, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ", ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με"

Transcript

1 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με, ο αριθμός στον οποίο αντιστοιχεί ο καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με κ.λ.π. Γενικά ο αριθμός στον οποίο αντιστοιχεί ένας φυσικός αριθμός ν καλείται ν-οστός ή γενικός όρος της ακολουθίας και τον συμβολίζουμε συνήθως με. Σε μια ακολουθία ο πρώτος όρος είναι ο, εκτός και αν έχει οριστεί διαφορετικά, ενώ ο ν-οστός όρος δεν είναι ο τελευταίος Όρος, εκτός κι αν έχει έτσι οριστεί. ΜΕΘΟΔΟΛΟΓΙΑ : Προσδιορισμός όρων μιας ακολουθίας, όταν γνωρίζουμε τον γενικό της όρο. Όταν γνωρίζουμε τον γενικό όρο μιας ακολουθίας, τότε για να βρούμε οποιονδήποτε όρο της, αρκεί να θέσουμε στον τύπο της. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. (Άσκηση σελ. Α ομάδας σχολικού βιβλίου) Να βρείτε τους πέντε πρώτους όρους των ακολουθιών : i) ii) iii) i), 5, 7, 9, 5, ii),, 8, 6, 5 iii), 6. (Άσκηση σελ. Α ομάδας σχολικού βιβλίου) Να βρείτε τους πέντε πρώτους όρους των ακολουθιών : Αναδρομικός τύπος μιας ακολουθίας ονομάζεται μια σχέση που συνδέει δυο ή περισσότερους γενικούς όρους της ακολουθίας. Με τη βοήθεια του αναδρομικού τύπου μπορούμε να βρούμε οποιονδήποτε άλλο όρο της ακολουθίας. Για να ορίζεται μια ακολουθία αναδρομικά, απαιτείται να γνωρίζουμε: (i) Τον αναδρομικό της τύπο και (ii) Όσους αρχικούς όρους μας χρειάζονται, ώστε ο αναδρομικός τύπος να αρχίσει να δίνει όρους. ΜΕΘΟΔΟΛΟΓΙΑ : Προσδιορισμός αναδρομικού τύπου ακολουθίας, όταν γνωρίζουμε τον γενικό όρο της. Για να ορίσουμε αναδρομικά μια ακολουθία, συνήθως εργαζόμαστε ως εξής : ον Βρίσκουμε τον όρο ον Προσπαθούμε να εκφράσουμε τον όρο με τη βοήθεια του όρου. ον Βρίσκουμε όσους αρχικούς όρους χρειάζονται. 5 5, 0, ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

2 i), ii) 0, i) Από τον αναδρομικό τύπο για : έχω : έχω : έχω : έχω : ii) Από τον αναδρομικό τύπο για : έχω : 0 έχω : έχω : 5 έχω : 6. (Άσκηση σελ. Α ομάδας σχολικού βιβλίου) Να ορίσετε αναδρομικά τις ακολουθίες : i) 5 ii) iv) 5 i) 5 6 Για να βρω μια σχέση που να συνδέει τους όρους και, υπολογίζω τη διαφορά : ( ) 5 ( 5) 5 5. Άρα. Άρα η ακολουθία ορίζεται αναδρομικά ως εξής : 6 και ii) Για να βρω μια σχέση που να συνδέει τους όρους και, υπολογίζω το πηλίκο :. Άρα. Άρα η ακολουθία ορίζεται αναδρομικά ως εξής : και iv) 5 8 Για να βρω μια σχέση που να συνδέει τους όρους και, υπολογίζω τη διαφορά : 5( ) (5 ) Άρα 5 5. Άρα η ακολουθία ορίζεται αναδρομικά ως εξής : 8 και 5 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

3 ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ :. Να βρείτε τους πέντε πρώτους όρους των ακολουθιών : i. ii. iii. iv. 5. Να ορίσετε αναδρομικά τις ακολουθίες : (ΑΠΟ ΓΕΝΙΚΟ ΤΥΠΟ ΑΚΟΛΟΥΘΙΑΣ ΣΕ ΑΝΑΔΡΟΜΙΚΟ) i. ii. iii. iv. v. vi. vii. 6. Να βρείτε το ν-οστό (γενικό) όρο των ακολουθιών : (ΑΠΟ ΑΝΑΔΡΟΜΙΚΟ ΤΥΠΟ ΑΚΟΛΟΥΘΙΑΣ ΣΕ ΓΕΝΙΚΟ) i. και ii. 7 και iii. και iv. και v. 8 και 7. Δίνεται η ακολουθία ( ) με γενικό όρο. Να βρείτε : i. τους τέσσερις πρώτους όρους και τον 00 ο όρο της ii. τη διαφορά. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

4 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Μια ακολουθία λέγεται αριθμητική πρόοδος, αν κάθε όρος της (από τον δεύτερο και μετά) προκύπτει από τον προηγούμενο του με πρόσθεση του ίδιου πάντοτε αριθμού. Τον αριθμό αυτό τον συμβολίζουμε με ω και τον λέμε διαφορά της προόδου. Έτσι ισχύουν : ή Ο ν-οστός όρος μιας αριθμητικής προόδου με πρώτο όρο και διαφορά ω είναι ( ) ΜΕΘΟΔΟΛΟΓΙΑ : Προσδιορισμός και ω μιας αριθμητικής προόδου όταν γνωρίζουμε στοιχεία για διάφορους όρους της. Όταν έχουμε ως δεδομένα σχέσεις μεταξύ διαφόρων όρων μιας αριθμητικής προόδου, τότε αντικαθιστούμε όλους τους όρους σύμφωνα με τον τύπο ( ). (Ασκήσεις - 5 σχολικό βιβλίο Α ομαδας σελ. 9,0) ΜΕΘΟΔΟΛΟΓΙΑ : Αριθμητικός Μέσος Τρεις αριθμοί α, β, γ είναι διαδοχικοί όροι αριθμητικής προόδου, αν και μόνο αν ισχύει :. Ο β λέγεται αριθμητικός μέσος των α και γ. (Ασκήσεις 6-7 σχολικό βιβλίο Α ομαδας σελ. 0) ΜΕΘΟΔΟΛΟΓΙΑ : Άθροισμα ν διαδοχικών όρων αριθμητικής προόδου Έστω μια αριθμητική πρόοδος με διαφορά ω. Το άθροισμα S των πρώτων ν ( ) S ( (Ασκήσεις 8 - σχολικό βιβλίο Α ομαδας σελ. 0) όρων της δίνεται από τον τύπο : S, προκύπτει ο τύπος : ). Αν αντικαταστήσουμε το Υποπερίπτωση : αν το άθροισμα είναι της μορφής :... τότε αρχικά από τον τύπο ( ), υπολογίζω το ν ή το (ανάλογα με την εκφώνηση) και στη συνέχεια από τον τύπο S υπολογίζω το ζητούμενο άθροισμα. (Άσκηση 0 Α ομάδας σελ. 0, Ασκήσεις, Β ομαδας σελ. ) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

5 ΜΕΘΟΔΟΛΟΓΙΑ : Πως αποδεικνύουμε ότι μια ακολουθία είναι αριθμητική πρόοδος, όταν γνωρίζουμε τον ν-οστό όρο της. Για να αποδείξουμε ότι μια ακολουθία είναι αριθμητική πρόοδος, όταν γνωρίζουμε τον γενικό όρο της, εργαζόμαστε ως εξής : ον Βρίσκουμε τον όρο, θέτοντας όπου ν το ν+, στον τύπο του ον Υπολογίζουμε τη διαφορά ον Αν η παραπάνω διαφορά είναι σταθερός αριθμός (ανεξάρτητος του ν), τότε η ακολουθία είναι αριθμητική πρόοδος, με διαφορά ω ιση με τον σταθερό αυτό αριθμό. (Άσκηση Β ομάδας σελ. ) ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. (Άσκηση σελ. 9 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Να βρείτε το ν-οστό όρο των αριθμητικών προόδων : i. 7,0,,... iii. 5,,,... v. 6, 9,,... i. Στην αριθμητική πρόοδο 7,0,,... έχω : 7 και 0 7 Άρα : ( ) 7 ( ) 7 iii. Στην αριθμητική πρόοδο 5,,,... έχω : 5 και 5 Άρα : ( ) 5 ( )( ) 5 8 v. Στην αριθμητική πρόοδο 6, 9,,... έχω : 6 και 9 6 Άρα : ( ) 6 ( )( ) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ (Άσκηση σελ. 9 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Να βρείτε το ζητούμενο όρο σε καθεμία από τις αριθμητικές προόδους : 5 i. τον 5 της,,8,... vi. τον 7 της,,,... i. Στην αριθμητική πρόοδο,,8,... έχω : και 5 Άρα : (5 ) vi. Στην αριθμητική πρόοδο,,,... έχω : και Άρα : 7 (7 ) (Άσκηση 6 σελ. 0 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) i. Να βρείτε τον αριθμητικό μέσο των 0 και 0 ii. Να βρείτε για ποια τιμή του x ο αριθμητικός μέσος των 5x και είναι ο x. 0 0 i. Ο αριθμητικός μέσος των 0 και 0 είναι ο

6 ii. Οι αριθμοί 5x, x και είναι διαδοχικοί όροι αριθμητικής προόδου 5x αν και μόνο αν ισχύει : x 6x 5x x 6.. (Άσκηση 8 σελ. 0 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Να βρείτε το άθροισμα των πρώτων 0 όρων των αριθμητικών προόδων : i. 7,9,,... i. Στην αριθμητική πρόοδο 7,9,,... έχω : 7 και Άρα : S ( ) S0 7 (0 ) S S 5. (Άσκηση 0 σελ. 0 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ Υπο/πτωση) Να βρείτε τα αθροίσματα : i i. Οι αριθμοί,5,9,..., 97 αποτελούν διαδοχικούς όρους αριθμητικής προόδου με και 5. Είναι 97 και ψάχνουμε το ν. Έτσι έχω : ( ) 97 ( ) Άρα : S S S 598 S 950. (Εναλλακτικά θα μπορούσα να χρησιμοποιήσω και τον άλλο τύπο του αθροίσματος : 50 S50 (50 ) S S S ) 6. (Άσκηση σελ. Β ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Ο ν-ος ορος μιας ακολουθίας είναι. Να αποδείξετε ότι η ακολουθία αυτή είναι αριθμητική πρόοδος και να γράψετε τον πρώτο όρο της και τη διαφορά της. Αρχικά βρίσκουμε τον όρο ( ) 7. Να βρείτε το ο όρο των αριθμητικών προόδων : i.,,7,... ii. 9, 5,,... iii. 7,5,, Σε μια αριθμητική πρόοδο ( ) είναι και. Να βρείτε : i. τον 0 ο όρο της προόδου, ii. ποιος ορος της προόδου είναι ισος με Σε μια αριθμητική πρόοδο ( ) είναι 5 και 7 9. Να βρείτε : i. τη διαφορά ω της προόδου ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ , θέτοντας όπου ν το ν+, στον τύπο του δηλαδή : 8. Στη συνέχεια υπολογίζουμε τη διαφορά 8 ( ) 8 ( Η διαφορά είναι δηλαδή σταθερός αριθμός άρα η ακολουθία ) είναι αριθμητική πρόοδος με διαφορά και πρώτο όρο : 8. ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ :

7 ii. τον ο όρο της προόδου, iii. ποιος ορος της προόδου είναι ισος με. 0. Σε μια αριθμητική πρόοδο ( ) είναι 8 και. Να βρείτε : i. τον πρώτο όρο της προόδου ii. τον 9 ο όρο της προόδου, iii. ποιος ορος της προόδου είναι ισος με -0.. Να βρείτε τον αριθμητικό μέσο των αριθμών : i. 5 και 7 ii. και iii. και. Να βρείτε για ποια τιμή του x ο αριθμητικός μέσος των x και 7x είναι ο 5.. Να βρείτε για ποια τιμή του x, οι αριθμοί : x 5, x 5, x 6 είναι διαδοχικοί όροι αριθμητικής προόδου.. Σε μια αριθμητική πρόοδο ( ) είναι και. Να βρείτε το άθροισμα των πρώτων 0 όρων της προόδου. 5. Να βρείτε το άθροισμα των 0 πρώτων όρων της αριθμητικής προόδου : i.,5,7,... ii. 8,,,... iii.,,, Να υπολογίσετε τα αθροίσματα : i ii iii Να βρείτε το άθροισμα των πρώτων 50 θετικών πολλαπλασίων του. 8. Να βρείτε το άθροισμα των πρώτων 0 θετικών πολλαπλασίων του Να βρείτε το άθροισμα : i. των άρτιων αριθμών μεταξύ και 5 ii. των περιττών αριθμών μεταξύ 0 και 70 iii. των πολλαπλασίων του μεταξύ 0 και 00 iv. των πολλαπλασίων του 5 μεταξύ και 06. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 7

8 5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ Μια ακολουθία λέγεται γεωμετρική πρόοδος, αν κάθε όρος της (από τον δεύτερο και μετά) προκύπτει από τον προηγούμενο του με πολλαπλασιασμό επί του ίδιου πάντοτε αριθμού. Τον αριθμό αυτό τον συμβολίζουμε με λ και τον λέμε λόγο της προόδου. Έτσι ισχύουν : ή Ο ν-οστός όρος μιας γεωμετρικής προόδου με πρώτο όρο και λόγο λ είναι ΜΕΘΟΔΟΛΟΓΙΑ : Προσδιορισμός και λ μιας γεωμετρικής προόδου όταν γνωρίζουμε στοιχεία για διάφορους όρους της. Όταν έχουμε ως δεδομένα σχέσεις μεταξύ διαφόρων όρων μιας γεωμετρικής προόδου, τότε αντικαθιστούμε όλους τους όρους σύμφωνα με τον τύπο. Στη συνέχεια συνήθως διαιρούμε κατά μέλη τις σχέσεις που προκύπτουν. (Ασκήσεις - 7 σχ. βιβλίο Α ομαδας σελ. 6-7) ΜΕΘΟΔΟΛΟΓΙΑ : Γεωμετρικός Μέσος Τρεις μη μηδενικοί αριθμοί α, β, γ είναι διαδοχικοί όροι γεωμετρικής προόδου, αν και μόνο αν ισχύει :. Ο β λέγεται γεωμετρικός μέσος των α και γ (Πρέπει να είναι πάντα θετικός αριθμός). (Άσκηση 8 σχ. βιβλίο Α ομαδας σελ. 7, Άσκηση σχ. βιβλίο Β ομαδας σελ. 8) ΜΕΘΟΔΟΛΟΓΙΑ : Άθροισμα ν διαδοχικών όρων γεωμετρικής προόδου Έστω μια γεωμετρική πρόοδος με λόγο 0. Το άθροισμα S των πρώτων ν όρων της δίνεται από τον τύπο : S. Αν αντικαταστήσουμε το, προκύπτει ο τύπος : S. Με τον τύπο αυτό υπολογίζουμε το άθροισμα των πρώτων ν όρων μιας γεωμετρικής προόδου, χωρίς να γνωρίζουμε το πλήθος αυτών, αρκεί να γνωρίζουμε τα,, (Ασκήσεις 9-0 σχ. βιβλίο Α ομαδας σελ. 8) Υποπερίπτωση : αν το άθροισμα είναι της μορφής :... τότε αρχικά από τον τύπο, υπολογίζω το ν ή το (ανάλογα με την εκφώνηση) και στη συνέχεια από τον τύπο Α ομάδας σελ. 8) S υπολογίζω το ζητούμενο άθροισμα. (Άσκηση ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 8

9 ΜΕΘΟΔΟΛΟΓΙΑ : Πως αποδεικνύουμε ότι μια ακολουθία είναι γεωμετρική πρόοδος, όταν γνωρίζουμε τον ν-οστό όρο της. Για να αποδείξουμε ότι μια ακολουθία είναι γεωμετριή πρόοδος, όταν γνωρίζουμε τον γενικό όρο της, εργαζόμαστε ως εξής : ον Βρίσκουμε τον όρο, θέτοντας όπου ν το ν+, στον τύπο του ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. (Άσκηση σελ. 6 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Να βρείτε το ν-οστό όρο των γεωμετρικών προόδων : i.,6,,... ii.,,6,... vi. 8,6,,... 6 i. Στην γεωμετρική πρόοδο,6,,... έχω : και Άρα : ii. Στην γεωμετρική πρόοδο,,6,... έχω : και Άρα : ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 9 vi. Στην γεωμετρική πρόοδο 8,6,,... έχω : 8 Άρα : 8 και 8 6. (Άσκηση σελ. 7 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Να βρείτε το ζητούμενο όρο σε καθεμία από τις γεωμετρικές προόδους : i. τον 9 της,,,... iv. τον 0 της,,,... i. Στην γεωμετρική πρόοδο,,,... έχω : και 9 8 Άρα : iv. Στην γεωμετρική πρόοδο,,,... έχω : και Άρα : 0 ( ) 0 ον Υπολογίζουμε το πηλίκο ον Αν το παραπάνω πηλίκο είναι σταθερός αριθμός (ανεξάρτητος του ν), τότε η ακολουθία είναι γεωμετρική πρόοδος, με λόγο λ ισο με τον σταθερό αυτό αριθμό. (Άσκηση Β ομάδας σελ. 8) 9 ( 5 0 ) 0

10 . (Άσκηση 8 σελ. 7 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) i. Να βρείτε τον γεωμετρικό μέσο των αριθμών 5 και 0 καθώς και των και. ii. Να βρείτε τον x ώστε οι αριθμοί x, x, x 9 να αποτελούν γεωμετρική πρόοδο. i. Ο γεωμετρικός μέσος των 5 και 0 είναι ο Ο γεωμετρικός μέσος των και είναι ο ii. Οι αριθμοί x, x και x 9 είναι διαδοχικοί όροι γεωμετρικής προόδου αν και μόνο αν ισχύει : ( x ) ( x )( x 9) x x x 9x x 76 5x 75 x.. (Άσκηση 8 σελ. 0 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Να βρείτε το άθροισμα των πρώτων 0 όρων των γεωμετρικών προόδων : i.,,,... i. Στην γεωμετρική πρόοδο,,,... έχω : και Άρα : S S0 0 0 S0 0 0 S 5. (Άσκηση 0 σελ. 8 Α ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ Υπο/πτωση) Να υπολογίσετε τα αθροίσματα : i i. Οι αριθμοί,8,,..., 89 αποτελούν διαδοχικούς όρους γεωμετρικής προόδου με 8 και. Είναι 89 και ψάχνουμε το ν. Έτσι έχω : Άρα : S S7 S S (Εναλλακτικά θα μπορούσα να χρησιμοποιήσω και τον άλλο τύπο του αθροίσματος : 89 S S S ) 6. (Άσκηση σελ. 8 Β ομάδας σχολικού βιβλίου) (ΜΕΘΟΔΟΛΟΓΙΑ ) Ο ν-ος ορος μιας ακολουθίας είναι. Να αποδείξετε ότι η ακολουθία αυτή είναι γεωμετρική πρόοδος και να γράψετε τους και λ. Αρχικά βρίσκουμε τον όρο, θέτοντας όπου ν το ν+, στον τύπο του δηλαδή : ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 0

11 Στη συνέχεια υπολογίζουμε το λόγο : Ο λόγος πρόοδος με λόγο και πρώτο όρο : ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ : 6 9 είναι δηλαδή σταθερός αριθμός άρα η ακολουθία ( ) είναι γεωμετρική Να βρείτε το 8 ο όρο των παρακάτω γεωμετρικών προόδων : i.,,,... ii.,6,8,... iii. 7 9,,,... iv.,,, Σε μια γεωμετρική πρόοδο ( ) είναι και. Να βρείτε : i. τον 8 ο όρο της ( ) ii. ποιος ορος της ( ) είναι ισος με. 9. Σε μια γεωμετρική πρόοδο ( ) είναι 9 και 6. Να βρείτε : i. τον λόγο λ της ( ) ii. τον 6 ο όρο της ( ) 0. Οι αριθμοί, x, 8 είναι διαδοχικοί όροι γεωμετρικής προόδου. Να βρείτε το x.. Ο αριθμός 6 είναι ο γεωμετρικός μέσος των αριθμών x και x 8. Να βρείτε ποιες τιμές μπορεί να πάρει ο αριθμός x.. Οι αριθμοί x, x, x είναι διαδοχικοί όροι γεωμετρικής προόδου. Να βρείτε το x.. Οι αριθμοί, x, x x είναι διαδοχικοί όροι γεωμετρικής προόδου. Να βρείτε ποιες τιμές μπορεί να πάρει ο αριθμός x.. Οι αριθμοί x 6, x, x είναι διαδοχικοί όροι γεωμετρικής προόδου. i. Να βρείτε ποιες τιμές μπορεί να πάρει ο αριθμός x. ii. Για τη μεγαλύτερη από τις τιμές του x που βρήκατε στο i. να βρείτε τον γεωμετρικό μέσο των αριθμών x και Να βρείτε το άθροισμα των 7 πρώτων όρων της γεωμετρικής προόδου :,,6, Να βρείτε το άθροισμα των 7 πρώτων όρων της γεωμετρικής προόδου : 9,96,8, Να υπολογίσετε τα αθροίσματα : i ii Ο ν-ος ορος μιας ακολουθίας είναι. Να αποδείξετε ότι η ακολουθία αυτή είναι γεωμετρική πρόοδος και να γράψετε τους και λ.. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

12 ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ ΣΤΙΣ ΠΡΟΟΔΟΥΣ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Δίνεται η ακολουθία με γενικό όρο :. i. να αποδείξετε ότι η ακολουθία είναι αριθμητική πρόοδος και έχει πρώτο όρο 9 και διαφορά ω=. ii. Να βρείτε το άθροισμα S..., όπου,,..., είναι διαδοχικοί όροι της προόδου. iii. Να αποδείξετε ότι οι ρίζες της εξίσωσης : x x είναι διαδοχικοί όροι της προηγούμενης προόδου.. Δίνεται αριθμητική πρόοδος, της οποίας ο ος ορος είναι - και το άθροισμα των πρώτων 8 όρων της είναι 8. i. Να βρείτε τον πρώτο όρο και τη διαφορά της αριθμητικής προόδου. ii. Να λύσετε την εξίσωση x 7x 5. x iii. Να λύσετε την ανίσωση 0 x x S 5. Οι αριθμοί x, x, x με τη σειρά που δίνονται, είναι διαδοχικοί όροι μιας αριθμητικής προόδου. i. Να βρείτε την τιμή του x Αν ο αριθμός x, είναι ο πέμπτος ορος της αριθμητικής προόδου, να βρείτε : ii. τον και τη διαφορά ω της iii. το άθροισμα των 0 πρώτων όρων της iv. ποιος ορος της είναι ισος με 00 v. το πλήθος των πρώτων όρων της που έχουν άθροισμα 80. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ. Δίνεται η εξίσωση x x 0 () i. Να αποδείξετε ότι η εξίσωση () έχει πραγματικές ρίζες για κάθε. ii. Αν x, x είναι ρίζες της εξίσωσης (), να βρείτε για ποιες τιμές του λ, οι αριθμοί : x x, x x, αποτελούν διαδοχικούς όρους γεωμετρικής προόδου. 5. Σε μια γεωμετρική πρόοδο ο τρίτος ορος είναι ισος με 6 και ο έκτος ορος είναι ισος με. Να βρείτε : i. τον πρώτο όρο και τον λόγο της ii. τον δέκατο όρο της iii. το άθροισμα των πρώτων 6 όρων της iv. τον γεωμετρικό μέσο των αριθμών 8 και ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

13 ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ ( ο Πανελλήνιες 999 Επαναληπτικές) Ο πρώτος όρος μιας γεωμετρικής προόδου είναι α =7 και ο λόγος της είναι. α) Να βρείτε τον τέταρτο όρο της προόδου. (Μονάδες 7) β) Το άθροισμα των πέντε πρώτων όρων της προόδου είναι ίσο με: Α. - 6, Β. 6, Γ. -6, Δ. 6 (Μονάδες 8) γ) Το άθροισμα των απείρων όρων της προόδου είναι ίσο με: Α. - 8, Β. 8, Γ. 8, Δ. - 8 (εκτός ύλης) (Μονάδες 0) ΘΕΜΑ ( ο Πανελλήνιες 999) Έστω γεωμετρική πρόοδος της οποίας ο τρίτος όρος είναι ίσος με 6 και ο έκτος όρος είναι ίσος με. α) Ο πρώτος όρος α και ο λόγος λ της γεωμετρικής προόδου είναι : Α. α = 6 και λ = - / Β. α = - 6 και λ = - / Γ. α = 6 και λ = / Δ. α = και λ = / Μονάδες 9 β) Να βρείτε τον δέκατο όρο της γεωμετρικής προόδου. Μονάδες 9 γ) Να βρείτε το άθροισμα των άπειρων όρων της γεωμετρικής προόδου.(εκτός ύλης) Μονάδες 7 ΘΕΜΑ ( ο Πανελλήνιες 000 Επαναληπτικές) α. Να βρείτε τις τιμές του πραγματικού αριθμού x για τις οποίες οι αριθμοί x -, x + και x - είναι διαδοχικοί όροι αριθμητικής προόδου. Μονάδες 0 β. Αν ο αριθμός x + είναι ο έκτος όρος της αριθμητικής προόδου του α. ερωτήματος, να βρείτε τον πρώτο όρο της. Μονάδες 7 γ. Να βρείτε το άθροισμα των 0 πρώτων όρων της αριθμητικής προόδου του α. ερωτήματος. Μονάδες 8 ΘΕΜΑ ( ο Πανελλήνιες 000) Ένας πληθυσμός βακτηριδίων τριπλασιάζεται σε αριθμό κάθε μια ώρα. A. Αν αρχικά υπάρχουν 0 βακτηρίδια, να βρείτε το πλήθος των βακτηριδίων ύστερα από 6 ώρες. Μονάδες 9 B. Στο τέλος της έκτης ώρας ο πληθυσμός των βακτηριδίων ψεκάζεται με μια ουσία, η οποία σταματά τον πολλαπλασιασμό τους και συγχρόνως προκαλεί την καταστροφή 0 βακτηριδίων κάθε ώρα. B.. Να βρείτε το πλήθος των βακτηριδίων που απομένουν 0 ώρες μετά τον ψεκασμό. Μονάδες 8 B..Μετά από πόσες ώρες από τη στιγμή του ψεκασμού θα καταστραφούν όλα τα βακτηρίδια; Μονάδες 8 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

14 ΘΕΜΑ 5 ( ο Πανελλήνιες 00 Επαναληπτικές) Σε ένα θέατρο, η πρώτη σειρά έχει 70 καθίσματα και η τελευταία έχει 50 καθίσματα. Το πλήθος των καθισμάτων κάθε σειράς σχηματίζει αριθμητική πρόοδο. Η προτελευταία σειρά έχει 0 καθίσματα περισσότερα από τη δεύτερη σειρά. α. Να αποδείξετε ότι κάθε σειρά καθισμάτων του θεάτρου έχει 0 καθίσματα περισσότερα από την προηγούμενη σειρά. Μονάδες 0 β. Να υπολογίσετε το πλήθος των καθισμάτων του θεάτρου. Μονάδες 7 γ. Την πρώτη παράσταση ενός θεατρικού έργου παρακολούθησαν 00 θεατές, ενώ σε κάθε επόμενη παράσταση ο αριθμός των θεατών διπλασιαζόταν. Ποια είναι η παράσταση στην οποία για πρώτη φορά θα γεμίσει το θέατρο; Μονάδες 8 ΘΕΜΑ 6 ( ο Πανελλήνιες 00 Επαναληπτικές) Έστω δύο κοινωνίες βακτηριδίων Α και Β. Αν συμβολίσουμε με Α 0 τον αρχικό πληθυσμό της κοινωνίας Α και με Β 0 τον αρχικό πληθυσμό της κοινωνίας Β, τότε 9Α 0 =0 Β 0. Ο πληθυσμός της κοινωνίας Α μειώνεται κάθε ώρα κατά το του αρχικού πληθυσμού 00 της, ενώ ο πληθυσμός της κοινωνίας Β αυξάνεται ανά ώρα με γεωμετρική πρόοδο με λόγο λ. Οι δύο πληθυσμοί γίνονται ίσοι 0 ώρες μετά την αρχική στιγμή. α. Να δείξετε ότι ο λόγος της γεωμετρικής προόδου που αναφέρεται στον πληθυσμό Β είναι λ = 0. Μονάδες 0 β. Πέντε ώρες μετά την αρχική στιγμή ο πληθυσμός της κοινωνίας Β είναι 0 0 βακτηρίδια. Να δείξετε ότι ο αρχικός πληθυσμός της κοινωνίας Β ήταν 0 5 βακτηρίδια. Μονάδες 8 γ. Να βρείτε τον πληθυσμό της κοινωνίας Α, 99 ώρες μετά την αρχική στιγμή. Μονάδες 7 ΘΕΜΑΤΑ ΤΗΣ ΤΡΑΠΕΖΑΣ ΓΙΑ ΤΟ ΚΕΦΑΛΑΙΟ 5 Ο : ΠΡΟΟΔΟΙ.. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

15 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 5

16 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 6

17 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 7

18 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 8

19 .. 5. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 9

20 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 0

21 9. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

22 0.... ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

23 . 5. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

24 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

25 9. 0. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 5

26 .. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 6

5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ. Η έννοια της ακολουθίας

5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ. Η έννοια της ακολουθίας 5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ Η έννοια της ακολουθίας Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο 10000 ευρώ με ανατοκισμό ανά έτος και με επιτόκιο 2%. Αυτό σημαίνει ότι σε ένα χρόνο οι τόκοι που

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3 Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΡΟΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΠΡΟΟΔΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΓΕΝΙΚΟΣ ΟΡΟΣ ΓΕΝΙΚΟΣ ΟΡΟΣ " ÎÀ-{0}, + ( ν-) ω " ÎÀ-{0}, l - ω : διαφορά προόδου λ : λόγος

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας 9-3 A Oμάδας.i) Να βρείτε το ν-οστό όρο της αριθμητικής προόδου 7, 0, 3,... = + (ν ) ω = 7 + (ν ) 3 = 7 + 3ν 3 = 3ν + 4.ii) Να βρείτε το ν-οστό όρο

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟΔΟΙ

ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟΔΟΙ ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟΔΟΙ Ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών 1,,3,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο 1 καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Θέματα για Λύση. 1. Να βρείτε τον 15 ο όρο της αριθμητικής προόδου: 7, 15, 23, 31,..

Θέματα για Λύση. 1. Να βρείτε τον 15 ο όρο της αριθμητικής προόδου: 7, 15, 23, 31,.. 72 Θέματα για Λύση 1. Να βρείτε τον 15 ο όρο της αριθμητικής προόδου: 7, 15, 23, 31,.. 2. Σε μια αριθμητική πρόοδο (α ν ) είναι: α 8 = 22 και α 14 = 40. Να προσδιορισθεί ο εικοστός όρος της προόδου. 3.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 5ο κεφάλαιο: Πρόοδοι ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα 1 ΠΡΟΟ

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 5.2 Ασκήσεις: 1-17 Θεωρία ως και την 5.3 Ασκήσεις: 18-24 Άσκηση 1 Θεωρούμε την ακολουθία

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου

Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου 1999-004 Περιεχόµενα 1 Θέµατα 1999......................................... 3 Θέµατα 000......................................... 8 3 Θέµατα Σεπτεµβρίου 000..................................

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της.

σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της. ΚΕΦΑΛΑΙΟ 5ο ΑΡΙΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σε μια αριθμητική πρόοδο είναι 6 και 9. Να βρείτε α) τη διαφορά και β) τον 0 ο όρο της προόδου.. Σε μια αριθμητική πρόοδο είναι 3 και 7.

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και

Διαβάστε περισσότερα

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας 5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας - 0 A Ομάδας.i) Να βρείτε το ν-οστό όρο της γεωμετρκής προόδου,,,... Είναι λ και...ii) Να βρείτε το ν-οστό όρο της γεωμετρικής προόδου,,,... Είναι

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΓΕΩΜΕΤΡΙΚΕΣ ΠΡΟΟΔΟΥΣ. iii) 32, 16,8, iv) 27, 9, 3,... και λ=2.να βρείτε : και α4=6.να βρείτε :

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΓΕΩΜΕΤΡΙΚΕΣ ΠΡΟΟΔΟΥΣ. iii) 32, 16,8, iv) 27, 9, 3,... και λ=2.να βρείτε : και α4=6.να βρείτε : Ν-οστός όρος ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΓΕΩΜΕΤΡΙΚΕΣ ΠΡΟΟΔΟΥΣ 1. Να βρείτε τον 8ο όρο των παρακάτω γεωμετρικών προόδων: i) 1,, 4 ii) 1, 1,1,... 9 3 iii) 3, 16,8, iv) 7, 9, 3,... 8 4 3. Σε μια γεωμετρική πρόοδο (αν)

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΚΕΦΑΛΑΙΟ Ο : ΤΡΙΓΩΝΟΜΕΤΡΙΑ. ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΟΞΕΙΑΣ ΓΩΝΙΑΣ έ _ ά ί ί _ ά ί έ _ ά ί _ ά ί _ ά έ _ ά ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΤΥΧΑΙΑΣ ΓΩΝΙΑΣ y y y όπου η απόσταση του

Διαβάστε περισσότερα

Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο ευρώ με ανατοκισμό

Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο ευρώ με ανατοκισμό 5. Ακολουθίες ΠΡΟΟΔΟΙ Κεφάλαιο 5ο Η έννοια της ακολουθίας Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο 0000 ευρώ με ανατοκισμό ανά έτος και με επιτόκιο %. Αυτό σημαίνει ότι σε ένα χρόνο οι τόκοι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2 Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα

Διαβάστε περισσότερα

Πρόοδοι. Κώστας Γλυκός. Αριθμητική & Γεωμετρική ΜΑΘΗΜΑΤΙΚΟΣ. 91 Ασκήσεις. σε 5 σελίδες. Ιδιαίτερα μαθήματα. εκδόσεις. Kglykos.gr.

Πρόοδοι. Κώστας Γλυκός. Αριθμητική & Γεωμετρική ΜΑΘΗΜΑΤΙΚΟΣ. 91 Ασκήσεις. σε 5 σελίδες. Ιδιαίτερα μαθήματα. εκδόσεις. Kglykos.gr. Πρόοδοι Κώστας Γλυκός Αριθμητική & Γεωμετρική 9 Ασκήσεις σε 5 σελίδες Ιδιαίτερα μαθήματα 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 6 / / 0 7 εκδόσεις Καλόπήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-300.88.88 Ασκήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΟΥΣΕΣ ΟΡΙΣΜΟΣ Έστω συνάρτηση : R, όπου Δ διάστημα

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Μια συνάρτηση με πεδίο ορισμού το σύνολο Α, λέγεται περιοδική, όταν υπάρχει πραγματικός αριθμός Τ>0 τέτοιος, ώστε για κάθε να ισχύει ότι και ( ) και ( ). Ο αριθμός Τ

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει :

Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει : Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για τα Μαθηματικά Θετικού Προσανατολισμού της Β Λυκείου, που είναι ένα από τα σημαντικότερα μαθήματα, καθώς περιέχει χρήσιμες γνώσεις για

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0

και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0 ΚΕΦΑΛΑΙΟ Ο 7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (Θεώρημα Frmat) Εστω μια συναρτηση ορισμενη σ ένα διαστημα Δ και ένα εσωτερικο σημειο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ. 1. * Η ακολουθία είναι μια συνάρτηση με πεδίο ορισμού το σύνολο Α. Q Β. Ζ* Γ. Ν Δ. Ν* Ε. R. ) κάθε όρος Γ Δ. Β. 10 Γ. 2 Δ.

ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ. 1. * Η ακολουθία είναι μια συνάρτηση με πεδίο ορισμού το σύνολο Α. Q Β. Ζ* Γ. Ν Δ. Ν* Ε. R. ) κάθε όρος Γ Δ. Β. 10 Γ. 2 Δ. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ Ερωτήσεις πολλαπλής επιλογής. * Η ακολουθία είναι μια συνάρτηση με πεδίο ορισμού το σύνολο Α. Q Β. Ζ* Γ. Ν Δ. Ν* Ε. R. * Σε μια ακολουθία ( ) κάθε όρος είναι Α. θετικός Β. 0 Γ. ακέραιος

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 3ο : Πρόοδοι)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 3ο : Πρόοδοι) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 3ο : Πρόοδοι) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής ή τροποποίησης

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-)

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-) ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος--) .. Μια χρήσιμη ανασκόπηση... Δυνάμεις Πραγματικών Αριθμών Ο συνοπτικός τρόπος για να εκφράσουμε το γινόμενο : 2*2*2*2 4 είναι να το γράψουμε:

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0) . Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ 1. Δίνεται η αριθμητική πρόοδος με α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών κέραιοι ριθμοί -Η ευθεία των αριθμών κέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Τα σύμβολα «+» και «-» που γράφονται μπροστά από τους αριθμούς λέγονται πρόσημα.

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ 45 Πότε μια συνάρτηση με πεδίο ορισμού Α παρουσιάζει στο τοπικό μέγιστο και πότε τοπικό ελάχιστο ; (, 5) Απάντηση : α) Μια συνάρτηση, με πεδίο

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ 1. ΑΚΟΛΟΥΘΙΕΣ Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση : 1 λέγεται ακολουθία πραγματικών αριθμών ή

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΩΓΙΣΙΜΗ

Διαβάστε περισσότερα

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ

4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ 4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Για να λύσω μια κλασματική εξίσωση, δηλ. μια εξίσωση που έχει άγνωστο στον παρανομαστή, Βήμα : παραγοντοποιώ

Διαβάστε περισσότερα

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001 Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ 5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος. Σειρές Σειρές και μερικά αθροίσματα: Το πρόβλημα της άθροισης μιας σειράς άπειρων όρων είναι πολύ παλιό. Μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο αποτέλεσμα, μερικές φορές απειρίζεται και

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ . ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α. ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P Q Q v P P ln P P P P, P P, Q P P Ποιο είναι το πεδίο ορισμού των

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα