του, αν λ<0 Έχει μέτρο λ. ΙΔΙΟΤΗΤΕΣ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ () λ( + )=λ +λ () (λ+μ) =λ +μ (3) λ(μ )=(λμ) ΑΚΟΜΗ: α) λ = 0 λ=0 ή = 0 β) (-λ )=λ(- )=-(λ ) γ) λ( - )=λ -λ δ) (λ-μ) =λ -μ ε) Αν λ =λ και λ 0, τότε = ζ) Αν λ =μ και 0, τότε λ=μ ΘΕΩΡΗΜΑ Αν, είναι δύο διανύσματα με 0, τότε // =λ, λ Αν Μ μέσο του ευθυγράμμου τμήματος ΑΒ τότε είναι OA OB OM Κάθε διάνυσμα της μορφής =κ +λ, όπου κ,λ ονομάζεται γραμμικός συνδυασμός των δύο διανυσμάτων και.

4 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας με αρχή Ο και μοναδιαίο διάνυσμα i χ Ο Ι Μ(χ) χ 0 i * Στο παραπάνω σχήμα είναι i = και για κάθε σημείο Μ του άξονα χ χ υπάρχει κάποιο χ, ώστε OM =χ i. Ο αριθμός χ ονομάζεται τετμημένη του Μ. Καρτεσιανό επίπεδο Οχψ ψ Μ Μ(χ,ψ) χ j χ Ο i Μ ψ Στο παραπάνω σχήμα έχουμε δύο κάθετους άξονες χ χ και ψ ψ. που ορίζουν το καρτεσιανό επίπεδο Οχψ. Αν Μ ένα σημείο αυτού του επιπέδου και Μ, Μ οι προβολές του Μ στους άξονες χ χ και ψ ψ αντίστοιχα και χ η τετμημένη του σημείου Μ ως προς τον άξονα χ χ και ψ η τετμημένη του σημείου Μ ως προς τον άξονα ψ ψ, τότε ο αριθμός χ λέγεται τετμημένη του σημείου Μ και ο αριθμός ψ λέγεται τεταγμένη του σημείου Μ. Το διατεταγμένο ζεύγος (χ,ψ) αποτελεί τις συντεταγμένες του σημείου Μ. Έτσι ένα σημείο συμβολίζεται με Μ(χ,ψ) ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΔΙΑΝΥΣΜΑΤΟΣ ψ Α Α(χ,ψ) χ j χ Ο i Α ψ Αν τώρα μας δώσουν ένα διάνυσμα που ανήκει στο επίπεδο Οχψ, μπορούμε να πάρουμε το διάνυσμα OA με αρχή το Ο, ώστε OA =. Είναι τότε OA =OA +OA ή =χ i +ψ j. Το γράφεται κατά μοναδικό τρόπο στη μορφή αυτή.

5 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Τα διανύσματα χ i, ψ j λέγονται συνιστώσες του διανύσματος κατά τη διεύθυνση των i, j αντίστοιχα, ενώ οι αριθμοί χ, ψ λέγονται συντεταγμένες του διανύσματος στο σύστημα Οχψ. Γράφουμε =(χ,ψ) Αν =(α,α ) και =(β,β ) τότε :. = αν και μόνο αν α =β και α =β. + =(α +β,α +β ) 3. λ =(λα,λα ) 4. λ +μ =(λα +μβ,λα +μβ ) Αν Μ μέσο ενός ευθυγράμμου τμήματος ΑΒ με Α(χ,ψ ) και Β(χ,ψ ) τότε οι συντεταγμένες του σημείου Μ(χ,ψ) είναι :, Το διάνυσμα που ορίζεται από τα σημεία Α(χ,ψ ) και Β(χ,ψ ) είναι το AB =(χ -χ, ψ -ψ ) Το διάνυσμα =(χ,ψ) έχει μέτρο = Αν Α(χ,ψ ) και Β(χ,ψ ), τότε AB = ( ) ( ) Αν =(χ,ψ ) και =(χ,ψ ) ονομάζουμε det(, )= Είναι // det(, )=0 =χ ψ -χ ψ Αν =(χ,ψ) ονομάζουμε συντελεστή διεύθυνσης του διανύσματος το πηλίκο λ = Δύο διανύσματα είναι παράλληλα αν έχουν τον ίδιο συντελεστή διεύθυνσης.

6 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε τον πραγματικό αριθμό όπου φ η γωνία των διανυσμάτων και. Αν = 0 ή = 0, τότε ορίζουμε =0 Άμεσες συνέπειες του ορισμού: = =0 = συνφ = = - i = j =, i j =0 Αν =(χ,ψ ) και =(χ,ψ ) τότε =χ χ +ψ ψ ΙΔΙΟΤΗΤΕΣ. (λ ) = (λ )=λ( ). ( + )= + 3. λ λ = - Αν θ είναι η γωνία των διανυσμάτων και τότε συνθ= ή συνθ= Ο θ v Μ Μ Α OM = v v v v v

7 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ o ΚΕΦΑΛΑΙΟ Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Αν μία ευθεία ε σχηματίζει με τον άξονα χ χ γωνία ω τότε ο αριθμός λ=εφω ονομάζεται συντελεστής διεύθυνσης ή κλίση της ευθείας. Γωνία ω που σχηματίζει η ευθεία με τον άξονα χ χ ονομάζεται η γωνία που διαγράφεται αν ο άξονας χ χ περιστραφεί κατά τη θετική φορά (αντίθετα με την κίνηση των δεικτών του ρολογιού), με κέντρο περιστροφής το σημείο τομής της ευθείας με τον άξονα χ χ, μέχρι να ταυτιστεί με την ευθεία. Αν ε//χ χ τότε λ=0 Αν ε//ψ ψ, τότε δεν ορίζεται συντελεστής διεύθυνσης για την ευθεία ε. Ο συντελεστής διεύθυνσης της ευθείας που ορίζεται από τα σημεία Α(χ,ψ ) και Β(χ,ψ ) με χ χ είναι Αν ε και ε είναι δύο ευθείες με συντελεστές διεύθυνσης λ και λ αντίστοιχα τότε: ε //ε λ =λ ε ε λ λ = - Η εξίσωση μιας ευθείας που διέρχεται από το σημείο Α(χ 0,ψ 0 ) και έχει συντελεστή διεύθυνσης λ είναι: ψ-ψ 0 =λ(χ-χ 0 ) Αν μια ευθεία είναι παράλληλη στον άξονα ψ ψ και διέρχεται από το σημείο Α(χ 0,ψ 0 ) τότε έχει εξίσωση χ=χ 0 Η εξίσωση της ευθείας που διέρχεται από τα σημεία Α(χ,ψ ) και Β(χ,ψ ) είναι : ψ-ψ = ψ=ψ (χ-χ ) αν χ χ αν ψ =ψ και χ χ χ=χ αν χ =χ

8 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Γενικά μία ευθεία που διέρχεται από την αρχή των αξόνων έχει εξίσωση : ψ=λχ. ΘΕΩΡΗΜΑ Κάθε ευθεία του επιπέδου έχει εξίσωση της μορφής Αχ+Βψ+Γ=0 με Α 0 ή Β 0 και αντίστροφα κάθε εξίσωση αυτής της μορφής παριστάνει ευθεία γραμμή. Η ευθεία Αχ+Βψ+Γ=0 έχει συντελεστή διεύθυνσης λ= (αν Β 0) Το διάνυσμα =(Β,-Α) είναι παράλληλο στην ευθεία ε : Αχ+Βψ+Γ=0 Το διάνυσμα n =(A,B) είναι κάθετο στην ευθεία ε : Αχ+Βψ+Γ=0 Για να βρούμε τη γωνία που σχηματίζουν δύο ευθείες ε και ε γράφουμε τα διανύσματα και που είναι αντίστοιχα παράλληλα στις ε και ε και βρίσκουμε τη γωνία που σχηματίζουν τα και B A τότε συνφ= Οι ευθείες που ορίζονται από την εξίσωση (Αχ+Βψ+Γ)+λ(Κχ+Λψ+Μ)=0 () αποτελούν μια οικογένεια ευθειών που περνούν από το κοινό σημείο των ευθειών ε : Αχ+Βψ+Γ=0 () και ε : Κχ+Λψ+Μ=0 (3). Για να βρούμε το κοινό σημείο αυτών των ευθειών λύνουμε το σύστημα των () και (3) Η απόσταση του σημείου Μ(χ 0,ψ 0 ) από την ευθεία ε: Αχ+Βψ+Γ=0 είναι: d ( M, ) 0 0 Το εμβαδόν του τριγώνου που σχηματίζουν τα σημεία : Α(χ,ψ ), Β(χ,ψ )και Γ(χ 3,ψ 3 ) είναι : ( AB ) det(, AB A)

9 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ Ο ΚΥΚΛΟΣ Κύκλο ονομάζουμε το γεωμετρικό τόπο των σημείων του επιπέδου που ισαπέχουν από ένα σταθερό σημείο του, που το ονομάζουμε κέντρο του κύκλου αυτού. Την απόσταση του τυχαίου σημείου του κύκλου από το κέντρο την ονομάζουμε ακτίνα. Αν πάρουμε ένα ορθοκανονικό σύστημα συντεταγμένων με αρχή το κέντρο Ο, τότε η εξίσωση του κύκλου θα είναι: x y, όπου ρ η ακτίνα Η εξίσωση του κύκλου με κέντρο ένα σημείο Κ(χ 0,ψ 0 ) και ακτίνα ρ είναι: (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Αν Μ(χ,ψ) ένα σημείο κύκλου με κέντρο το Ο(0,0) και ακτίνα ρ, τότε αν φ είναι η γωνία που σχηματίζει ο άξονας χ χ με το διάνυσμα OM τότε : χ=ρσυνφ και ψ=ρημφ φ[0,π) ΕΦΑΠΤΟΜΕΝΗ ΚΥΚΛΟΥ Η εξίσωση της ευθείας που εφάπτεται στον κύκλο με κέντρο Ο(0,0) και ακτίνα ρ στο σημείο Μ(χ, ψ ) έχει εξίσωση: χχ +ψψ =ρ Η εξίσωση της ευθείας που εφάπτεται στον κύκλο με κέντρο Κ(χ 0,ψ 0 ) και ακτίνα ρ στο σημείο Μ(χ, ψ ) έχει εξίσωση: (χ-χ )(χ-χ 0 )+(ψ-ψ )(ψ-ψ 0 )=ρ Η εξίσωση χ +ψ +Αχ+Βψ+Γ=0 με την προϋπόθεση ότι Α +Β -4Γ>0 A B παριστάνει κύκλο με κέντρο K(, ) και ακτίνα ρ= A B 4 4

10 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΠΑΡΑΒΟΛΗ Παραβολή με εστία το σταθερό σημείο Ε, και διευθετούσα την ευθεία δ ονομάζουμε το γεωμετρικό τόπο των σημείων που έχουν την ιδιότητα να ισαπέχουν από το σημείο Ε και την ευθεία δ. Αν θεωρήσουμε σαν άξονα χ χ την ευθεία που είναι κάθετη στην δ από το Ε και άξονα ψ ψ τη μεσοκάθετο της απόστασης του Ε από τη δ, τότε η εξίσωση της παραβολής είναι : τη διευθετούσα δ. ψ =ρx Η εστία έχει συντεταγμένες, όπου ρ είναι η απόσταση της εστίας Ε από E,0 και η διευθετούσα εξίσωση: x

11 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Αν θεωρήσουμε σαν άξονα ψ ψ την ευθεία που είναι κάθετη στην δ από το Ε και άξονα χ χ τη μεσοκάθετο της απόστασης του Ε από τη δ, τότε η εξίσωση της παραβολής είναι : τη διευθετούσα δ. χ =ρψ Η εστία έχει συντεταγμένες, όπου ρ είναι η απόσταση της εστίας Ε από 0, E, και η διευθετούσα εξίσωση: Η εφαπτομένη της παραβολής στο σημείο της Μ(χ,ψ ) έχει εξίσωση : y ( x ) x ( y ), αν η παραβολή έχει εξίσωση y x, αν η παραβολή έχει εξίσωση x y Η κάθετη από την εστία στη διευθετούσα είναι άξονας συμμετρίας της παραβολής. ΑΝΑΚΛΑΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΠΑΡΑΒΟΛΗΣ

12 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Η κάθετη στην εφαπτομένη μιας παραβολής στο σημείο επαφής Μ διχοτομεί τη γωνία που σχηματίζουν η ημιευθεία ΜΕ και η Μt που είναι ομόρροπη της ΟΕ, όπου Ε, οι εστία της παραβολής. ΕΛΛΕΙΨΗ Έστω Ε και Ε δύο σταθερά σημεία ενός επιπέδου που απέχουν απόσταση γ (γ>0). Τότε ονομάζουμε έλλειψη με εστίες τα σημεία Ε και Ε το γεωμετρικό τόπο των σημείων του επιπέδου των οποίων το άθροισμα των αποστάσεων από τα σημεία Ε και Ε είναι σταθερό και μεγαλύτερο του Ε Ε. Το σταθερό αυτό άθροισμα το συμβολίζουμε με α. Η απόσταση Ε Ε=γ ονομάζεται εστιακή απόσταση της έλλειψης. Αν θεωρήσουμε ορθοκανονικό σύστημα συντεταγμένων με άξονα χ χ την ευθεία που ορίζουν οι Εστίες και άξονα ψ ψ τη μεσοκάθετο του Ε Ε τότε : Η εξίσωση της έλλειψης είναι x y, Οι Εστίες είναι : Ε (-γ,0), Ε(γ,0) Οι κορυφές : Κ (-α,0), Κ(α,0) Β (0,-β), Β(0,β) Ο μεγάλος άξονας Κ Κ=α Ο μικρός άξονας Β Β=β Εκκεντρότητα ε= Αν Μ(χ,ψ) σημείο της έλλειψης τότε x y Δύο ελλείψεις με ίδια εκκεντρότητα λέγονται όμοιες.

13 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Αν θεωρήσουμε ορθοκανονικό σύστημα συντεταγμένων με άξονα ψ ψ την ευθεία που ορίζουν οι Εστίες και άξονα χ χ τη μεσοκάθετο του Ε Ε τότε : Η εξίσωση της έλλειψης είναι x y, Οι Εστίες είναι : Ε (0,-γ), Ε(0,γ) Οι κορυφές : Κ (0,-α), Κ(0,α) Β (-β,0), Β(β,0) Ο μεγάλος άξονας Κ Κ=α Ο μικρός άξονας Β Β=β Εκκεντρότητα ε= Αν Μ(χ,ψ) σημείο της έλλειψης τότε x y Μία έλλειψη έχει άξονες συμμετρίας τους άξονες χ χ και ψ ψ και κέντρο συμμετρίας την αρχή των αξόνων. Αν δηλαδή το σημείο Μ(χ,ψ) είναι σημείο της έλλειψης τότε και τα σημεία Α(-χ,ψ), Β(χ,-ψ), Γ(-χ,-ψ) είναι σημεία της έλλειψης. Η εφαπτομένη της έλλειψης στο σημείο της Μ(χ,ψ ) έχει εξίσωση : xx, αν η έλλειψη έχει εξίσωση x y xx, αν η έλλειψη έχει εξίσωση x y ΑΝΑΚΛΑΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΕΛΛΕΙΨΗΣ Η κάθετη στην εφαπτομένη μιας έλλειψης στο σημείο επαφής Μ διχοτομεί τη γωνία E, όπου Ε, Ε, οι εστίες της έλλειψης.

14 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΥΠΕΡΒΟΛΗ Έστω Ε και Ε δύο σταθερά σημεία ενός επιπέδου. Ονομάζουμε υπερβολή με εστίες τα σημεία Ε,Ε το γεωμετρικό τόπο των σημείων του επιπέδου των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεών τους από τις εστίες είναι σταθερή και μικρότερη του Ε Ε. Η απόσταση Ε Ε=γ (γ>0) ονομάζεται εστιακή απόσταση της υπερβολής. Την απόλυτη τιμή της διαφοράς των αποστάσεων κάθε σημείου από τις εστίες την παριστάνουμε συνήθως με α (α>0). Αν χρησιμοποιήσουμε ορθοκανονικό σύστημα αξόνων με άξονα χ χ την ευθεία που ορίζουν οι εστίες και άξονα ψ ψ τη μεσοκάθετο του Ε Ε τότε η υπερβολή έχει εξίσωση: x y Όπου Οι εστίες είναι Ε (-γ,0), Ε(γ,0) Οι κορυφές Α (-α,0), Α(α,0) Εκκεντρότητα ε= > Αν α=β η υπερβολή λέγεται ισοσκελής. Αν Μ(χ,ψ) ένα σημείο της υπερβολής είναι : x ή x α Ασύμπτωτες οι ευθείες ε : y x και ε : y x Το ορθογώνιο με κορυφές Κ(α,β), Λ(α,-β), Μ(-α,-β) και Ν(-α,β) λέγεται ορθογώνιο βάσης της υπερβολής.

15 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Αν χρησιμοποιήσουμε ορθοκανονικό σύστημα αξόνων με άξονα ψ ψ την ευθεία που ορίζουν οι εστίες και άξονα χ χ τη μεσοκάθετο του Ε Ε τότε η υπερβολή έχει εξίσωση: y x Όπου Οι εστίες είναι Ε (0,-γ), Ε(0,γ) Οι κορυφές Α (0,-α), Α(0,α) Εκκεντρότητα ε= > Ασύμπτωτες οι ευθείες ε : y x και ε : y x Η εξίσωση της ευθείας που είναι εφαπτομένη στη γραφική παράσταση μιας υπερβολής στο σημείο Μ(χ,ψ ) αυτής είναι : xx y x y, αν η υπερβολή έχει εξίσωση : y xx y x, αν η υπερβολή έχει εξίσωση : Σε κάθε άσκηση στις κωνικές τομές είναι χρήσιμο, αν όχι απαραίτητο να κατασκευάζετε ένα πρόχειρο σχήμα.

16 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 4 Ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Αρχή της μαθηματικής επαγωγής: Όταν θέλουμε να αποδείξουμε ότι μία πρόταση είναι αληθής για κάθε ν φυσικό ακολουθούμε την εξής διαδικασία:. Αποδεικνύουμε ότι η πρότασή μας επαληθεύεται για ν=. Δεχόμαστε ότι η πρόταση είναι αληθής για ν=κ 3. Χρησιμοποιώντας την προηγούμενη παραδοχή αποδεικνύουμε ότι η πρόταση επαληθεύεται και για ν=κ+. ( ) Π.χ. Να αποδειχθεί ότι ++3+ ν= () ( ) Έχω: για ν= η () γίνεται = ισχύει k( k ) Δεχόμαστε ότι η () επαληθεύεται για ν=κ δηλαδή ισχύει: ++3+ κ= k( k ) k( k ) ( k ) Τότε για ν=κ+ έχω: ++3+ κ+(κ+)= +(κ+)= ( k )( k ) = δηλαδή ισχύει η () και για ν=κ+. Με βάση την αρχή της επαγωγής η () θα επαληθεύεται για κάθε ν φυσικό. ΕΥΚΛΕΙΔΙΑ ΔΙΑΙΡΕΣΗ ΘΕΩΡΗΜΑ Αν α και β είναι ακέραιοι αριθμοί με β 0, τότε υπάρχουν μοναδικοί ακέραιοι κ και υ, τέτοιοι, ώστε α=κβ+υ, 0 υ< β Σημαντικές εφαρμογές: Το γινόμενο δύο διαδοχικών ακεραίων είναι άρτιος αριθμός. Το τετράγωνο κάθε περιττού ακεραίου είναι της μορφής 8λ+, λζ Κάθε άρτιος είναι της μορφής α=κ, κζ Κάθε περιττός είναι της μορφής α=κ+, κζ

17 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ Έστω α,β δύο ακέραιοι με β 0. Θα λέμε ότι ο β διαιρεί τον α και θα γράφουμε β/α, όταν η διαίρεση του α με τον β είναι τέλεια, δηλαδή όταν υπάρχει ακέραιος κ, τέτοιος, ώστε α=κβ ΘΕΩΡΗΜΑ Αν α,β,γ ακέραιοι αριθμοί, τότε ισχύουν οι παρακάτω ιδιότητες: Αν α/β και β/α, τότε α=β Αν α/β και β/γ, τότε α/γ Αν α/β, τότε α/λβ για κάθε ακέραιο λ. Αν α/β και α/γ, τότε α/(β+γ). Αν α/β και β 0, τότε α β Μ.Κ.Δ Ε.Κ.Π. Έστω α και β δύο ακέραιοι, από τους οποίους ένας τουλάχιστον είναι διάφορος του μηδενός. Ορίζουμε ως Μέγιστο κοινό διαιρέτη (Μ.Κ.Δ.) των α και β και τον συμβολίζουμε (α,β) τον αριθμο δ που είναι τέτοιος, ώστε: δ/α και δ/β αν χ/α και χ/β είναι χ δ προκύπτει άμεσα ότι (α,β)=( α, β ) Έστω α και β δύο ακέραιοι, διάφοροι του μηδενός. Ορίζουμε ως Ελάχιστο κοινό πολλαπλάσιο (Ε.Κ.Π.) των α και β και τον συμβολίζουμε [α,β] τον αριθμο ε που είναι τέτοιος, ώστε: α/ε και β/ε αν α/χ και β/χ είναι ε χ προκύπτει άμεσα ότι [α,β]=[ α, β ] Δύο αριθμοί λέγονται πρώτοι μεταξύ τους, αν (α,β)= ΘΕΩΡΗΜΑ Αν α,β είναι δύο φυσικοί αριθμοί και υ είναι το υπόλοιπο της ευκλείδιας διαίρεσης του α με το β, τότε (α,β)=(β,υ) Π.χ. (34,4)=(4,0)=(0,4)=(4,)=(,0)= Διότι: 34:4=6 και υπόλοιπο0 δηλ. 34=46+0 4:0= και υπόλοιπο 4 δηλ. 4=0+4 4:= και υπόλοιπο0 δηλ. 4=+0

18 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΘΕΩΡΗΜΑ Αν δ=(α,β), τότε υπάρχουν αριθμοί κ,λζ τέτοιοι, ώστε: δ=κα+λβ Π.χ. (,78)=3 και 3=(-7) +078 δηλ. κ=-7, λ=0 Δύο ακέραιοι αριθμοί είναι πρώτοι μεταξύ τους, αν και μόνο αν υπάρχουν ακέραιοι κ,λ, τέτοιοι, ώστε κα+λβ= Π.χ. (3,4)= και 33+(-)4= Αν χ/α, χ/β και δ=(α,β), τότε χ/δ Π.χ. 8=(4,6), 4/4, 4/6, αλλά και 4/8 Αν α/βγ και (α,β)=, τότε α/γ Π.χ. 6/6 (6=78) και (6,7)=. τότε 6/8 (α,β,γ)=((α,β),γ) [α,β,γ]=[[α,β],γ] π.χ. (4,34,6)=((4,34),6)=(,6)= Αν δ=(α,β,γ) τότε υπάρχουν ακέραιοι κ,λ,μ, τέτοιοι, ώστε δ=κα+λβ+μγ Αν δ=(α,β,γ), τότε,, Ισχύει: (α,β) [α,β]= α β Σημαντικές εφαρμογές: Για τους ακεραίους α,β,κ ισχύουν: (α,β)=(α-κβ,β) Ειδικότερα (α,β)=(α-β,β) (α,α+)= Αν α/γ και β/γ και (α,β)= τότε αβ/γ Αν κ>0, (κα,κβ)=κ(α,β) και [κα,κβ]=κ[α,β]

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0) . Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= 32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= ( xy, ). Να ορίσετε τις έννοιες α)μέτρο του διανύσματος και β) συντελεστής διεύθυνσης του διανύσματος Α2) Να γράψετε τους τύπους

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

y 2 =2px με εστία Ε(p/2, 0) και διευθετούσα δ: x=-p/2.

y 2 =2px με εστία Ε(p/2, 0) και διευθετούσα δ: x=-p/2. ΠΑΡΑΒΟΛΗ P Α δ (διευθετούσα) C (παραβολή) Μ (ΜΕ)=(ΜΡ) Κ Ε (εστία) Ορισμός: Παραβολή λέγεται ο γεωμ. τόπος των σημείων Μ του επιπέδου που ισαπέχουν από ένα σημείο Ε (Εστία) και μία ευθεία δ(διευθετούσα)

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0 ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΓΙΑ ΕΡΓΑΣΙΑ ΣΤΗΝ ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΗΜΗΤΡΗΣ ΝΤΡΙΖΟΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ / ΘΕΜΑ Δίνεται το κυρτό τετράπλευρο ΑΒΓΔ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Επανάληψη Επιμέλεια Αυγερινός Βασίλης ΚΕΦΑΛΑΙΟ ο ΔΙΑΝΥΣΜΑΤΑ SOS ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Θέμα ο Να γράψετε και να αποδείξετε την σχέση της διανυσματικής ακτίνας του μέσου ενός τμήματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9 ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει :

Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει : Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για τα Μαθηματικά Θετικού Προσανατολισμού της Β Λυκείου, που είναι ένα από τα σημαντικότερα μαθήματα, καθώς περιέχει χρήσιμες γνώσεις για

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

Μαθηματικά Κατεύθυνσης (Προσανατολισμού) Θέματα ενδοσχολικών εξετάσεων στα Μαθηματικά Προσανατολισμού Β Λυκείου Σχ έτος 03-04, Ν Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθηματικά Κατεύθυνσης (Προσανατολισμού) ΣΧΟΛΙΚΟ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10) ΘΕΜΑ 4 Σε τρίγωνο ΑΒΓ είναι AB= ( λ, λ+ 1), AΓ = ( 3 λ, λ 1) είναι το μέσο της πλευράς ΒΓ AΜ= λ, λ α) Να αποδείξετε ότι ( ), όπου λ 0 και λ, και Μ (Μονάδες 7) β) Να βρείτε την τιμή του λ για την οποία

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12 Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

Λέγεται κάθε προσανατολισμένη ευθεία x x στην οποία ορίζουμε ως αρχή ένα σημείο. Ο και το μοναδιαίο διάνυσμα i ( i = 1)

Λέγεται κάθε προσανατολισμένη ευθεία x x στην οποία ορίζουμε ως αρχή ένα σημείο. Ο και το μοναδιαίο διάνυσμα i ( i = 1) α.. Άξονας Λέγεται κάθε προσανατολισμένη ευθεία στην οποία ορίζουμε ως αρχή ένα σημείο Ο και το μοναδιαίο διάνυσμα i ( i 1). Ο i I Οι ημιευθείες Ο και O λέγονται αντίστοιχα θετικός ημιάξονας και αρνητικός

Διαβάστε περισσότερα

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Διανύσματα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / 9 / 0 1 6 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για τα διανύσματα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Μαθηματικά Κατεύθυνσης Β Λυκείου-Απ Παπανικολάου ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε με α β τον πραγματικό αριθμό αβ

Διαβάστε περισσότερα

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν: ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων

Διαβάστε περισσότερα

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v, ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα Θέµα ο A. Αν α, β µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: i. αβ και ii. Αν α β τότε ισχύει α + β =. 4 4 B. Να βρεθούν οι τιµές του λ ώστε η

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ EΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΕΛΛΕΙΨΗΣ 1. Να βρείτε την εξίσωση της έλλειψης όταν: α) Έχει εστία Ε (-8,0) και μεγάλο άξονα 0 β) Έχει εστία Ε(0,3) και μεγάλο άξονα 8 γ) Έχει εστία Ε(4,0) και

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

Μεθοδολογία Υπερβολής

Μεθοδολογία Υπερβολής Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Να δίνει τον ορισμό του διανύσματος και των εννοιών που είναι κλειδιά όπως: κατεύθυνση φορά ή διεύθυνση, μηδενικό διάνυσμα,

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Γ Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Γ Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου ΕΠΑΝΑΛΗΨΗ Μαθηματικών Γ Γυμνασίου Ιδιότητες δυνάμεων:, Ιδιότητες ριζών:, ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ,,,, Ταυτότητες: αβ α 2αββ αβ 2αββ αβαβ α β αβ α 3α β3αβ β αβ α 3α β3αβ β ΠΡΟΣΟΧΗ!,,,,,, Όταν υψώνουμε ένα

Διαβάστε περισσότερα

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ 1 ο (Πανελλήνιες θετικής κατεύθυνσης Β Λυκείου 1999) Α. Έστω a ( x1,) y1 και ( x,) y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. α) Να εκφράσετε (χωρίς απόδειξη) το

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις 1 Έστω Α, Β, Κ, Λ και Μ τυχαία σημεία του χώρου Α ισχύει η σχέση ΑΚ + ΜΑ = ΚΒ 2ΑΒ + ΒΛ, να αποδείξετε ότι: α) τα σημεία Κ, Λ και Μ είναι συνευθειακά, β) ΚΛ ΚΜ, γ) ΚΛ = ΚΜ 2 Έστω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.

ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου. ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.. Δίνεται ένα παραλληλόγραμμο ΑΒΓΔ και ένα οποιοδήποτε σημείο Ρ του χώρου. Να αποδειχτεί ότι: P A P 0. 3.

Διαβάστε περισσότερα

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΑΝΥΣΜΑΤΑ ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1) Δίνονται διανύσματα α και β, με α π = 4 και (α, β ) = 3 Αν ισχύει ότι το α (α + 2β ) = 28, να βρείτε: α) το εσωτερικό γινόμενο α β, β) το μέτρο

Διαβάστε περισσότερα

x y Ax By 0 για τις διάφορες τιμές των Α, Β,Γ (μον.8)

x y Ax By 0 για τις διάφορες τιμές των Α, Β,Γ (μον.8) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 94 Ον/μο:.. Β Λυκείου Ύλη:Διανύσματα- Ευθεία Θετ-Τεχν Κατ. Κωνικές τομές 6-01-14 ΘΕΜΑ 1 ο : A.1. Να αποδείξετε ότι η εξίσωση της ευθείας που διέρχεται από το σημείο Α(x 0,y 0

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι

Διαβάστε περισσότερα

Μελέτη της συνάρτησης ψ = α χ 2

Μελέτη της συνάρτησης ψ = α χ 2 Μελέτη της συνάρτησης ψ = α χ Η γραφική της παράσταση είναι μια καμπύλη που λέγεται παραβολή. Ανάλογα με το πρόσημο του α έχω και τα αντίστοιχα συμπεράσματα. αν α > 0 1) Η γραφική της παράσταση είναι πάνω

Διαβάστε περισσότερα

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50 Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα Εσωτερικό γινόµενο διανυσµάτων. ΚΑΤΗΓΟΡΙΑ 8 Ασκήσεις προς λύση 1-50 1. Θεωρούμε τα σημεία Α(1,2), Β(4,1). Να βρείτε σημείο Μ του άξονα

Διαβάστε περισσότερα

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο

Διαβάστε περισσότερα

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις)

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) 1 Μέρος Α Θεωρία (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) Η έννοια του διανύσματος Ορισμός του Διανύσματος Διάνυσμα ονομάζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα του

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ Ερωτήσεις τύπου ΣΩΣΤΟ ΛΑΘΟΣ. 1.Αν ΑΓ+ΓΒ=ΒΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά. Σ Λ. 2. Αν α=β τότε α=β. Σ Λ. 3.

ΙΑΝΥΣΜΑΤΑ Ερωτήσεις τύπου ΣΩΣΤΟ ΛΑΘΟΣ. 1.Αν ΑΓ+ΓΒ=ΒΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά. Σ Λ. 2. Αν α=β τότε α=β. Σ Λ. 3. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ - 1 - ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΙΑΝΥΣΜΑΤΑ Ερωτήσεις τύπου ΣΩΣΤΟ ΛΑΘΟΣ 1.Αν ΑΓ+ΓΒ=ΒΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α=β τότε α=β. 3. Αν ΑΜ+ΒΜ = 0 Μ

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα