ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ"

Transcript

1 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός

2 . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό τους προσημό Σε ετερόσημους κάνω αφαίρεση και βάζω το προσημό του μεγαλύτερου αριθμού πχ. + + = = = = - ΧΡΗΣΙΜΟ Κάθε αριθμός χωρίς πρόσημο δεχόμαστε ότι είναι θετικός, δηλαδή α = +α πχ. = +. ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ, ΔΙΑΙΡΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους βάζουμε πρόσημο (+), ενώ σε ετερόσημους (-) πχ. +(+) = + +(-) = - -(+) = - -(-) = + α β α β α : β ΑΝΑΓΩΓΗ ΟΜΟΙΩΝ ΟΡΩΝ (ΠΡΟΣΘΕΣΗ ΠΟΛΥΩΝΥΜΩΝ) (κάνουμε πράξεις, πρόσθεση κι αφαίρεση, μόνο με τα όμοια) πχ. x + = ΤΙΠΟΤΑ (έπρεπε να έχω μόνο x ή μόνο νούμερα) x -x = ΤΙΠΟΤΑ (έπρεπε να έχω μόνο x ή μόνο x) 6x + = ΤΙΠΟΤΑ (έπρεπε να έχω μόνο x ή μόνο νούμερα) x + y = ΤΙΠΟΤΑ (έπρεπε να έχω μόνο x ή μόνο y) α+β = ΤΙΠΟΤΑ (έπρεπε να έχω μόνο α ή μόνο β) x +7x = 0x x - x = -x 8α -α = α ΠΡΑΞΕΙΣ ΜΕ ΤΑ x x = x = x 0x = 0 x = 0 x + x = x x x = x x x = x x x = x x = 6x x x = x. ΠΡΟΣΘΑΦΑΙΡΕΣΗ ΠΟΛΛΩΝ ΟΡΩΝ πχ. μόνο με αριθμούς A= Γράφω πρώτα τα (+), μετά τα (-) (τα μετράμε στο σύνολο μην ξεχάσουμε κανένα) A= Διαγράφουμε αντίθετους (+α, -α), αν υπάρχουν A= Προσθέτουμε όλα τα (+) και βάζουμε (+), προσθέτουμε όλα τα (-) και βάζουμε (-) Α= +0-7 Κάνουμε μόνο μία αφαίρεση Α= -7

3 πχ. με αναγωγές, x, x, αριθμούς B= x-x +6-x-7-x++7x -x-++x +6x -x-8x --6x--x Γράφω πρώτα τα x, μετα τα x, μετά τους αριθμούς (με την σειρά που τα συναντώ) (τα μετράμε στο σύνολο μην ξεχάσουμε κανένα) B= -x +7 x +x +6x -8x +x-x-x-x-x-6x-x Χωρίζουμε σε κάθε όμοιο όρο τους θετικούς απο τους αρνητικούς B= + 7x +x +6x -x -8x +x-x-x-x-x-6x-x Διαγράφουμε αντίθετους (+α, -α), αν υπάρχουν B= + 7x + x +6x -x -8x + x -x -x-x-x-6x-x Προσθέτουμε σε κάθε όρο τα (+) και βάζουμε (+), προσθέτουμε τα (-) και βάζουμε (-) B= + x -8x -0x +-0 Κάνω μία αφαίρεση σε κάθε όρο (στα x, στα x, στους αριθμούς) B= + x -0x-9 Σταματάω, γιατι τέλειωσαν οι αναγωγές ομοιών όρων (δεν γίνονται άλλες πράξεις). ΑΠΑΛΟΙΦΗ ΠΑΡΕΝΘΕΣΕΩΝ Το (-) έξω από παρένθεση αλλάζει όλα τα πρόσημα όταν βγαίνει η παρένθεση, ενώ το (+) τα αφήνει όπως είναι. πχ. (x -x+y-α+)= -x +x-y+α- + (x -x+8β-x +9)= +x -x+8β-x ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ (ΤΟΥ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΩΣ ΠΡΟΣ ΠΡΟΣΘΕΣΗ) (ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ) (όταν έχω αριθμό με παρένθεση συνεχόμενα ή παρενθέσεις διαδοχικά, εννοείται το επί) πχ. ( x 7 x) 6 0x x (αριθμός επί παρένθεση, υπολογίζω το ( ) του -) x x x (παρένθεση επί παρένθεση) - = ( x x x ) x 6x x 6 (αριθμός επί δυο παρενθέσεις, πρώτα τις δυό παρενθέσεις και ό,τι βρω σε παρένθεση και μετά επιμεριστική με τον αριθμό) x x x (9x x 6) 7x 7x 8 (αριθμός επί ταυτότητα, πρώτα την ταυτότητα και ό,τι βρώ σε παρένθεση και μετά επιμεριστική τον αριθμο με την παρένθεση) 7. ΔΥΝΑΜΕΙΣ 0 0 a... έ / προσοχή: '' ά '' '' ύ '' 9 7 ( ) ενώ δηλαδή - = -9, ενώ (-) = +9, αντίστροφος του α 7 7 πχ. 6 6

4 8. ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ (ΣΕΙΡΑ ΠΡΑΞΕΩΝ) Α. Χωρίς Παρενθέσεις. Δυνάμεις. Πολλαπλασιασμοί Διαιρέσεις. Προσθέσεις - Αφαιρέσεις 8 : 6 : ( ) : 6 : 7 : 9 7 : 0 0 Κάνουμε πρώτα μόνο τις δυνάμεις και αφήνουμε τα υπόλοιπα όπως είναι 8 8 : 6 : ( ) 6 : 6 : 7 : 9 9 : Μετά κάνουμε μόνο τους πολλαπλασιασμούς και τις διαιρέσεις προσέχοντας τα πρόσημα Τέλος κάνουμε προσθέσεις κι αφαιρέσεις, χωρίζοντας τους θετικούς από τους αρνητικούς Προσθέτω όλα τα (+) και βάζω (+), προσθέτω όλα τα (-) και βάζω (-) Β. Με Παρενθέσεις Κάνουμε τις πράξεις μόνο μέσα στις παρενθέσεις με τη παραπάνω σειρά (--), αφήνοντας τα υπόλοιπα έξω απο τις παρενθέσεις όπως είναι και μόλις φύγουν οι παρενθέσεις κανουμε τις πράξεις όπως πριν (με την σειρά --) 0 ( 7 : ) 7 6 : : 8 6 : : Κάνουμε τις πράξεις μόνο μέσα στις παρενθέσεις με την γνωστή σειρά και αφήνουμε τα υπόλοιπα όπως είναι, μέχρι σε κάθε παρένθεση να μείνει ένας αριθμός ( 7 :) 9 6 : 6 : : : ( 7) : : ( ) : : ( ) 9 6 : : ( ) 6 : : Τότε κάνω τις πράξεις με την παραπάνω σειρά προσέχοντας τα πρόσημα ( )6 6 : : Γ. Με Άγκιστρα, Αγκύλες, Παρενθέσεις Τα απαλείφουμε (βγάζουμε) από μέσα προς τα έξω πχ. με μεταβλητές και αριθμούς (αλγεβρική παράσταση) (ταυτότητες με δυνάμεις, επιμεριστικές, απαλοιφή παρενθέσεων και αναγωγές) x x x x x x x x x x x x x x x x x x x x 7 6 x x x x x x x x x x x x 8x x x 6 x 6x 8x x x x

5 6x x 8x x x 6 x x 6x x 6 x x Χωρίζω τους όμοιους όρους, δηλαδή πρώτα τα x, μετά τα x,και τέλος τα νούμερα x x x 6x x 8x x x 6x x x 6 6 Χωρίζω στους όμοιους όρους τα (+) από τα (-), δηλαδή στα x, στα x, και στα νούμερα x x x 6x 8x x x x 6x x x 6 6 Προσθέτω όλα τα (+) και βάζω (+), προσθέτω όλα τα (-) και βάζω (-), στους όμοιους όρους x 90x x 6 ΣΧΟΛΙΟ x 7x 6 Κάθε αριθμός που δεν είναι κλάσμα γράφεται σαν κλάσμα με παρονομαστή την 9. ΠΡΑΞΕΙΣ ΜΕ ΚΛΑΣΜΑΤΑ a 7 μονάδα, δηλαδή a πχ. 7 Ομώνυμα κάνουμε μόνο σε πρόσθεση κι αφαίρεση, όχι σε πολλαπλασιασμό και διαίρεση. Ομώνυμα λέγονται τα κλάσματα που έχουν τον ίδιο παρονομαστή (το ΕΚΠ των παρονομαστών) ,,, α. : 7 7 (αντιστρέφω διαιρέτη και αντί για διαίρεση κάνω πολλαπλασιασμό) 7 (πολλαπλασιάζω τους άκρους όρους και το γινόμενο μπαίνει β. 7 αριθμητής, πολλαπλασιάζω τους μέσους όρους και το γινόμενο : 7 μπαίνει παρονομαστής) (+),(-) ομώνυμα, 7 αφού βρούμε το ΕΚΠ, στα καπελάκια βάζουμε τον αριθμό (ΕΚΠ/παρονομαστή) ΠΡΑΞΕΙΣ ΜΕ ΡΙΖΕΣ Κάνω πρόσθεση, αφαίρεση ριζών μόνο όταν έχω ίδιες ρίζες, σαν την αναγωγή. πχ. = ΤΙΠΟΤΑ = ΤΙΠΟΤΑ,, 9, ,, 9,...,

6 6 ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΓΙΑ ΑΠΑΝΤΗΣΗ Α ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή, μπορεί όμως να είναι λάθος.γράψτε δίπλα από κάθε πρόταση το Σ αν αυτή είναι σωστή και το Λ αν αυτή είναι λάθος. Ο αριθμός χ είναι ένας αρνητικός ρητός αριθμός. Ο αριθμός χ είναι ο αντίθετος του αριθμού χ και μπορεί να είναι θετικός ή αρνητικός αν ο χ είναι αρνητικός ή θετικός αντίστοιχα... Οι αντίθετοι αριθμοί έχουν αντίθετες απόλυτες τιμές.. Οι αντίθετοι αριθμοί έχουν την ίδια πάντα απόλυτη τιμή αφού αυτή εκφράζει την απόσταση των σημείων του άξονα στα οποία αυτοί μπαίνουν από την αρχή του... Η απόλυτη τιμή ενός αριθμού είναι πάντα μη αρνητικός αριθμός. Η απόλυτη τιμή ενός αριθμού μπορεί να είναι και αρνητικός αριθμός... Ο αντίθετος του χ είναι ίσος με το γινόμενο του με τον χ δηλαδή χ = (-) χ Οι ομόσημοι αριθμοί έχουν γινόμενο αριθμό ομόσημο μ αυτούς. Οι ομόσημοι αριθμοί έχουν γινόμενο έναν θετικό αριθμό. Οι ετερόσημοι έχουν γινόμενο έναν αρνητικό αριθμό. Οι αντίθετοι αριθμοί έχουν γινόμενο αρνητικό αριθμό. Αν α ένας ρητός αριθμός τότε α = α και α 0 = 0. Οι αντίστροφοι αριθμοί έχουν γινόμενο 0 Οι αντίστροφοι αριθμοί έχουν γινόμενο Οι αντίστροφοι αριθμοί έχουν γινόμενο. Να γίνουν οι πράξεις: ),,, (,, : ), ( ) ), ( ), (, ) : ) : ) δ 6 γ 6 6 β 6 α. Να βρεθούν οι παραστάσεις: 6 δ 6 6 γ 6 β 6 α ) : ) ) ). Στη παράσταση -7x+(-y+x)-(x-y) να απαλείψετε τις παρενθέσεις και να βρείτε την αριθμητική της τιμή για x=-, y=-. Το ίδιο να κάνετε για τη παράσταση -x+(-9y+x)-(x-7y) θέτοντας όπου x=- και y=-.. Γνωρίζοντας ότι α β = - και χ + ψ = 7 να υπολογίσετε τις τιμές των παρακάτω παραστάσεων με την βοήθεια της επιμεριστικής ιδιότητας: Π = -α + β +χ +ψ Π =. (χ + ψ + α) - 0β Π = α + α - β + 7χ + ψ +ψ Π = α β + χ + 8ψ ψ + χ Π = χα +ψα χβ ψβ

7 6. Να υπολογίσετε τις τιμές των παρακάτω παραστάσεων. ( ) ( ) Α = : Β = : ( ) Γ = : ( ) ( ) ( ) ( 0) : ( ) ( ) Δ= : Ε= : 00 6 : 8 Β ΔΥΝΑΜΕΙΣ 7. Στις παρακάτω προτάσεις επιλέξτε τη σωστή απάντηση: ν + - ν + = Α.: ν + Β.: ν Γ.: ν + (ν + ):(ν + ) Δ.: Ε.: ν ν + = Α.: -6 ν + Β.: -6 ν + Γ.: -6 ν + Δ.: 8 ν + Ε.: ν + ν + +6(-) ν + = Α.: ν + Β.: (- ) (ν + ) Γ.: ν + Δ.: (-) ν Ε.: (-) ν + x 8. Αν x, τότε o ακέραιος αριθμός x είναι.. Α.: Β.: - Γ.: ένας περιττός ακέραιος Δ.: ένας άρτιος ακέραιος Επιλέξτε την σωστή απάντηση. 9. Αν, τότε ποια από τις παρακάτω ισότητες είναι σωστή; Α.: κ = λ Β.: κ + λ 0 Γ.: α = 0 Δ.: α 0 και κ = -λ κ λ α 0. Αν α 0, τότε : (α α ) α = Α.: α α Β.: Γ.: α α Δ.: α Επιλέξτε την σωστή απάντηση.. Να υπολογισθούν οι παραστάσεις 7 ( ) ( ) ( ) α) 6 β) ( ) : 7

8 . Nα υπολογισθούν οι παραστάσεις Α=6(- ) (-) ] () Β= +8(- ) - - +[ ( ) 8 ](-) Γ=8( ) (-) ] () Δ= ( ):(0 9. ). Αν α=, β=, και γ=- να υπολογισθεί η τιμή της παράσταση α α β γ Α= : β γ β. Αν αβ=- και α+β=6 να συμπληρωθούν με την βοήθεια των δυνάμεων οι ισότητες 0 0 α β α) (α ) β) (α - β - ) 0 :(α - +β - α β. Να γράψετε τις παραστάσεις με μορφή μιας δύναμης. Α=8 9 6, Β=( ) + 0 : , Γ= - 6 Δ= Ε= 0 ( x) y 8 0 ( ) y x , 6. Να υπολογίσετε την τιμή της παράστασης : x 6x x x x x A= x αν x=- 7. Αν x=- και y=- και z= να βρεθεί ο αντίστροφος του Α=-6x -y - +z - 8. Αν x=- και y=- και z= να βρεθεί ο αντίστροφος του Α=-x +y - -z 9. Nα βρείτε την τιμή της παράστασης : A=(-α βγ ) : α β για α=-,β=, γ=. 0. Να υπολογιστεί ο x σε καθεμιά από τις ακόλουθες περιπτώσεις : α) x x =, β) x = 9 8, γ) x, δ) x = x 7 8

9 . Στις παρακάτω ισότητες να υπολογίσετε τον ακέραιο x. Αν i) 6 = x x+ ii)(0,) - x = iii) (-) x+ και x ψ χ α y x y α, α 9 x =7 iv) 8 -x+ =, να υπολογίσετε την τιμή της παράστασης x - + y -, όπου οι αριθμοί α, x, y είναι θετικοί πραγματικοί,. Έστω ότι ισχύει : ν ν ν μ [ 9 7 ] ( ) 7, όπου μ, ν φυσικοί αριθμοί. Να αποδείξετε ότι οι αριθμοί μ και ν είναι διαδοχικοί φυσικοί.. Να υπολογίσετε τους αριθμούς α, β αν γνωρίζετε ότι: αβ και α β.. Μία μπάλα όταν πέφτει από κάποιο ύψος αναπηδά και φτάνει στο μισό αυτού του ύψους. Αφήνουμε την μπάλα να πέσει από κάποιο ύψος χ. α) Να υπολογίσετε σε σχέση με το χ το ύψος που θα φτάσει η μπάλα μετά από: αναπήδηση. αναπηδήσεις. αναπηδήσεις. ν αναπηδήσεις. β) Αν αφήσουμε την μπάλα από ύψος m να βρείτε μετά από ποια αναπήδηση θα φτάσει σε ύψος 6, cm. γ) Να υπολογίσετε από ποιο ύψος αφήσαμε την μπάλα να πέσει αν μετά την 0 η αναπήδηση έφτασε στα -9 m. 6. Εφαρμόζοντας ιδιότητες δυνάμεων να γράψετε σε απλούστερη μορφή τις παραστάσεις και στη συνέχεια να τις υπολογίσετε - x y (x y ) (x y ) A για x = (-0) και y = (x y ) B (x y) (x y ) (x y ) (xy ) για x = (-) - και y = - Γ (x y ) (x y ) (x :y ) (x y ) για x = 0 και y = (-0,) - Δ - (x : y ) x 6 (y : x ) : y για x = - και y = - 9

10 Ε (x - :y ) x για χ = - και y = - y 6 :(x ) Γ ΡΙΖΕΣ 7. Να συμπληρώσετε τις ισότητες : α) 0,0... β)... γ) δ) Να υπολογίσετε τις τιμές των παραστάσεων : a 6 α) 0, β) γ)... δ) a 9. Συμπληρώστε τις προτάσεις: Αν a x με α, χ μη αρνητικούς αριθμούς τότε ισχύει.. Αν a a τότε ο αριθμός α πρέπει να είναι Αν a a, τότε ο αριθμός α πρέπει να είναι Αν α οποιοσδήποτε αριθμός τότε a... Αν 0 a τότε a... Αν a 0 τότε a a... Αν x 0 x τότε x... Αν x = και x 0 τότε x=. Αν x = και x<0 τότε x=. 0. Να απλοποιηθούν οι παραστάσεις: α)6 ε) β) στ )0 γ)x 6 x 00 x δ) αν x 0. Σε κάθε περίπτωση να γίνουν οι πράξεις: 7 ) 0 ) ) 8 90 ) ) 0 6) 6 8 7) 8 7 8)

11 . Ομοίως ) ) 8) ) ) ) 6 0 : 6) 7) 8 8 9) : 0) Nα υπολογιστεί η παράσταση : A= Να γίνουν οι πράξεις : i) 0, ii) 8 0. Nα δείξετε ότι οι παραστάσεις Α= και Β= είναι ίσες. 6. Εάν είναι α και β να δείξετε ότι ισχύει η σχέση α -6α+=β -β+. 7. Να μετατρέψετε τα παρακάτω κλάσματα σε ισοδύναμα με ρητό παρανομαστή 9 0 α) β) γ) δ) 0 8. Να απλοποιηθούν οι παραστάσεις: 0 ) ) ) 6 ) 9. Να υπολογιστεί η τιμή της παράστασης : A= : : 0. Αν είναι x, y=, 6 x y x y x y z να επαληθευτεί η ισότητα: z x z. Να βρεθεί η τιμή της παράστασης x x ) x= ) x=-. όταν είναι :

12 . Να υπολογίσετε τις τιμές των παραστάσεων : A= 6 6, B= 0 0. Nα υπολογίσετε τις παραστάσεις : A= 7, B= 0, Γ= 0 6. Να δείξετε ότι : 0.. Αν είναι 6 να δείξετε ότι Α = και να εξετάσετε εάν ισχύει ότι Α=-. 6. Έστω οι θετικοί αριθμοί α, χ για τους οποίους ισχύει α) Να δείξετε ότι ισχύει β) Αν να υπολογίσετε την τιμή της παράστασης 7. Να υπολογίσετε τις τιμές των παρακάτω παραστάσεων: Α= 00 8 Β= 9, 8. Να υπολογίσετε τους αγνώστους χ, ψ, ω αν 00, 90, 9. Αν το τετράγωνο ενός αρνητικού αριθμού χ είναι, να υπολογίσετε την τιμή της παράστασης: Α= ( ) Δ ΣΥΝΘΕΤΑ - ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ 0. Δίνεται ότι x y 0.Να υπολογίσετε την τιμή της παράστασης 6 0x x y 0 x y x z y z (Απ: -0)

13 . Να υπολογίσετε την τιμή της παράστασης: Π = ( ) ( ) (Ε.Μ.Ε. 999). Αν για τους αριθμούς α, β ισχύει:, να υπολογίσετε τις τιμές των παραστάσεων: Α =, Β =, Γ =. Να δείξετε ότι : α βγ α β γ α β βγ γα x y x y x y. Να απλοποιηθεί η παράσταση : A= και να υπολογιστεί η x y y τιμή της,όταν x=(-0) και y= 0. α β. Να βρείτε την τιμή της παράστασης : A= α είναι αντίστροφοι α β β, αν οι αριθμοί α,β 6. Έστω οι θετικοί αριθμοί α, β, γ για τους οποίους ισχύει: α = β + γ. Να υπολογίσετε την τιμή της παράστασης: 7. Αν ισχύει ότι x y,να δείξετε ότι το κλάσμα x y x y xy έχει σταθερή τιμή. (Απ ) 8. Να δείξετε ότι η παράσταση 8 A 6 8 8,είναι πολλαπλάσιο του 7.

14 9. Αν, είναι μη αρνητικοί αριθμοί, να δείξετε ότι η παράσταση A 9 έχει σταθερή τιμή. (Απ : Α=7) 60. Να δείξετε ότι 6. Να υπολογίσετε την τιμή των παρακάτω παραστάσεων: Α = Β = Αν το τετράγωνο ενός αρνητικού αριθμού χ είναι, να υπολογίσετε την τιμή της παράστασης A (x x ) 6. Να δείξετε ότι η τιμή της παράστασης: 0 Π = 7 είναι ίση με 7.

15 . ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΟΡΙΣΜΟΙ Αλγεβρική παράσταση λέγεται μια έκφραση, που δηλώνει μια σειρά πράξεων μεταξύ αριθμών, ορισμένοι από τους οποίους παριστάνονται με γράμματα (μεταβλητές). Αριθμητική τιμή της αλγεβρικής παράστασης, λέγεται ο αριθμός που προκύπτει, αν αντικαταστήσουμε τις μεταβλητές με συγκεκριμένους αριθμούς και μετά εκτελέσουμε τις πράξεις. (Η εκτέλεση των πράξεων γίνεται σύμφωνα με τη γνωστή προτεραιότητα των πράξεων ) Μια αλγεβρική παράσταση θα λέγεται: Άρρητη, όταν περιέχει μεταβλητή κάτω από σύμβολο τετραγωνικής ρίζας Κλασματική, όταν περιέχει γράμμα σε παρονομαστή Ακέραια, όταν δεν είναι ούτε άρρητη ούτε κλασματική. ΜΟΝΩΝΥΜΑ Μονώνυμο ονομάζουμε κάθε αλγεβρική παράσταση, που περιέχει μόνο πολλαπλασιασμό μεταξύ αριθμών και μεταβλητών. Σε κάθε μονώνυμο λοιπόν υπάρχει μόνο ένας αριθμητικός παράγοντας. Ο παράγοντας αυτός γράφεται πρώτος και λέγεται συντελεστής του μονωνύμου. Όλοι οι άλλοι παράγοντες (μεταβλητές), αποτελούν το κύριο μέρος του μονωνύμου. παράδειγμα Βαθμός μονωνύμου ως προς μια μεταβλητή, είναι ο εκθέτης της μεταβλητής αυτής.

16 Βαθμός μονωνύμου (ως προς όλες τις μεταβλητές που περιέχει), είναι το άθροισμα των εκθετών των μεταβλητών που περιέχει, π.χ. το μονώνυμο χ ψ z, είναι τρίτου βαθμού ως προς x, πέμπτου βαθμού ως προς y, πρώτου βαθμού ως προς z, μηδενικού βαθμού ως προς ω και 9 ου βαθμού ως προς όλες τις μεταβλητές του (διότι ++=9). παράδειγμα Μηδενικό μονώνυμο, είναι κάθε μονώνυμο με συντελεστή μηδέν, Π.χ. 0χψ ω Όμοια μονώνυμα, λέγονται αυτά που έχουν το ίδιο κύριο μέρος. Π.χ τα χ ψω και -7ωχ ψ είναι όμοια, ενώ τα χ ψ, χψ δεν είναι Αντίθετα μονώνυμα, λέγονται αυτά που είναι όμοια και έχουν αντίθετους συντελεστές. Π.χ. τα χ ψ ω και -χ ψ ω είναι αντίθετα. ΠΡΑΞΕΙΣ ΜΟΝΩΝΥΜΩΝ Άθροισμα όμοιων μονωνύμων, είναι ένα όμοιο προς αυτά μονώνυμο που έχει συντελεστή το άθροισμα των συντελεστών τους. Π.χ. χψ+χψ =...,χ ω -7χ ω =..., ενώ η πρόσθεση χ ψ+χψ δεν γίνεται. Το άθροισμα δυο αντίθετων μονωνύμων, είναι το μηδενικό μονώνυμο. Το άθροισμα μονωνύμων που δεν είναι όμοια, δεν είναι μονώνυμο, αλλά είναι μια αλγεβρική παράσταση που την ονομάζουμε πολυώνυμο. Γινόμενο μονωνύμων, είναι ένα μονώνυμο που έχει ως συντελεστή το γινόμενο των συντελεστών τους και ως κύριο μέρος όλες τις μεταβλητές με εκθέτη σε καθεμιά το άθροισμα των εκθετών της. Π.χ. (χ ψ ω)(-χ ψ 6 ω z) =... Το πηλίκο μονωνύμων, όπως και στους αριθμούς βρίσκεται, με πολλαπλασιασμό επί τον αντίστροφο του διαιρέτη. (Δεν είναι πάντοτε μονώνυμο). 6

17 ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΓΙΑ ΑΠΑΝΤΗΣΗ. Στις παρακάτω προτάσεις να σημειώσετε τη σωστή επιλογή α) Έχουμε τα μονώνυμα: Α= x z, Β=-,y z, Γ=x z, Δ=xz, Ε=-,y z. Όμοια είναι τα εξής: Α. Τα Α, Γ, Δ Β. Τα Α, Β Γ. Τα Β, Ε Δ. Τα Α, Ε β) Το μονώνυμο -x έχει συντελεστή: Α. Το x Β. Το -x Γ. Το Δ. Το -. γ) Το γινόμενο (α βγ) ισούται με: Α. - 6 α βγ Β. - 6 α β γ Γ α β γ Δ. Τίποτα από τα προηγούμενα δ) Το πηλίκο των μονωνύμων -α β γ και αβ γ είναι: Α. Μονώνυμο Β. Πολυώνυμο Γ. Αριθμός Δ. Τίποτα από τα προηγούμενα ΒΑΣΙΚΑ ΘΕΜΑΤΑ. Ποιες απο τις παρακάτω ποσότητες είναι μονώνυμα ; (Αν όχι, τότε γιατί ;) χ+ψ, χψ 7, χψ ω -,, χ(χ+),. Να βρείτε τον συντελεστή, το κύριο μέρος και το βαθμό σε καθένα από τα παρακάτω μονώνυμα. χψ. χψ, ψ ω, χψω. Να χωρίσετε τα παρακάτω μονώνυμα σε ζεύγη ομοίων μονωνύμων χ ψ, χω, -χ ψ, χ ψ κ, 6ω χ, -ψχ, ψ χ, -κψ χ. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ +ψ β) χ +6χ γ) χ ω-7ωχ δ) χ +χ ε) χ +χ ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ κ) χ -χ λ) χ -χ μ) χ-χ 6. Να εκτελέσετε τις αναγωγές ομοίων όρων. α) χ -χ +χ -χ+χ +χ β) χ ψ+χψ +ψχ-χ ψ +ψ χ+χ ψ-χ ψ -χψ 7. Να εκτελέσετε τους πολλαπλασιασμούς 7

18 α) (χ ψ)(-χψ ) β) (χψω )(χ ψ ) γ) (-χψ)(-χψ) δ) (-χψ )(χ ψ) 8. Να συμπληρώσετε τον παρακάτω πίνακα: Μονώνυμο Συντελεστής Βαθμός ως προς x Βαθμός ως προς y Βαθμός ως προς x και y x y 6 -xy x y 7 x ΣΥΝΘΕΤΑ - ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ 9. Δίνονται τα μονώνυμα x y και x y. Να βρείτε τα α, μ, κ ώστε τα μονώνυμα να είναι: i) ίσα ii) αντίθετα 0. Δίνονται τα μονώνυμα x y και Να βρείτε τα α, κ, λ ώστε μονώνυμα να είναι: i) όμοια ii) ίσα iii) αντίθετα x y. Δίνεται η παράσταση x y x y. Να βρείτε τις τιμές των, ώστε η παραπάνω παράσταση να είναι μονώνυμο.. α. Αν x=- Να βρείτε την αριθμητική τιμή της παράστασης x +x + β. Αν x=- Να βρείτε την αριθμητική τιμή της παράστασης x -x+ γ. Αν x=- Να βρείτε την αριθμητική τιμή της παράστασης x + δ. Αν x=7 Να βρείτε την αριθμητική τιμή της παράστασης +x+ x. Να βρείτε τους ακέραιους κ,λ ώστε η παράσταση να είναι μονώνυμο A x y 8x y κ λ 8

19 .. ΠΟΛΥΩΝΥΜΑ - ΠΡΑΞΕΙΣ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΟΡΙΣΜΟΙ ΣΤΑ ΠΟΛΥΩΝΥΜΑ Πολυώνυμο, ονομάζουμε ένα αλγεβρικό άθροισμα μονωνύμων,όπου δύο τουλάχιστο από αυτά δεν είναι όμοια. Όρους του πολυωνύμου, ονομάζουμε τα μονώνυμα και συντελεστές του πολυωνύμου, ονομάζουμε τους συντελεστές των μονωνύμων. Βαθμός πολυωνύμου ως προς μία μεταβλητή (ή ως προς περισσότερες μεταβλητές του) λέγεται πιο μεγάλος βαθμός όλων των όρων του ως προς την μεταβλητή αυτή (ή ως προς τις μεταβλητές αυτές). Πολυώνυμο μιας μεταβλητής Τα πολυώνυμα με μία μεταβλητή π.χ. x + x +-7 για συντομία συμβολίζονται P(x) ή Q(x) ή A(x) Αν ένα πολυώνυμο μιας μεταβλητής γραφτεί με την ανηγμένη του μορφή κατά τέτοιο τρόπο, ώστε οι εκθέτες της μεταβλητής να ελαττώνονται, τότε λέμε ότι είναι διατεταγμένο κατά τις φθίνουσες δυνάμεις της μεταβλητής του. Π.χ. χ +χ -χ+7 Ο όρος με τον μεγαλύτερο εκθέτη λέγεται μεγιστοβάθμιος (δηλαδή το χ ), ενώ ο όρος μηδενικού βαθμού λέγεται σταθερός όρος (δηλ. το 7). Ένα πολυώνυμο το λέμε ομογενές ως προς μερικές ή ως προς όλες τις μεταβλητές του, όταν όλοι οι όροι του είναι του ίδιου βαθμού ως προς τις μεταβλητές αυτές. παράδειγμα Πολυώνυμο Βαθμός Βαθμός ως προς x Βαθμός ως προς y 6 Α x y x y 8 6 B x x x - 9

20 Ίσα πολυώνυμα Δύο πολυώνυμα είναι ίσα, όταν έχουν όρους ίσα μονώνυμα. παράδειγμα Τα πολυώνυμα (-α)x - x + x+ και βx + γx + είναι ίσα, αν α = και β = -,γ=. ΆΘΡΟΙΣΜΑ ΠΟΛΥΩΝΥΜΩΝ Αναγωγή ομοίων όρων Αν σε ένα πολυώνυμο αντικαταστήσουμε τα όμοια μονώνυμα (αν υπάρχουν) με το άθροισμά τους, τότε λέμε ότι κάνουμε αναγωγή ομοίων όρων. Η τελική μορφή η οποία δεν έχει όμοιους όρους, λέγεται ανηγμένη μορφή του πολυωνύμου. Πολυώνυμο με δυο όρους το ονομάζουμε και διώνυμο. Πολυώνυμο με τρεις όρους το ονομάζουμε και τριώνυμο. Άθροισμα πολυωνύμων Μπορούμε να προσθέτουμε ή να αφαιρούμε πολυώνυμα χρησιμοποιώντας : τις γνωστές ιδιότητες των πραγματικών αριθμών. την αναγωγή ομοίων όρων παράδειγμα τα πολυώνυμα A(x) = x - x - 7x - και B(x) = x - x + x έχουν άθροισμα ή διαφορά που βρίσκουμε ως εξής: A(x)+B(x) = (x - x - 7x - ) + (x - x + x) = = x - x - 7x - + x - x + x = 8x - x - 6x -. (Απαλείφουμε τις παρενθέσεις) (Κάνουμε αναγωγή ομοίων όρων) Όμοια, έχουμε A(x)-B(x) = (x - x - 7x - ) - (x - x + x) = = x - x - 7x - - x + x - x = = x - x - 8x -. 0

21 . ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Για να πολλαπλασιάσουμε μονώνυμο επί πολυώνυμο, πολλαπλασιάζουμε το μονώνυμο με κάθε όρο του πολυωνύμου και προσθέτουμε τα γινόμενα που προκύπτουν. παράδειγμα x (x + 7x) = =x x + x 7x = 6x + x Για να πολλαπλασιάσουμε δυο πολυώνυμα, πολλαπλασιάζουμε κάθε όρο του ενός με κάθε όρο του άλλου και προσθέτουμε τα γινόμενα που προκύπτουν. παράδειγμα x y x xy x x x xy x y x y xy y x x y x x y xy y Όταν κάνουμε τον πολλαπλασιασμό μονωνύμου με πολυώνυμο ή δυο πολυωνύμων, λέμε πολλές φορές ότι αναπτύσσουμε τα γινόμενα αυτά και το αποτέλεσμα το λέμε ανάπτυγμα του γινομένου. ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΓΙΑ ΑΠΑΝΤΗΣΗ. Στις παρακάτω προτάσεις να σημειώσετε τη σωστή επιλογή α) Η αλγεβρική παράσταση x -x +-(7x -x+) μετά την απαλοιφή των παρενθέσεων και τις αναγωγές ομοίων όρων ισούται με: Α. -x -x +6-x B. x -x +-7x -x+ Γ. x -x +-7x +x- Δ. Τίποτα από τα πάρα-πάνω β) Το γινόμενο (α+β)(γ-δ) ισούται με: Α. α+βγ-δ Β. αγ-βδ Γ. αγ-αδ+βγ-βδ Δ. αγ+αδ+βγ+βδ. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ) αν είναι λανθασμένες. α) Αν το πολυώνυμο P(x) έχει βαθμό και το πολυώνυμο Q(x) έχει βαθμό, τότε το πολυώνυμο P(x) Q(x) έχει βαθμό 8. β)αν το πολυώνυμο P(x) Q(x) έχει βαθμό 6 και το πολυώνυμο P(x) έχει βαθμό, τότε το πολυώνυμο Q(x) έχει βαθμό.. Ποιες από τις παρακάτω αλγεβρικές παραστάσεις είναι πολυώνυμα; A x x, A x y x y x x, x x

22 Α ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΟΡΙΣΜΟΥΣ ΠΡΑΞΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί α) χ -χ+ψ β) χψ -χ ψ+χ ψ 6 -χ+ψ- γ) χ ψ+χψ χ ψ +χ-ψ+. Να εκτελέσετε τους πολλαπλασιασμούς α) χ(χ+) β) χ(χ-) γ) χ(χ-) δ) χ (χ -) ε) χ(χ -χ +χ-) 6. Να εκτελέσετε τους πολλαπλασιασμούς, να κάνετε τις αναγωγές ομοίων όρων και να τακτοποιήσετε τα πολυώνυμα κατά τις φθίνουσες δυνάμεις. α) (x-)(x+) β) (x+)(x+) γ) (x -)(x +) δ) (x+)(x+) ε) (x +)(x-) ζ) (x -)(x+) η) (χ +)(χ -) θ) (χ +χ-)(χ+) ι) (χ -)(χ +χ-) κ) (x +x+)(x-) λ) (x +)(x-) μ) (x +x-)(x -6x-) ν) (x-)(x+)(x-) ξ) (x-)(x+)(x-) ο) x(x+)(x-) 7. Να γίνουν οι πράξεις: x x x x x 6 x x 8. Να γίνουν οι πράξεις: αβ α β αβ α β α α β 9. Να γίνουν οι πράξεις : α α αβ β α β 0. Να γίνουν οι πράξεις: x 8 x x x x x. Δίνονται τα πολυώνυμα Α=x -x+, B=x -, Γ=-x +x -. Να βρείτε τα πολυώνυμα α) Α Β Γ β) Α.Β και στην συνέχεια την αριθμητική τους τιμή για x=-. Δίνονται τα πολυώνυμα Ρ x x x και Qx x x 8. Nα βρείτε τα πολυώνυμα Px Qx, P x Qx και. Να γίνουν οι πράξεις : α α α α 8. Να γίνουν οι πράξεις : xx x x x P x Q x. Να γίνουν οι πράξεις: xx x x x x x x x x x 6. Να γίνουν οι πράξεις: x x

23 Β ΣΥΝΘΕΤΑ - ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ 7. Δίνονται τα πολυώνυμα Να βρείτε τα α, κ, λ,μ ώστε μονώνυμα να είναι ίσα. A x y και B x y 8. Δίνονται τα πολυώνυμα Ax 6 x x x και Bx x x. Να βρείτε τα α, β, γ,δ ώστε μονώνυμα να είναι ίσα. Q x, y x y x y x. 9. Δίνεται η παράσταση Να βρείτε τις ακέραιες τιμές των, ώστε η παραπάνω αλγεβρική παράσταση να είναι πολυώνυμο. 0. Δίνονται τα πολυώνυμα x x x x και Να υπολογίσετε τις παρακάτω παραστάσεις: P x Q x P x Q x P Q x x x α) β) γ) x δ) P x P x ε) Qx στ) Px Qx ζ) P x Qx η) P Q. Δίνεται το πολυώνυμο P x x x x α) Για ποια τιμή του το P x είναι τρίτου βαθμού β) Να βρείτε το βαθμό του πολυωνύμου όταν γ) Για P P, να υπολογίσετε την παράσταση. Δίνεται το πολυώνυμο P x x x x x α) Για ποια τιμή του το P x είναι πρώτου βαθμού β)να δείξετε ότι δεν υπάρχει πραγματικός αριθμός,ώστε γ) Να βρείτε το βαθμό του πολυωνύμου όταν 0 δ) Για P P, να υπολογίσετε την παράσταση. Δίνονται τα πολυώνυμα x x x και Να υπολογίσετε τις παρακάτω παραστάσεις: P Q x P x Q x x α) β) Q x x P 0 0 γ) P Qx Px. Έστω τα πολυώνυμα P(x) x x, Q(x) x x και H (x) για τα οποία ισχύει : Q(x) H(x) P(x). α. Να βρείτε τον βαθμό του Η x. β. Να βρείτε το και το Η x.. γ. Αν Ax P(P( x)) να βρείτε το κ ώστε A 0

24 . ΤΑΥΤΟΤΗΤΕΣ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΟΡΙΣΜΟΙ ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Οι ταυτότητες είναι ισότητες που περιέχουν μεταβλητές και ισχύουν για όλες τις τιμές των μεταβλητών αυτών. Μας επιτρέπουν να εκτελούμε πράξεις με μεγαλύτερη ταχύτητα και ευκολία. Οι κυριότερες είναι :. (α+β) = α + αβ + β. (α-β) = α - αβ + β. (α+β)(α-β) = α - β. (α+β) = α + α β + αβ + β. (α-β) = α - α β + αβ - β 6. α +β = (α + β)(α - αβ + β ) 7. α -β = (α -β)(α + αβ + β ) 8. (α+β+γ) = α +β +γ +αβ+βγ+αγ. ΣΥΜΛΗΡΩΜΑΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ α + β = (α + β) - αβ α + β = (α -β) +αβ α + β = (α + β) - αβ(α + β). (α + β )(x + y ) = (αx + βy) + (αy - βx) (Ταυτότητα Lagrange).

25 ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΓΙΑ ΑΠΑΝΤΗΣΗ. Στις παρακάτω προτάσεις να σημειώσετε τη σωστή επιλογή α) Το (x-) ισούται με: Α. x +9 Β. x -9 Γ. x +9-x Δ. 9+x -x β) Το (-α-β) ισούται με: Α. α -αβ+β Β. α +αβ+β Γ. α +αβ-β Δ. -α -αβ-β γ) Αν x+ x = τότε x + x ισούται με: Α. 6 Β. Γ.8 Δ. δ) Το (α+β+γ)(α-β+γ) ισούται με: Α. α +γ -β Β. (α+γ) -β Γ. α +γ +αγ-β Δ. Το Β και το Γ ε) Tο (-x-y)(x-y) ισούται με: Α. y -x Β. x -y Γ. x +y Δ. Τίποτα από τα προηγούμενα ε) Το x + -x ισούται με: Α. x Β. x Γ. x + Δ. Τίποτα από τα προηγούμενα στ) Το (x-y) ισούται με: Α. (y-x) Β. (x+y) Γ. (-x-y) Δ. [x+(-y)] ζ) Το (x+y) ισούται με x +y : Α. Πάντοτε Β. Ποτέ Γ. Όταν x=y=0 Δ. Όταν x=0 ή y=0. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ) αν είναι λανθασμένες. α) x x β) γ) δ) x y x x y xy y ε) x x x x στ) x x x x

26 Α ΧΡΗΣΙΜΟΠΟΙΩ ΤΑΥΤΟΤΗΤΕΣ ΚΑΙ ΚΑΝΩ ΠΡΑΞΕΙΣ. Χρησιμοποιώντας τις βασικές ταυτότητες,να κάνετε τις πράξεις.. (χ+) =. (ψ-) =. (χ+) =. (α+/) =. (χ+/χ) = 6. (χ/+ψ/) = 7. (χ-) = 8. (χ+ψ) = 9. (χ-ψ) = 0. (χ+)(χ-) =. (χ-)(χ+)=. (χ-ψ)(χ+ψ)=. (χ-/ψ)(χ+/ψ)=. (α/-β/)(α/+β/)=. (χ+) = 6. (χ-) = 7. (χ-) = 8. (χ/-) =. Να γίνουν οι πράξεις: α) x x x β) x y x y (x xy y ). Να κάνετε τις πράξεις:. (x - ) + (x -). (x + ) - (x - )(x + ). (x + y) - (x - y)(x + y) + (x y). (x - ) + (x + ) - (x - (x +). (α + ) + (α - ) 6. (α -) - (α + )(α - α + ) 7. (α + α) - (α - α) 8. (α - ) - α(α + )(α - ) 6. Να συμπληρώσετε τις παρακάτω ισότητες ώστε να προκύψουν ταυτότητες: ( -.) = χ ψ ( -.) = χ ψ ( +.) = χ ψ ( +.) = χ ψ (χ ψ)(. +.) = χ ψ = (. -..)( ) χ + ψ = (. +..)( ) 7. Να βρείτε τα αναπτύγματα: (χ + ) (χ ) (χ + ) ( χ) (χ + ψ) (κ λ) (χ + ) (χ ) x ψ χ ψ 6

27 8. Να κάνετε τις πράξεις χρησιμοποιώντας την ταυτότητα (α + β)(α β) = α β : (χ + )(χ -) (χ )(χ + ) (χ - )(χ +) ( χ)( + χ) (χ + ψ)(χ ψ) (κ λ)(κ + λ) (χ + )(χ ) (χ )(χ + ) x ψ x ψ χ ψ χ ψ 9. Να βρείτε τα αναπτύγματα: (α + ) (χ + ) (α + ) ( + α) (α + β) (κ λ) (χ - ) (χ ) x x χ x 0. Να βρείτε τα αναπτύγματα: x x x x (-χ + ) (- χ) (-χ - ψ) x (χ 00 - ) (χ κ ψ λ ) χ ψ a β ψ χ x. Να κάνετε τις πράξεις χρησιμοποιώντας την ταυτότητα (α + β)(α β) = α β : (χ + )(χ -) (χ )(χ + ) (χ - )(χ +) ( χ)( + χ) (χ + ψ)(χ ψ) (κ λ)(κ + λ) (χ + )(χ ) (χ )(χ + ) x ψ x ψ χ ψ χ ψ. Να συμπληρώσετε τις παρακάτω ισότητες: 8x = (.. - ) χ ψ = ( +..) 6α β 9 = (. - ). Με τη βοήθεια της ταυτότητας α β =(α β)(α + β) να υπολογίσετε τις τιμές των παραστάσεων: Α = = Β = - = Γ = 7 = Δ = 7,, = 7

28 Β ΧΡΗΣΙΜΟΠΟΙΩ ΤΑΥΤΟΤΗΤΕΣ ΑΠΟΔΕΙΚΝΥΩ ΙΣΟΤΗΤΕΣ. Να αποδείξετε ότι: α β αβ α β α β αβ α β α β α β αβ α β α β α β αβ α β α β γ αβ βγ αγ α β β γ γ α. α) Να αποδείξετε τις παρακάτω ταυτότητες: i) α β γ α β γ αβ βγ αγ ii) α β γ α β γ αβ βγ αγ β) Να υπολογίσετε τις παραστάσεις: A x y z x y z B x y z x y z 6. Να αποδείξετε τις παρακάτω ταυτότητες: a β α β α β β) α α α α α) γ) α α 9 α δ) α α α α 7 7 ε) x y y z z x x y z x y z στ) α β α β β α α β β α β α 8α ζ) α β γ α β γ α β γ α β γ 8βγ 7. Να αποδείξετε ότι: i) α β αβ α β ii) α β γ δ αγ βδ αδ βγ 8

29 Γ ΣΥΝΘΕΤΑ - ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ 8. Να κάνετε τις πράξεις: i) x x x x x ii) α β α β α β α β iii) x x x x x x x iv) 9. Αν α β και α β, να βρείτε τις τιμές των παραστάσεων: i) α β ii) α β 0. α) Να αποδείξετε τις παρακάτω ταυτότητες: i) a β α β αβ α β αβ ii) α β α β αβ α β α βα αβ β iii) α β α β αβ α β α βα αβ β β) Αν γ) Αν x a, να υπολογίσετε τις παραστάσεις: x A x και B x x x x β, να υπολογίσετε τις παραστάσεις: x A x και B x x x. α) Να αποδείξετε την ταυτότητα (α + β + γ) = α + β + γ +αβ + βγ + αγ. β) Αν αβ + βγ + αγ = α + β + γ, να δείξετε ότι η παράσταση Α = (α + ) + (β + ) + (γ + ) είναι τέλειο τετράγωνο. γ) Να υπολογίσετε τα παρακάτω γινόμενα: a a a a 9 a a 9 i) ii) x x x x x x. Δίνονται οι παραστάσεις: Α Β α) Να υπολογίσετε τις τιμές των παραστάσεων Α, Β β) Να δείξετε ότι η τιμή της παράστασης Γ Α Β είναι ίση με 9

30 . Έστω a και β α) Να υπολογίσετε το άθροισμα και το γινόμενο των α, β. β) Με τη βοήθεια της ταυτότητας α + β = (α + β) αβ, να υπολογίσετε το άθροισμα τετραγώνων των α, β.. Με την βοήθεια των εμβαδών στο παρακάτω σχήμα να δείξετε την ταυτότητα (α - β) = α - αβ + β. α β α β β 0. Το άθροισμα δύο αντίστροφων αριθμών είναι. Να υπολογιστούν α) Το άθροισμα των τετραγώνων τους. β) Το άθροισμα των κύβων τους γ) Το τετράγωνο της διαφοράς τους δ) Τη διαφορά τους.. Να υπολογίσετε την τιμή της παράστασης: Με την βοήθεια των εμβαδών στο παρακάτω σχήμα να δείξετε την ταυτότητα α β = (α β)(α + β). α β β α β 0

31 . Αν α + β = χ ψ =, να δείξετε ότι οι τιμές των παρακάτω παραστάσεων Α, Β είναι ίσες με. Α = (α + β ) (α + β ) + αβ. Β = (χ ψ ) (χ + ψ ) χψ. Αν α 8 = β , να υπολογίσετε την τιμή του γινομένου: (α β)(α + β)(α + β )(α + β ). α) Να δείξετε ότι κ λ κ λ κλ β) Να βρείτε δύο θετικούς ακέραιους αριθμούς κ, λ ώστε κλ = και κ + λ = γ) Να κάνετε την παράσταση + τέλειο τετράγωνο. δ) Ποια είναι η τετραγωνική ρίζα του + 6. α) Να αποδείξετε την ταυτότητα (α + β + γ) = α + β + γ +αβ + βγ + αγ. β) Αν αβ + βγ + αγ = α + β + γ, να δείξετε ότι η παράσταση Α = (α + ) + (β + ) + (γ + ) είναι τέλειο τετράγωνο. 7. Με τη βοήθεια των ταυτοτήτων α +αβ + β =(α + β), α - αβ + β =(α - β) να υπολογίσετε τις τιμές των παραστάσεων: Α = = Β = = Γ = (α ) (α ) + (α + ) = Δ = ( χ) + ( + χ) - (χ 9) =

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr 11 ΟΗΓΙΕΣ 1. Το ebook περιέχει εργασίες δραστηριότητες για µαθητές που θα πάνε στη Γ Λυκείου και θα επιλέξουν µαθηµατικά κατεύθυνσης ή γενικής παιδείας.. Για την επίλυση θα χρειαστούν όλα τα βιβλία µαθηµατικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114 1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 6 Περιεχόμενα Σελίδα 5: Σελίδα 17: Α Γυμνασίου, Μέρος Α, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμεις

Διαβάστε περισσότερα

- 1 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ

- 1 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ - ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com - ΠΟΛΥΩΝΥΜΑ ν Μονώνυμο του χ ονομάζουμε κάθε αλγεβρική παράσταση της μορφής α χ με χ R και ν Ν. Πολυώνυμο του χ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ. Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠΑ/ΣΗΣ ΔΩΔ/ΣΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ: ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον Αφιέρωση Σταπαιδιάµας Στουςµαθητέςπουατενίζουν µεαισιοδοξίατοµέλλον Φίληµαθήτρια,φίλεµαθητή Τοβιβλίοαυτόέχειδιπλόσκοπό: Νασεβοηθήσειστηνάρτιαπροετοιµασίατουκαθηµερινούσχολικού µαθήµατος. Νασουδώσειόλατααπαραίτηταεφόδια,ώστενααποκτήσειςγερές

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr 1 Πρόσημο τριωνύμου - λύση ανίσωσης ου βαθμού Έστω το τριώνυμο f(x) = x - 4x - 1. Θέλουμε να εξετάσουμε για ποιες τιμές της μεταβλητής x το τριώνυμο f(x) γίνεται θετικό, για ποιες τιμές του x γίνεται αρνητικό,

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Μορφές και πρόσημο τριωνύμου

Μορφές και πρόσημο τριωνύμου 16 Φεβρουαρίου 214 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: P(x) = αx 2 + βx + γ Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ) Μορφές τριωνύμου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια στους

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ.

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες προτάσεις στην φυσική τους γλώσσα. Να συμπληρώσετε την δεύτερη στήλη

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα