Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας Τηλ:

2 Σημειακή Διαδικασία 0 T 1 T 2 T 3 T T k-1 T k Χρόνος μεταξύ δύο γεγονότων U k = T k T k-1 0 αριθμός γεγονότων : N(t) t

3 Στοχαστική Διαδικασία Μια διαδικασία περιγράφεται επίσης από τον αριθμό των γεγονότων Ν(t) που συμβαίνουν σε ένα χρονικό διάστημα Ν(t): ο αριθμός των γεγονότων στο χρ. διάστημα [0,t] Ν((α,β])=Ν(β)-Ν(α) N = 1 ( t) 1{ T t} = 1{ T1 t} + 1{ T2 t} + K+ { T t} 1 { N( t) = } = { T t < T+ 1 } Μέσος αριθμός γεγονότων πριν την στιγμή t: [ N ( )] m ( t) = E t

4 Στοχαστική Διαδικασία Θεωρείστε ένα σύστημα το οποίο εξελίσσεται τυχαία στο χρόνο και έστω ότι παρατηρούμε το σύστημα στους χρόνους = 0, 1, 2, 3,. Έστω X η (τυχαία) κατάσταση του συστήματος στο χρόνο. Η ακολουθία των τυχαίων μεταβλητών {X 0, X 1, X 2, } ονομάζεται στοχαστική διαδικασία διακριτούχρόνου και γράφεται {Χ, 0} Αν με Ε συμβολίσουμε το σύνολο όλων των δυνατών τιμών που μπορεί να πάρει η X για όλα τα, τότε το Ε ονομάζεταιχώροςκαταστάσεων της στοχαστικής διαδικασίας {Χ, 0}

5 Στοχαστική Διαδικασία Παραδείγματα σ.δ.δ.χ. X : η θερμοκρασία στην πόλη της Χίου την ημέρα στις 12:00 το μεσημέρι. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε =(-20,50) X : το αποτέλεσμα της -οστής ρίψης ενός κανονικού ζαριού. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = {1, 2, 3, 4, 5, 6} X : ο δείκτης του Χ.Α.Α. την ημέρα. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = [0, ) X : ο αριθμός των εφημερίδων «ΕΝΗΜΕΡΩΣΗ» που πουλάει ένα περίπτερο την ημέρα. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = {0, 1, 2, 3,.} διακριτή σ.δ. με διακριτό χώρο καταστάσεων διακριτή σ.δ. με συνεχή χώρο καταστάσεων

6 Στοχαστική Διαδικασία Θεωρείστε ένα σύστημα το οποίο εξελίσσεται τυχαία στο χρόνο και έστω ότι παρατηρούμε το σύστημα σε όλες τις χρ. στιγμές t 0και έστω X(t) η κατάσταση του συστήματος χρ. στιγμή t. Το σύνολο των καταστάσεων στις οποίες μπορεί να βρεθεί το σύστημα σε οποιαδήποτε χρ. στιγμή t καλείται χώρος καταστάσεων και συμβολίζεται με Ε. Η διαδικασία {X(t), t 0} καλείται στοχαστική διαδικασία συνεχούς χρόνου με χώρο καταστάσεων Ε.

7 Στοχαστική Διαδικασία Παραδείγματα σ.δ.σ.χ. Έστω μια μηχανή η οποία μπορεί να λειτουργεί ή να μην λειτουργεί. Εάν θεωρήσουμε ως X(t) την κατάσταση της μηχανής στο χρόνο t τότε η {X(t), t 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =(λειτουργία, μη-λειτουργία) Έστω X(t) ο αριθμός των πελατών που μπαίνουν σε ένα εμπορικό κατάστημα στο χρόνο t τότε η {X(t), t 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =(0, 1, 2, } Έστω X(t) η θερμοκρασία στην πόλη της Χίου στο χρόνο t τότε η {X(t), t 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =(-20,50) συνεχής σ.δ. με διακριτό χώρο καταστάσεων συνεχής σ.δ. με συνεχή χώρο καταστάσεων

8 Στοχαστική Διαδικασία Μια διαφορετική προσέγγιση: Ορισμός: Η συνάρτηση Χ(ω,t) όπου ω το αποτέλεσμα ενός πειράματος τύχης και t ο χρόνος, λέγεται στοχαστική διαδικασία. Αν t = t 0 μια συγκεκριμένη χρονική στιγμή, τότε η Χ(ω,t 0 ) = Χ (ω) είναι τ.μ. Αν ζ = ζ 0 είναι ένα συγκεκριμένο αποτέλεσμα του πειράματος τύχης, τότε η Χ(ζ 0, t) = x(t) είναι μια συνάρτηση του χρόνου Χ(ζ 1, t) * Χ(ζ 1, t 0 ) Χ(ζ 2, t) Χ(ζ 3, t) * Χ(ζ 2, t 0 ) t 0 * Χ(ζ 3, t 0 )

9 Διαδικασία Poisso Ο αριθμός των γεγονότων Ν(t) ακολουθεί την κατανομή Poisso αν οι χρόνοι U i ακολουθούν εκθετική κατανομή { } { } 1 ) ( + > = t T t N { } { } όπου ) ( = > = U U U U T T t T t N K ( ) ( ) ( ) t T t T t N > > = = + Pr Pr ) ( Pr 1 ( )! ) ( Pr e t N t λ λ = =

10 Διαδικασία Poisso Poisso λ 1 Υπέρθεση Poisso (λ 1 + λ 2 ) Poisso λ 2 Poisso λp Διαχωρισμός Poisso λ Poisso λ(1-p) ΠΑΡΑΔΕΙΓΜΑ: Ανεξάρτητες τ.μ. Χ, Υ Pr k λ λ 1 λ 1 λ2 2 ( X = k) = e, Pr( Y = k) = e, Pr( X + Y = ) =? k! k k!

11 ΜΑΡΚΟΒΙΑΝΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Μαρκοβιανές Αλυσίδες Δικριτού Χρόνου

12 Ορισμός (Μαρκοβιανή Αλυσίδα) Μια ακολουθία τ.μ. (X ) με τιμές στο Ε, είναι μια Μαρκοβιανή Αλυσίδα αν για οποιοδήποτε k > 0 και για οποιαδήποτε ακολουθία i, j, i 0, i 1,, i -1 στοιχείων του Ε, έχουμε: ( X + 1= j X0 = i0, X1= i1, X2 = i2, K, X = i) = Pr( X+ = j X = i) Pr 1 Μαρκοβιανή ιδιότητα Αν p ( ) = Pr( X j) τότε η δεσμευμένη συνάρτηση μάζας πιθανότητας j = p jk ( m,) = Pr( X = k X = j) 0 m ονομάζεται συνάρτηση πιθανοτήτων μετάβασης της ΜΑ Ομογενής ΜΑ m

13 Για μια ομογενή ΜΑ χρησιμοποιούμε την p jk = m+ m = ( ) Pr( X = k X j) και ονομάζεται πιθανότητα μετάβασης -βημάτων Λόγω της Μαρκοβιανής ιδιότητας μπορούμε να ορίσουμε την από κοινού πιθανότητα ( X0 = i0,x1= i1,x2 = i, K,X ) = i =... = p i (0) p i i K p i 1 i Pr 2 Αυτό ουσιαστικά σημαίνει ότι μπορούμε να υπολογίσουμε οποιαδήποτε από κοινού πιθανότητα θέλουμε αρκεί να γνωρίζουμε την αρχική κατανομή ( α() ) p i ( 0) = Pr( X0= i) i και τις πιθανότητες μετάβασης μεταξύ των καταστάσεων

14 Δηλαδή: [ p (0) p (0) K ] ή [ a(0) (1) K] α= p( 0) = 1 p00 p01 K P = [ p ] ij = p 10 p 11 K M M M 0 a Το άθροισμα κάθε γραμμής του πίνακα P είναι j E p ij = Pr( X = 0 X 1 = i) + Pr( X = 1 X 1= i) + K= 1 Ένας τέτοιος τετραγωνικός πίνακας ονομάζεται στοχαστικός Παραδείγματα 1-5

15 Πιθανότητα -βημάτων: Γνωρίζουμε ότι p ij = m+ m = ( ) Pr( X = j X i) Pr(η διαδικασία πάει στην κατάσταση k στοm-οστό βήμα, δοθέντος ότιχ 0 = i) = p ik (m) Pr(αν η διαδικασία φτάνει στην κατάσταση j μετά από (m+) βήματα, δοθέντος ότιχ m = k)=p kj () Η μαρκοβιανή ιδιότητα υποδεικνύει ότι τα δύο παραπάνω γεγονότα είναι ανεξάρτητα. Από το θεώρημα ολικής πιθανότητας: ij( m+ ) = k E p p ( m) p ( ) ik Chapma-Kolmogorov kj

16 Αν τώρα συμβολίσουμε με P() τον πίνακα με στοιχεία p ij (), τότε με βάση τα προηγούμενα προκύπτει : P ( ) = P P( 1) = P Μπορούμε ακόμα να υπολογίσουμε την περιθώρια σ.μ.π. της τ.μ.χχ, με βάση τις πιθανότητες -βημάτων και την αρχική κατανομή p Η περιθώρια σ.μ.π. της.χ σαν διάνυσμα: και με βάση τα προηγούμενα Παραδείγματα 6, 7 j( ) = Pr( X = j) = Pr( X0 = i) Pr( X = j X0 i E = i E a( i) p ij ( ) ή i E = i) a( i) p ( i,j) [ p ( ) p ( )...] p( ) = 1 0 p( ) = α P( ) p( ) = α P

17 Για πολλές περιπτώσεις αλλά όχι για όλες τις Μ.Α. ισχύει: π Ταξινόμηση Καταστάσεων j = p = j lim ( ) j 01,, 2 Ορισμός: Μια κατάσταση i ονομάζεται μεταβατική (ή μη-επαναληπτική) αν και μόνο αν υπάρχει θετική πιθανότητα η διαδικασία να μην ξαναγυρίσει σε αυτή Γενικά για μια πεπερασμένη Μ.Α. περιμένουμε ότι μετά από ένα μεγάλο αριθμό βημάτων, η πιθανότητα η αλυσίδα να βρεθεί σε μια μεταβατική κατάσταση τείνει στο 0, ανεξάρτητα από την αρχική κατάσταση. ΈστωΧ ji ο αριθμός των επισκέψεων στην i από την j. Τότε Αν η i είναι μεταβατική τότε E[ X ji ] = =0 p ji ( ) =0 p ji( ) < j και άρα p ( ) ji 0

18 Ορισμός: Μια κατάσταση i ονομάζεται επαναληπτική αν και μόνο αν ξεκινώντας από την i η διαδικασία θα επιστρέψει κάποια στιγμή σε αυτή με πιθανότητα 1. Για τις επαναληπτικές καταστάσεις είναι σημαντικός ο χρόνος επιστροφής σε αυτές Έστω f ij ()=Pr(ηπρώτηεπίσκεψηαπότην iστην jγίνεταιμεακριβώς βήματα) τότε p ij ( ) = k= 1 f ij ( k) p jj ( k) 1

19 Έστω f ij = Pr(ξεκινώνταςαπότην iναφτάσωκάποιαστιγμήστην j) τότε f ij = =1 f ij ( ) Αν f ii = 1 τότε η i είναιεπαναληπτική* Αν f ii <1 τότε η i είναιμεταβατική* Έστω f ii = 1 τότε ορίζεται ομέσοςχρόνοςεπανάληψης της i (µ i ή m i ή v i ) µ i = fii( ) = 1 Αν µ i = τότε η i είναιμηδενικάεπαναληπτική Αν µ i < τότε η i είναιθετικάεπαναληπτική*

20 Ορισμός: Για μια επαναληπτική κατάσταση i ισχύει p ii () > 0 για κάποιο 1. Ορίζουμε ως περίοδο της i και συμβολίζουμε με d i, το μέγιστο κοινό διαιρέτη των θετικών ακεραίων για τους οποίους p ii () > 0 Ορισμός: Μια επαναληπτική κατάσταση i είναι απεριοδική αν d i = 1 και περιοδική αν d i > 1* Ορισμός: Μια κατάσταση i είναιαπορροφητική αν p ii = 1 i μεταβατική επαναληπτική μηδενικά θετικά περιοδική απεριοδική περιοδική απεριοδική

21 Ορισμός: Δύο καταστάσεις i και j λέμε ότι επικοινωνούν, αν υπάρχει τουλάχιστον ένα μονοπάτι που οδηγεί από την i στην j και αντίστροφα. Ορισμός: Ένα σύνολο C από καταστάσεις που επικοινωνούν είναι ένα κλειστό σύνολο αν καμία κατάσταση έκτος του C δεν είναι προσβάσιμη από καμία κατάσταση εντός τουc.* Ορισμός: Μια Μ.Α. ονομάζεται μη-διαχωρίσιμη (ή μη-αναγωγίσιμη ή αμετάπτωτη) αν κάθε κατάστασή της είναι προσβάσιμη από οποιαδήποτε άλλη σε πεπερασμένο αριθμό βημάτων. Αν μια κατάσταση μιας μη-διαχωρίσιμης Μ.Α, είναι απεριοδική τότε όλες της οι καταστάσεις είναι απεριοδικές και η Μ.Α. λέγεται απεριοδική. Ομοίως περιοδικη, μεταβατική, επαναληπτική. Παράδειγμα 8

22 Οριακή Κατανομή Οι πιθανότητες μετάβασης -βημάτων μιας πεπερασμένης, μη διαχωρίσιμης και απεριοδικής Μ.Α. (εργοδικής) γίνονται ανεξάρτητες από την κατάσταση i και από το όταν ö Όταν ö η οριακή πιθανότητα είναι: π j = lim pj( ) = lim α( i) pij ( ) = ( i) α i i = 1 ( ) lim p ( ) = lim p ( ) ij ( ) lim p ( ) Αυτό σημαίνει ότι όταν ö ο P συγκλίνει σε έναν πίνακα Π με όμοιες γραμμέςπ=[π 0 π 1 ] Αν ισχύει και τότε το π ονομάζεται οριακή κατανομή j E π = 1 j ij ij

23 Από το Θεώρημα Ολικής Πιθανότητας έχουμε ότι : και αφού παίρνουμε π lim j p j ( ) = π = lim p ( 1) = π p ή i i ij j Προκύπτει λοιπόν το σύστημα γραμμικών εξισώσεων: j π= π P j = i p ( ) p ( -1) p π= π P π = 1 i i i ij Οποιοδήποτε διάνυσμα x ικανοποιεί το σύστημα ονομάζεται στάσιμη κατανομή

24 Θεώρημα: Για μια απεριοδική Μ.Α. το lim p υπάρχει Θεώρημα : Για οποιαδήποτε μη-διαχωρίσιμη και απεριοδική Μ.Α. οι οριακές πιθανότητες π j = lim p j π j = ( ) = lim p ( ) ij j () υπάρχουν και είναι ανεξάρτητες από την αρχική κατανομή α Θεώρημα : Για μια εργοδική Μ.Α. η οριακή κατανομή πιθανοτήτων ονομάζεταιπ=[π 0 π 1 ] είναι η μοναδική στάσιμη κατανομή. Παραδείγματα 9-12

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ Τομέας Οργάνωσης Παραγωγής & Βιομηχανικής Διοίκησης Σημειώσεις του μαθήματος: ΣΤΟΧΑΣΤΙΚΑ ΠΡΟΤΥΠΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Γιώργος Λυμπερόπουλος

Διαβάστε περισσότερα

Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος. 532 Στοχαστικές Διαδικασίες. Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης

Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος. 532 Στοχαστικές Διαδικασίες. Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος 532 Στοχαστικές Διαδικασίες Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης Κύρια Βιβλιογραφία 1. Στοχαστικές μέθοδοι στις επιχειρησιακές έρευνες, Βασιλείου Παναγιώτης

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ»

«ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ» ΤΕΙ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ» Του σπουδαστή ΣΤΑΜΟΥΛΗ ΓΕΩΡΓΙΟΥ Επιβλέπων Δρ ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 006 ΠΕΡΙΕΧΟΜΕΝA Σελίδα ΕIΣΑΓΩΓΗ 3

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Στατικές (Στάσιμες) Διαδικασίες Στατική (Stationary) ορίζεται η διαδικασία της οποίας οι στατιστικές ιδιότητες δεν μεταβάλλονται με την πάροδο του χρόνου.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

= P = P. = P [ X 0 = x 0, X 1 = x 1,..., X k = x k. Xn = x 0. Xn+1 = x 1 X n = x 0. Xn+k = x k X n+k 1 = x k 1 = π 0 (x 0 )p(x 0, x 1 ) p(x k 1, x k )

= P = P. = P [ X 0 = x 0, X 1 = x 1,..., X k = x k. Xn = x 0. Xn+1 = x 1 X n = x 0. Xn+k = x k X n+k 1 = x k 1 = π 0 (x 0 )p(x 0, x 1 ) p(x k 1, x k ) ΚΕΦΑΛΑΙΟ VI. ΑΝΑΛΛΟΙΩΤΕΣ ΚΑΤΑΝΟΜΕΣ Οι αναλλοίωτες κατανομές είναι κατά κάποιο τρόπο οι φυσικές καταστάσεις μιας μαρκοβιανής αλυσίδας. Αν μια αλυσίδα ξεκινήσει από μια αναλλοίωτη κατανομή της θα παραμείνει

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών

ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Προβλήματα Μαρκοβιανών Αλυσίδων

Προβλήματα Μαρκοβιανών Αλυσίδων Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών Προβλήματα Μαρκοβιανών Αλυσίδων Γιώργος Λυμπερόπουλος 2009 1. Να βρεθούν οι κλάσεις καταστάσεων στις παρακάτω Μαρκοβιανές αλυσίδες και να σημειωθεί αν

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Ατοµάτο Ελέγχο Μάθηµα 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων µε σνεχείς και διακριτούς αλγόριθµος Καλλιγερόπολος 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων Σνεχή και

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα