Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a."

Transcript

1 1. Τα θεμελιώδη αριθμητικά συστήματα Με τον όρο θεμελιώδη αριθμητικά συστήματα εννοούμε τα σύνολα N των φυσικών αριθμών, Z των ακεραίων, Q των ρητών και R των πραγματικών. Από αυτά, το σύνολο N είναι πρωτογενές ενώ οι ακέραιοι και οι ρητοί είναι παράγωγα των φυσικών και των ακεραίων αντίστοιχα με σχετικά απλή διαδικασία. Τέλος οι πραγματικοί αριθμοί προκύπτουν από τους ρητούς κατά μη τετριμένο τρόπο. Στο κεφάλαιο αυτό θα ορίσουμε τα θεμελιώδη συστήματα και θα συζητήσουμε κάποιες από τις βασικές ιδιότητές τους. Οι αριθμοί αποτελούν τον ακρογωνιαίο λίθο των μαθηματικών αλλά και όλων των επιστημών που το περιεχόμενό τους βασίζεται σε ποσοτικούς προσδιορισμούς. Η σαφής γνώση της δομής τους αποτελεί απαραίτητη προυπόθεση για ενασχόληση με οποιοδήποτε κλάδο των μαθηματικών. 2. Οι φυσικοί αριθμοί Το σύνολο N των φυσικών αριθμών είναι αναμφίβολα το απλούστερο από τα αριθμητικά συστήματα. Οι φυσικοί αριθμοί είναι τα πρώτα μαθηματικά αντικείμενα που έγιναν αντιληπτά από τον άνθρωπο στη διαδικασία της εξέλιξής του. Εχουν διακριτή δομή κατανοητή από τον οποιοδήποτε. Για παράδειγμα είναι σαφές ότι αν βρισκόμαστε στον φυσικό αριθμό m τότε μπορούμε να μεταβούμε στον m + 1 και μεταξύ τους δεν υπάρχει κανένας φυσικός. Επίσης καταλαβαίνουμε πως μπορούμε να προσθέσουμε και να πολλαπλασιάσουμε φυσικούς αριθμούς και τέλος ότι αν μας δοθούν δύο φυσικοί αριθμοί τότε είτε είναι ίσοι είτε ο ένας είναι μεγαλύτερος από τον άλλο. Συνοψίζοντας τα παραπάνω μπορούμε να πούμε ότι το σύνολο των φυσικών αριθμών είναι ένα σύνολο N εφοδιασμένο με δύο πράξεις +, και μια διάταξη < που ικανοποιούν κάποιες προφανείς ιδιότητες. Το ερώτημα που τίθεται είναι το ακόλουθο. Μεταξύ όλων των ιδιοτήτων των φυσικών αριθμών ποιες είναι οι ελάχιστες δυνατές που αν υποθέσουμε ότι ισχύουν σε ένα σύνολο N τότε το N υποχρεωτικά ταυτίζεται με το σύνολο των φυσικών αριθμών; Οι ελάχιστες αυτές ιδιότητες εντοπίστηκαν μετά το 1850 από διάφορους μαθηματικούς, ανεξάρτητα, και έχει επικρατήσει να ονομάζονται Αξιώματα Peano παρά το γεγονός ότι ο Peano δεν ήταν ο πρώτος που τα όρισε! Το σύνολο των φυσικών αριθμών, όπως θα οριστεί στο παρόν κείμενο δε θα περιλαμβάνει το μηδεν. Ορισμένοι συγγραφεις θεωρούν το μηδέν σα στοιχείο των φυσικών αριθμών. Κανένας από τους δύο ορισμούς δε θεωρείται λάθος και η παρουσία ή όχι του μηδενός δεν επιρρεάζει την ευρύτερη δομή του συνόλου. 3. Τα αξιώματα του Peano Αξιωματα 0.1. (Peano). Το σύνολο N των φυσικών αριθμών είναι ένα σύνολο τέτοιο ώστε υπάρχει μια απεικόνιση s : N N με τις εξής ιδιότητες: (i.) Υπάρχει ένα στοιχείο 1 N. (ii.) Για κάθε n N, s(n) 1. (iii.) Η s είναι αμφιμονοσήμαντη (1-1). (iv.) Εάν U N τέτοιο ώστε 1 U και για κάθε n N, s(n) U, τότε U = N. (Αρχή της Μαθηματικής Επαγωγής). Ας παρατηρήσουμε ότι οι βασικές ιδιότητες του N, δηλαδή οι πράξεις και η διάταξη απουσιάζουν πλήρως από τις παραπάνω ιδιότητες. Το κυρίαρχο στοιχείο των αξιωμάτων είναι η συνάρτηση s (συνάρτηση επομένου), όπου όταν θα ορίσουμε τις πράξεις το s(n) = n + 1. Πρέπει επίσης να τονιστεί ότι οι φυσικοί αριθμοί δεν απλά το σύνολο N. Το σημαντικότερο 1

2 στοιχείο τους είναι η δομή τους που περιγράφεται, σε επίπεδο αξιωμάτων από την συνάρτηση s και την αρχή της επαγωγής, ενώ σε μεταγενέστερο στάδιο θα περιγράφεται από τις πράξεις και τη διάταξη. Το πλέον ενδιαφέρον από τα αξιώματα είναι αυτό της Αρχής της Μαθηματικής Επαγωγής. Θα παίξει καθοριστικό ρόλο τόσο στον ορισμό των πράξεων όσο και στον ορισμό της διάταξης. Θα μπορούσε να θεωρηθεί ότι είναι μια θεμελιώδης αρχή διαχείρισης του απείρου. Σαν άμεση συνέπεια έχει τη μαθηματική επαγωγή σαν αποδειχτική διαδικασία. Ακριβέστερα ισχύει το ακόλουθο: Προταση 0.2. Εστω P (n) μια μαθηματική πρόταση που διατυπώνεται για κάθε n N. Υποθέτουμε τα ακόλουθα: (i.) Η P (1) ισχύει. (ii.) Αν ισχύει η P (n) τότε αποδεικνύεται ότι ισχύει η P (s(n)). Τότε συμπεραίνουμε ότι για κάθε n N ισχύει η P (n). Δηλαδή το σύνολο {n N : η P (n) ισχύει} ισούται με το N. Η απόδειξη της πρότασης είναι άμεση συνέπεια του αξιώματος (iv.), παρατηρώντας ότι το σύνολο {n N : η P (n) ισχύει} ικανοποιεί τις υποθέσεις του (iv.) και άρα ταυτίζεται με το N. Αξίζει να παρατηρήσουμε ότι η προηγούμενη πρόταση έχει μεταμαθηματικό περιεχόμενο. Ουσιαστικά αφορά τον τρόπο που αποδεικνύουμε ιδιότητες των φυσικών αριθμών (και όχι μόνο). Βεβαίως το ότι το αξίωμα (iv.) συνεπάγεται την πρόταση 0.2 είναι σχεδόν φανερό. Το αντίστροφο δε συμβαίνει. Δηλαδή αν δεχτούμε ότι ισχύει η πρόταση 0.2 τότε το αξίωμα (iv.) δεν είναι συνέπεια αυτής. Θα δούμε παρακάτω ότι το αξίωμα (iv.) είναι συνέπεια μιας πολύ φυσιολογικής ιδιότητας της διάταξης στο N. Προταση 0.3. Για κάθε n N με n 1 υπάρχει m N τέτοιο ώστε s(m) = n. Αποδειξη. Θα κάνουμε χρήση της μαθηματικής επαγωγής. Θα θέσουμε U = {n N : υπάρχει m N ώστε s(m) = n} και θα δείξουμε ότι U {1} = N. Πράγματι 1 U {1}. Αν το n U {1} τότε για m = n N έχουμε ότι s(n) = s(m) και επομένως s(n) U. Άρα s(n) U {1}. Από μαθηματική επαγωγή έχουμε ότι U {1} = N. Επομένως για κάθε n N με n 1 έχουμε ότι n U και συνεπώς, από τον ορισμό του U, υπάρχει m N τέτοιο ώστε n = s(m). Τα αξιώματα του Peano εξασφαλίζουν ότι ουσιαστικά υπάρχει ένα μόνο ζεύγος (N, s) που τα ικανοποιεί. Με αυτό εννοούμε ότι αν (N, s ) είναι ένα άλλο ζεύγος που ικανοποιεί τα αξιώματα του Peano τότε υπάρχει Φ : N N 1-1 και επί ώστε s (Φ(n)) = Φ(s(n)). Αυτό σημαίνει ότι μια ιδιότητα ισχύει στο (N, s) αν και μόνο αν ισχύει στο (N, s ) και υπό αυτήν την έννοια το ζεύγος (N, s) είναι μοναδικό. Η απόδειξη αυτής της ιδιότητας δίνεται στην επόμενη πρόταση. Προταση 0.4. Υπάρχει μοναδικό ζεύγος (N, s) που ικανοποιεί τα αξιώματα Peano. Περιγραφη Αποδειξης. Εστω ζεύγη (N, s) και (N, s ) που ικανοποιούν τα αξιώματα του Peano. Επομένως υπάρχουν 1 N και 1 N. Η Φ ορίζεται με επαγωγή. Ορίζουμε Φ(1) = 1 και αν το Φ(n) έχει οριστεί, θέτουμε Φ(s(n)) = s (Φ(n)). Η αρχή της μαθηματικής επαγωγής είναι αυτή που θα μας εξασφαλίσει ότι το σύνολο {n N : το Φ(n) έχει οριστεί} 2

3 είναι το σύνολο N καθώς επίσης ότι η Φ είναι 1-1 και επί. Προφανώς για κάθε n N, Φ(s(n)) = s (Φ(n)). 4. Αναδρομικοί ορισμοί Ο προσεκτικός, αλλά όχι με αρκετή εμπειρία αναγνώστης, θα παρατηρήσει ότι η απόδειξη της προηγούμενης πρότασης είναι αρκετά πλήρης, γεγονός που δε δικαιολογεί τον όρο περιγραφή της απόδειξης που διατυπώνεται στην αρχή της. Αν εξετάσουμε προσεκτικά το περιεχόμενο της απόδειξης θα συμφωνίσουμε ότι το βασικό στοιχείο της είναι ο ορισμός της συνάρτησης Q : (N, s) (N, s ). Ο ορισμός της Q γίνεται επαγωγικά (ή με αναδρομή) και το σημείο που πρέπει να επισημανθεί είναι ότι ο επαγωγικός ορισμός δεν είναι απλή συνέπεια της Μαθηματικής Επαγωγής. Εκτός αυτής χρησιμοποιεί και στοιχεία από τη θεωρία συνόλων. Η δυνατότητα να ολοκληρώνουμε ορισμούς νέων μαθηματικών αντικειμένων μέσω αναδρομής είναι το περιεχόμενο του Θεωρήματος της Αναδρομής που είναι το ακόλουθο: Θεωρημα 0.5 (Αναδρομής). Εστω A σύνολο, h : A A συνάρτηση και a A. Τότε υπάρχει συνάρτηση Φ : N A ώστε (i) Φ(1) = a. (ii) Για κάθε n N, Φ(s(n)) = h(φ(n)). Ο ενδιαφερόμενος αναγνώστης μπορεί να βρει την απόδειξη του Θεωρήματος σε βιβλία Θεωρίας Συνόλων. Για παράδειγμα περιέχεται στο εξαιρετικό κείμενο του Γ. Μοσχοβάκη Σημειώσεις στη Συνολοθεωρία. Αξίζει να παρατηρήσει κανείς ότι η πρόταση 0.4 που διασφαλίζει τη μοναδικότητα του ζεύγους (N, s) είναι άμεση συνέπεια του Θεωρήματος της Αναδρομής. Αρκεί να θέσει κανείς όπου A = N, h = s και a = Οι πραξεις στο N Οταν λέμε ότι ένα σύνολο A είναι εφοδιασμένο με μια πράξη εννοούμε την ύπαρξη μιας συνάρτησης : A A A ώστε (a, b) = a b. Θα ορίσουμε τώρα τις δύο θεμελιώδεις πράξεις στο N, δηλαδή την πρόσθεση + και τον πολλαπλασιασμό. Δεδομένου ότι οι πράξεις είναι συναρτήσεις ο ακριβής ορισμός τους απαιτεί τη χρήση του Θεωρήματος Αναδρομής που έχουμε ήδη αναφέρει. Στον ορισμό που αναφέρεται αυτό παραλείπεται. Ορισμος 0.6. (Πρόσθεση) Ορίζουμε μια πράξη + : N N N, την οποία καλούμε πρόσθεση, με τις εξής ιδιότητες: i. Για κάθε n N, n + 1 = s(n). ii. Για κάθε (n, m) N N, n + s(m) = s(n + m). Ενώ για κάθε (n, m) N N χρησιμοποιώντας την Αρχή της Μαθηματικής Επαγωγής έχουμε ορίσει το n + m, εν τούτοις ο ορισμός της πρόσθεσης σαν συνάρτηση απαιτεί το Θεώρημα της Αναδρομής και αυτό το βήμα το παραλείπουμε. Ορισμος 0.7. (Πολλαπλασιασμός) Ορίζουμε μια πράξη : N N N, την οποία καλούμε πολλαπλασιασμό, με τις εξής ιδιότητες: i. Για κάθε n N, n 1 = n. ii. Για κάθε (n, m) N N, n s(m) = n m + n. 3

4 Προταση 0.8. Εάν n, m, k N, τότε α. i. n + (m + k) = (n + m) + k (προσεταιριστική ιδιότητα). ii. n + m = m + n (μεταθετική ιδιότητα). iii. Εάν n + m = n + k, τότε m = k (νόμος διαγραφής). β. i. n(mk) = (nm)k (προσεταιριστική ιδιότητα). ii. nm = mn (μεταθετική ιδιότητα). iii. Εάν nm = nk, τότε m = k (νόμος διαγραφής). γ. (n + m)k = nk + mk (επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση). Αποδειξη. Αποδεικνύουμε μόνο την α.i. Εστω U το σύνολο όλων των k N για τα οποία n + (m + k) = (n + m) + k για όλα τα n, m N. Λόγω του ορισμού 0.6 έχουμε n + (m + 1) = n + s(m) = s(n + m) = (m + n) + 1 Άρα 1 U. Εστω k U, τότε πάλι λογω του ορισμού 0.6 έχουμε n + (m + s(k)) = n + s(m + k) = s(n + (m + k)) = s((n + m) + k) = (n + m) + s(k) Άρα s(k) U και λόγω του αξιώματος 0.1 (iv.) U = N, και η ιδιότητα έχει αποδειχθεί. Οι υπόλοιπες ιδιότητες αποδεικνύονται με χρήση Μαθηματικής Επαγωγής και αφήνονται στον αναγνώστη. 6. Η διάταξη στο N Η διάταξη των φυσικών αριθμών είναι μια πολύ σημαντική συνιστώσα τ ης δομής τους. Η βασική ιδιότητά της είναι ότι είναι καλή διάταξη, δηλαδή ότι κάθε υποσύνολο έχει ελάχιστο στοιχείο. Αυτή η ιδιότητα που φαίνεται τελείως φυσιολογική είναι τόσο ισχυρή ώστε να μπορεί να αντικαταστήσει το αξίωμα της Μαθηματικής Επαγωγής. Το τελευταίο δείχνεται στην πρόταση Ορισμος 0.9. (Διάταξη) Εστω ένα σύνολο X. Ορίζουμε ως διάταξη στο X μια σχέση στο X, R X X, που ικανοποιεί τις εξής ιδιότητες: (i.) Για κάθε x X έχουμε ότι (x, x) R. (αυτοπάθεια) (ii.) Για κάθε x, y X έχουμε ότι αν (x, y) R και (y, x) R, τότε x = y. (αντισυμμετρικότητα) (iii.) Για κάθε x, y, z X τέτοια ώστε (x, y) R και (y, z) R έχουμε ότι (x, z) R. (μεταβατικότητα) Συχνά συμβολίζουμε μια δίαταξη με και αντί να γράφουμε (x, y) γράφουμε x y και θα λέμε ότι το x είναι μικρότερο ή ίσο του y. Το ζεύγος (X, ) καλείται διατεταγμένος χώρος. Επίσης αν x y και x y, γράφουμε x < y. Αξίζει να παρατηρήσουμε στο σημείο αυτό ότι σε ένα διατεταγμένο χώρο (X, ) δεν είναι πάντα σωστό ότι οποιαδήποτε δύο στοιχεία του, x, y X, είναι συγκρίσιμα, δηλαδή είτε x y είτε y x. Θεωρήστε, για παράδειγμα, ένα σύνολο Y με τουλάχιστον δύο στοιχεία, X = P(Y ) το δυναμοσύνολο του Y, δηλαδή το σύνολο που σαν στοιχεία του έχει όλα τα υποσύνολα του Y και τη σχέση διάταξης στο X, οπου A B αν A B. Αν x, y Y με x y και A = {x}, B = {y}, τότε τα A, B δεν είναι συγκρίσιμα. 4

5 Ορισμος Ενας διατεταγμένος χώρος (X, ) καλείται ολικά διατεταγμένος και η καλείται ολική διάταξη αν οποιδήποτε δύο στοιχεία του X είναι συγκρίσιμα. Δηλαδή για κάθε x, y X έχουμε ότι είτε x y είτε y x. Η διάταξη στο N θα οριστεί με τη βοήθεια της επόμενης πρότασης. Προταση Εστω n, m N. Τότε ακριβώς ένα από τα παρακάτω ισχύει. (a) n = m. (b) Υπάρχει k N τέτοιο ώστε n = m + k. (c) Υπάρχει k N τέτοιο ώστε m = n + k. Αποδειξη. Για κάθε n N ορίζουμε Σ n = {m N : (a) n = m ή (b) υπάρχει k N τέτοιο ώστε n = m + k ή (c) υπάρχει k N τέτοιο ώστε m = n + k} και θέτουμε επίσης U = {n N : Σ n = N}. Χρησιμοποιώντας την Αρχή της μαθηματικής επαγωγής θα δείξουμε ότι U = N. Το 1 U. Πράγματι, για κάθε n N έχουμε ότι είτε το n = 1, το οποίο άμεσα έπεται ότι n Σ 1 (περίπτωση (a)), είτε n 1. Τότε από πρόταση 0.3 υπάρχει k N τέτοιο ώστε n = s(k) = 1 + k Σ 1 (περίπτωση (b)). Ας υποθέσουμε ότι n U, δηλαδή Σ n = N. Θα δείξουμε ότι Σ s(n) = N, δηλαδή s(n) U. Πράγματι, για κάθε m N έχουμε ότι m Σ n. Επομένως (a) είτε n = m. Τότε s(n) = s(m) = m + 1 και συνεπώς m Σ s(n) (περίπτωση (b)). (b) είτε υπάρχει k N τέτοιο ώστε n = m + k. Τότε s(n) = s(m + k) = m + (k + 1). Συνεπώς m Σ s(n) (περίπτωση (b)). (c) είτε υπάρχει k N τέτοιο ώστε m = n + k. (c ) Αν k = 1 τότε m = n + 1 = s(n) και συνεπώς m Σ s(n) (περίπτωση (a)). (c ) Αν k 1, από πρόταση 0.3 υπάρχει l N τέτοιο ώστε s(l) = k. Τότε m = n + k = n + s(l) = n + l + 1 = (n + 1) + l = s(n) + l. Συνεπώς m Σ s(n) (περίπτωση (c)). Δηλαδή για κάθε m N έχουμε ότι m Σ s(n). Άρα Σ s(n) = N και s(n) U. Από Αρχή της Μαθηματικής Επαγωγής έχουμε ότι U = N. Εύκολα παρατηρεί κανείς ότι ακριβώς μία από τις παραπάνω περιπτώσεις θα ισχύει. Ειδάλλως θα υπήρχαν n, k N τέτοια ώστε n+k = n. Ισοδύναμα n + k + 1 = n + 1 και από το νόμο της διαγραφής έπεται ότι k + 1 = s(k) = 1 το οποίο αντιφάσκει με τα αξιώματα Peano. Ορισμος (Διάταξη στο N). Εάν n, m N και υπάρχει k N ώστε n+k = m, τότε λέμε ότι ο m είναι μεγαλύτερος του n (ή ισοδύναμα ο n μκρότερος του m) και συμβολίζουμε m > n (ή ισοδύναμα n < m). Θα γράφουμε n m αν είτε n = m είτε n < m. Είναι εύκολο να ελέγξει κανείς ότι η σχέση που μόλις ορίσαμε αποτελεί σχέση διάταξης στο N και μάλιστα σύμφωνα με την πρόταση 0.11 αποτελεί ολική διάταξη. Η ακόλουθη πρόταση παραθέτει κάποιες βασικές ιδιότητες της διάταξης των φυσικών αριθμών που σχετίζονται με τις πράξεις. Η απόδειξή τους αφήνεται ως άσκηση στον αναγνώστη. Προταση Εστω n, m N. i. Εάν n < m, τότε n + k < m + k, για κάθε k N. ii. Εάν n < m, τότε nk < mk, για κάθε k N. Ορισμοι Εστω (X, ) διατεταγμένος χώρος, A X και a A. 5

6 (i.) Το a καλείται ελάχιστο (minimum) του A αν για κάθε b A ισχύει ότι a b. (ii.) Το X καλείται καλά διατεταγμένο αν κάθε μη κενό υποσύνολό του έχει ελάχιστο στοιχείο και η καλείται καλή διάταξη. Ας παρατηρήσουμε ότι κάθε καλά διατεταγμένο σύνολο είναι και ολικά διατεταγμένο. Πράγματι αν (X, ) καλά διατεταγμένος χώρος και x, y X, τότε το σύνολο S = {x, y} X έχει ελάχιστο. Αυτό συνεπάγεται άμεσα ότι καθιστά τα δύο αυτά στοιχεία συγκρίσιμα, αφού το ελάχιστο θα είναι μικρότερο ή ίσο του άλλου. Θεωρημα Το N είναι καλά διατεταγμένο. Αποδειξη. Υποθέτουμε ότι υπάρχει μη κενό M N που δεν έχει ελάχιστο στοιχείο για να καταλήξουμε σε άτοπο, δείχνοντας ότι M =. Θέτουμε B = {n N : για κάθε k n το k M}. Κάνοντας χρήση της επαγωγής θα δείξουμε ότι το B = N και κατεπέκταση M =. Το 1 M, διότι αν ανήκε θα αποτελούσε το ελάχιστο στοιχείο του M το οποίο έρχεται σε αντίθεση με την υπόθεση ότι το M δεν έχει ελάχιστο στοιχείο. Επομένως 1 B. Αν n B τότε για κάθε k n το k M. Επομένως s(n) M, διότι αν άνηκε θα αποτελούσε το ελάχιστο στοιχείο του M, το οποίο οδηγεί σε άτοπο. Από επαγωγή έχουμε ότι B = N. Είναι ενδιαφέρον ότι η απόδειξη της ιδιότητας της καλής διάταξης στο N απαιτεί την χρήση του αξιώματος της Μαθηματικής Επαγωγής. Οπως έχουμε ήδη αναφέρει στην αρχή του κεφαλαίου, αυτό είναι αναγκαίο διότι η ιδιότητα της καλής διάταξης είναι σχεδόν ισοδύναμη με την Αρχή της Μαθηματικής Επαγωγής. Προταση Εστω (N, ) ένα μη κενό καλά διατεταγμένο σύνολο, 1 = min N και συνάρτηση s : N N με τις εξής ιδιότητες: (i.) Η s είναι 1-1. (ii.) Για κάθε n N με n 1 υπάρχει m N τέτοιο ώστε n = s(m). (iii.) Για κάθε n N έχουμε ότι n < s(n). Το ζεύγος (N, ) ικανοποιεί τα αξιώματα Peano και πρόκειται συνεπώς για το σύνολο των φυσικών αριθμών. Αποδειξη. Καταρχάς παρατηρούμε ότι για κάθε n N, 1 n < s(n) και συνεπώς s(n) 1. Απομένει να δείξουμε ότι ικανοποιεί την Αρχή της Μαθηματικής Επαγωγής. Εστω U N τέτοιο ώστε 1 U και για κάθε n U έχουμε ότι το s(n) U. Θα δείξουμε ότι U = N. Πράγματι θα υποθέσουμε ότι δεν ισχύει και θα καταλήξουμε σε άτοπο. Εστω, λοιπόν, το V = N \ U και n = min V. Επειδή 1 U έπεται ότι n 1 και συνεπώς υπάρχει m N τέτοιο ώστε s(m) = n. Επειδή m < s(m) = n και n το ελάχιστο στοιχείο του V έπεται ότι m V και συνεπώς m U. Από την υπόθεση για το U έχουμε ότι n = s(m) U, το οποίο είναι άτοπο. 7. Ο Ευκλείδιος Αλγόριθμος Ο Ευκλείδιος Αλγόριθμος αφορά την εύρεση του μέγιστου κοινού διαιρέτη (μ.κ.δ.) δύο φυσικών αριθμών. Περιέχεται στα Στοιχεία του Ευκλείδη σε γεωμετρική μορφή και αφορά μια μέθοδο ελέγχου του κατά πόσο δύο ευθύγραμμα τμήματα είναι ισομετρήσιμα. Δηλαδή κατά πόσο υπάρχει ένα τρίτο ευθύγραμμο τμήμα ακέραια πολλαπλάσια του οποίου είναι τα δύο προηγούμενα. Οπως είναι γνωστό αυτή την ιδιότητα δε την έχουν όλα τα 6

7 ζεύγη ευθυγράμμων τμημάτων. Για παράδειγμα η υποτείνουσα και μια κάθετη πλευρά ενός ισοσκελούς ορθογωνίου τριγώνου δεν είναι ισομετρήσιμα. Το πραγματικό όμως περιεχόμενο του Ευκλείδιου Αλγορίθμου είναι η εύρεση του μ.κ.δ. που έχουμε ήδη αναφέρει. Ο Ευκλείδιος Αλγόριθμος περιγράφει την ακόλουθη μέθοδο. Ας υποθέσουμε ότι m, n είναι φυσικοί αριθμοί με n < m. Τότε m = np 1 + v 1 με p 1, v 1 φυσικούς αριθμούς και v 1 < n. Αν v 1 = 0 τότε η διαδικασία τερματίζεται. Διαφορετικά n = p 2 v 1 + v 2 με p 2, v 2 φυσικούς αριθμούς και v 2 < v 1. Πάλι αν v 2 = 0 η διαδικασία τερματίζεται. Διαφορετικά v 1 = p 3 v 2 + v 3 και συνεχίζουμε όπως προηγουμένως. Με τη διαδικασία αυτή ορίζουμε μια γνησίως φθίνουσα ακολουθία n > v 1 > v 2 >... > v k η οποία τερματίζεται στο v k αν και μόνο αν το v k = 0. Το θεώρημα αποφαίνεται ότι αν v k = 0 τότε ο μ.κ.δ. των m και n είναι ο v k 1. Άρα πράγματι η διαδικασία αυτή οδηγεί στην εύρεση του μ.κ.δ. των m, n. Η απόδειξη στηρίζεται στην ακόλουθη απλή πρόταση. Ας αρχίσουμε με κάποιους συμβολισμούς. Αν p N και q N {0} θα γράφουμε p q αν ο p διαιρεί τον q (κάθε p N διαιρεί το 0). Επίσης για m, n N θέτουμε (m, n) = {p N : p n και p m}. Προταση Εστω n, m N με n < m και m = np + v όπου p, v N. Τότε (m, n) = (n, v). Αποδειξη. Θα δείξουμε ότι (n, v) (m, n) και αντίστροφα. Εστω l (n, v). Τότε l n και l v. Επομένως l np + v. Δηλαδή l m. Αντίστροφα αν l (m, n), τότε l m και l n. Άρα l m np. Επομένως l v, αφού v = m np. Στον Ευκλείδιο Αλγόριθμο που τερματίζεται στο v k (v k = 0) η πρόταση έχει την ακόλουθη συνέπεια. (m, n) = (n, v 1 ) = (v 1, v 2 ) =... = (v k 2, v k 1 ). Επειδή v k 1 v k 2 έπεται ότι v k 1 = max (v k 2, v k 1 ) = max (m, n). Άρα v k 1 είναι ο μ.κ.δ. των m, n. Παρατηρηση. Αξίζει να σημειώσουμε ότι ο τερματισμός του Ευκλείδιου Αλγόριθμου σε πεπερασμένα βήματα είναι συνέπεια της καλής διάταξης του συνόλου N. Πράγματι μια ολική διάταξη είναι καλή αν και μόνο αν οι γνησίως φθίνουσες ακολουθίες είναι πεπερασμένες. Ετσι θεωρώντας οι αρχαίοι Ελληνες ότι ο Ευκλείδιος Αλγόριθμος τερματίζεται, ουσιαστικά δέχονταν ότι η διάταξη του N είναι καλή. Θα πρέπει επίσης να επισημάνουμε ότι η Μαθηματική Επαγωγή σαν αποδεικτική μέθοδος διατυπώθηκε για πρώτη φορά από τον F. Maurolicos (Φ. Μαυρόλυκος) ( ) Σικελό Ελληνικής καταγωγής και εν συνεχεία από τον Pascal ( ). Εντούτοις στα Στοιχεία του Ευκλείδη υπάρχουν προτάσεις που η απόδειξή του απαιτεί Μαθηματική Επαγωγή η οποία εφαρμόζεται ατελώς. 8. Υπαρξη μοντέλου του N Ενα σημείο που αξίζει επίσης να σχολιάσουμε αφορά την ύπαρξη ενός συνόλου N εφοδιασμένου με μια συνάρτηση s : N N που να ικανοποιεί τα αξιώματα του Peano. Στο ερώτημα αυτό μπορεί να διατυπωθεί ο αντίλογος σε δύο κατευθύνσεις. Καταρχάς θα μπορούσε κάποιος να απαντήσει ότι βεβαίως και υπάρχει και είναι οι φυσικοί αριθμοί που γενιές και γενιές έχουν μεγαλώσει μαζί τους. Και αυτό ακούγεται λογικό δεδομένου ότι οι φυσικοί αριθμοί θεωρούνται το πιο στέρεο μαθηματικό οικοδόμημα. Αν συλλογιστούμε όμως τους φυσικούς αριθμούς αντιλαμβανόμαστε ότι έχουμε πλήρη γνώση ενός πολύ μικρού αρχικού διαστήματος. Για δε το υπόλοιπο μέρος τους έχουμε διαμορφώσει ένα ισχυρό πιστεύω ότι εξελίσεται με τρόπο παρόμοιο με αυτό που παρατηρούμε 7

8 στο μικρό αρχικό διάστημα του. Τα αξιώματα που παραθέσαμε στοχεύουν να ορίσουν στο N τη δομή που πιστεύουμε ότι πρέπει να έχει. Η απάντηση λοιπόν στο πρώτο αντίλογο είναι ότι είμαστε γνώστες ενός μικρού μέρους του N και το μεγαλύτερο μέρος του διαφεύγει πλήρως της εμπειρίας μας. Ο δεύτερος αντίλογος αφορά την έκφραση να βρούμε ένα σύνολο N και μια συνάρτηση s : N N ώστε να ικανοποιούνται τα αξιώματα. Και η ερώτηση είναι απλή. Πως είναι δυνατόν να μπορούμε να αποδείξουμε αξιώματα; Αν αυτό συμβαίνει τότε αυτά δεν είναι αξιώματα αλλά συνέπειες αξιωμάτων! Ολες αυτές οι παρατηρήσεις έχουν ισχυρή βάση αλήθειας. Πράγματι, οποιαδήποτε μαθηματική θεωρία βασίζεται στις θεμελιώδεις (μη ορίσιμες) έννοιες και θεμελιώδεις (μη αποδείξιμες) προτάσεις απ όπου με βάση τους θεμελιώδεις νόμους της λογικής αναδεικνύεται ο επιστημονικός πλούτος. Το σημαντικό είναι ότι μια μαθηματική θεωρία μπορεί να αποτελεί μέρος μιας ευρύτερης θεωρίας της οποίας τα αξιώματα να επιτρέπουν την κατασκευή συνόλων και συναρτήσεων που να ικανοποιούν τα αξιώματα της επι μέρους θεωρίας. Για παράδειγμα τα αξιώματα Peano για το N μπορούν να θεωρηθούν στο ευρύτερο πλαίσιο της θεωρίας συνόλων και εκεί είναι εφικτή η κατασκευή ενός συνόλου N και μιας s : N N ώστε να ικανοποιούνται τα αξιώματα Peano. Η απόδειξη αυτού του ισχυρισμού βρίσκεται εκτός του πλαισίου και των στόχων του μαθήματος και για το λόγο αυτό θα δεχτούμε αξιωματικά ότι υπάρχει ένα ζεύγος (N, s) που ικανοποιεί τα αξιώματα Peano. 8

Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh)

Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh) ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh) Σπύρος Αργυρός Μάρτιος 2011 1 2 Perieqìmena 1 Οι ϕυσικοί αριθμοί

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

(ii) X P(X). (iii) X X. (iii) = (i):

(ii) X P(X). (iii) X X. (iii) = (i): Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2015 Σελ. 1 από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}. Γραμμική Άλγεβρα ΙΙ Διάλεξη 4 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 26/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 4 26/2/2014 1 / 12 Υποσύνολα ενός διανυσματικού χώρου. Πότε είναι ένα υποσύνολο X ενός

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

f I X i I f i X, για κάθεi I.

f I X i I f i X, για κάθεi I. 47 2 Πράξεις σε τοπολογικούς χώρους 2. Η τοπολογία γινόμενο Σε προηγούμενη παράγραφο ορίσαμε την τοπολογία γινόμενο στο καρτεσιανό γινόμενο Y δύο τοπολογικών χώρων Y, ( παράδειγμα.33 () ). Στην παρούσα

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018

Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018 Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 08 Περιεχόμενα Το σύνολο των πραγματικών αριθμών. Φυσικοί, ακέραιοι και ρητοί αριθμοί............................

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

7 Μάθημα Πορεία μελέτης Ακόμη μία Άσκηση

7 Μάθημα Πορεία μελέτης Ακόμη μία Άσκηση Περιεχόμενα I Εναρξη μαθήματος 3 II Αρχικά μαθήματα 5 1 Μάθημα 1 5 1.1 Εισαγωγή............................... 5 1.2 Πορεία μελέτης............................ 5 1.3 Γραμμικά συστήματα.........................

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Θεωρία αριθμών Αλγεβρικές δομές Χρήστος Ξενάκης Το σύνολο των ακεραίων Ζ = {..., -2, -1, 0, 1, 2,...} Το σύνολο των φυσικών Ν = {0, 1, 2,...}

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε

Διαβάστε περισσότερα

Σύνολα, Σχέσεις, Συναρτήσεις

Σύνολα, Σχέσεις, Συναρτήσεις Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

1.2 Βάσεις και υποβάσεις.

1.2 Βάσεις και υποβάσεις. . Βάσεις και υποβάσεις. Το «καθήκον» του ορισμού μιας τοπολογίας διευκολύνεται αν είμαστε σε θέση να περιγράψουμε αρκετά ανοικτά σύνολα τα οποία να παραγάγουν όλα τα ανοικτά σύνολα. Ορισμός.9. Έστω X,

Διαβάστε περισσότερα

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας Κουτσουπιάς Τροποποιήσεις: Σταύρος Κολλιόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες

Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες Ευάγγελος Ράπτης Τμήμα Πληροφορικής Μέρος I Εναρξη μαθήματος Γραμμική άλγεβρα Ι Ευάγγελος Ράπτης 1 Τα παρακάτω κείμενα, γράφονται και ενημερώνονται καθημερινά

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ 158 44 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ Μέγιστος Κοινός Διαιρέτης Έστω α, β δύο ακέραιοι Ένας ακέραιος δ λέγεται κοινός διαιρέτης των α και β, όταν είναι διαιρέτης και του α και του

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Ευθέα Γινόμενα Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Ευθέα Γινόμενα Ομάδων Για την περαιτέρω ανάπτυξη τής θεωρίας θα χρειαστούμε

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Abstract Algebra: The Basic Graduate Year: Robert B. Ash

Abstract Algebra: The Basic Graduate Year: Robert B. Ash Περιεχόμενα I Εναρξη μαθήματος 2 II Βασική άλγεβρα. Αρχικά μαθήματα 4 1 Μάθημα 1 4 1.1 Πορεία μελέτης............................ 4 1.2 Διάφορα σχόλια............................ 5 1.3 Πορεία μελέτης............................

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, --3 Μ. Παπαδημητράκης. Τώρα θα δούμε μια ακόμη εφαρμογή του Κριτηρίου του Ολοκληρώματος. Παράδειγμα. Γνωρίζουμε ότι η αρμονική σειρά αποκλίνει στο +, το οποίο φυσικά σημαίνει

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 3 η Σειρά Ασκήσεων Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω p(x) και q(x) κατηγορήματα με πεδίο ορισμού Ω με σύνολα αλήθειας Α και Β αντίστοιχα (Σύνολα αλήθειας:

Διαβάστε περισσότερα

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

a n = 3 n a n+1 = 3 a n, a 0 = 1

a n = 3 n a n+1 = 3 a n, a 0 = 1 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής επαγωγής μπορεί να επεκταθεί και σε άλλες δομές εκτός από το σύνολο N

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα