ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος

2 Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων. Ο ανάστροφος ενός πίνακα. Μια εφαρμογή: Συστήματα γραμμικών εξισώσεων. Ο επαυξημένος πίνακας ενός συστήματος. Τετραγωνικοί πίνακες.8 Αντιστρέψιμοι πίνακες.9 Πως βρίσκουμε τον αντίστροφο ενός πίνακα Κεφάλαιο : ΟΡΙΖΟΥΣΕΣ σελ. Εισαγωγή. Ορίζουσες ης και ης τάξης. Σύστημα Crmer. Ορίζουσα ης τάξης. Ιδιότητες οριζουσών. Αντίστροφος πίνακα. Σύστημα Crmer.8 Ορίζουσα τάξης n Κεφάλαιο : ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ σελ. Η έννοια της πράξης. Διανυσματικός χώρος. Διανυσματικοί υποχώροι. Γραμμικός συνδυασμός χώρος παραγόμενος από διανύσματα. Γραμμική εξάρτηση και ανεξαρτησία διανυσμάτων. Διάσταση και βάση διανυσματικού χώρου. Άθροισμα και ευθύ άθροισμα Κεφάλαιο : ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ σελ 9. Ορισμοί. Πως βρίσκουμε τον ιδιοχώρο. Διαγωνιοποίηση πίνακα. Πολυώνυμα σε πίνακες Θεώρημα Cle-Hmilon Κεφάλαιο : ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ σελ 9. Ορισμοί. Ο πυρήνας και η εικόνα μιας γραμμικής απεικόνισης

3

4 ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΤΙ ΕΙΝΑΙ ΕΝΑΣ ΠΙΝΑΚΑΣ Ένας πίνακας είναι απλά μια ορθογώνια διάταξη στοιχείων της μορφής m m n n mn Εδώ θα θεωρήσουμε ότι τα στοιχεία του πίνακα ανήκουν στο σώμα των πραγματικών αριθμών R. Λέμε ότι ο πίνακας έχει m γραμμές και n στήλες είτε ότι είναι ένας m n πίνακας είτε ότι έχει διαστάσεις m n. Προσέξτε ότι ο συμβολισμός παριστάνει το στοιχείο που βρίσκεται στην i-γραμμή και j-στήλη. Ο παραπάνω πίνακας συμβολίζεται πολλές φορές και ( όπου παριστάνει το γενικό στοιχείο του πίνακα. Οι πίνακες θα συμβολίζονται με κεφαλαία γράμματα Α Β κλπ ενώ τα στοιχεία τους με μικρά α b κλπ. Ας δούμε τον επόμενο ορισμό Δύο πίνακες Α( και Β ( b θα λέμε ότι είναι ίσοι και θα γράφουμε ΑΒ εάν καταρχάς οι δύο πίνακες έχουν τις ίδιες διαστάσεις και επιπλέον τα αντίστοιχα στοιχεία τους είναι ίσα με άλλα λόγια αν για όλα τα ij b Τα πράγματα είναι πιο απλά αν τα δούμε μέσα από ένα παράδειγμα. ΠΑΡΑΔΕΙΓΜΑ Έστω οι πίνακες Α και Β b c. Μπορεί να ανήκουν και στο σώμα των μιγαδικών αριθμών C είτε σε οποιοδήποτε άλλο σώμα F. Εάν δεν γνωρίζετε τι είναι σώμα δεν υπάρχει λόγος ανησυχίας. Το γεγονός ότι θεωρούμε στοιχεία του R για τους πίνακές μας εξυπηρετεί μια χαρά το σκοπό μας.

5 ΚΕΦΑΛΑΙΟ Το στοιχείο του πίνακα Α είναι το ενώ το στοιχείο είναι το. Η ισότητα ΑΒ των δύο πινάκων ανάγεται ουσιαστικά σε έξι εξισώσεις: - b c Ένας πίνακας n έχει τη μορφή ( b b b n και θα ονομάζεται πίνακας-γραμμή. Επίσης ένας πίνακας m έχει τη μορφή b b b m και θα ονομάζεται πίνακας-στήλη. Τέλος υπάρχει και η περίπτωση να έχουμε έναν πίνακα-στοιχείο δηλαδή έναν πίνακα όπως είναι οι πίνακες ( (- κλπ.. ΑΠΛΕΣ ΠΡΑΞΕΙΣ ΠΙΝΑΚΩΝ Πρόσθεση πινάκων Μπορούμε να προσθέτουμε δύο πίνακες Α και Β αρκεί να έχουν τις ίδιες διαστάσεις. Απλά προσθέτουμε τα αντίστοιχα στοιχεία και το αποτέλεσμα που έχει επίσης τις ίδιες διαστάσεις το συμβολίζουμε ΑΒ. Δηλαδή Για τους m n πίνακες Α( και Β( b ορίζουμε όπου c b για όλα τα ij. Πιο πρακτικά ας δούμε το ΑΒ ( c ΠΑΡΑΔΕΙΓΜΑ Αν Α και Β

6 ΚΕΦΑΛΑΙΟ τότε ΑΒ ή και απευθείας. Πολλαπλασιασμός αριθμού με πίνακα (βαθμωτός πολλαπλασιασμός Μπορούμε να πολλαπλασιάσουμε έναν αριθμό λ με έναν πίνακα Α πολλαπλασιάζοντας απλά τον αριθμό λ με κάθε στοιχείο του πίνακα. Το αποτέλεσμα έχει προφανώς τις ίδιες διαστάσεις με τον Α και συμβολίζεται λα. Με άλλα λόγια Εάν λ R και Α είναι ένας m n πίνακας Α( τότε ορίζουμε λα ( c όπου λ για όλα τα ij. c Επίσης συμβολίζουμε με Α τον πίνακα ( Α οπότε μπορούμε να μιλάμε και για αφαίρεση πινάκων αν ορίσουμε Α - Β Α (-Β. Πιο πρακτικά ΠΑΡΑΔΕΙΓΜΑ Για τους πίνακες Α και Β του προηγούμενου παραδείγματος Α -Β -Β - ενώ Α-Β - 8

7 ΚΕΦΑΛΑΙΟ Ανάμεσα στους mn πίνακες ιδιαίτερο ενδιαφέρον παρουσιάζει ο μηδενικός πίνακας δηλαδή ο πίνακας που έχει όλα τα στοιχεία του ίσα με. Τον συμβολίζουμε O. Π.χ. ο μηδενικός πίνακας είναι ο O. Είναι εύκολο να διαπιστώσουμε ότι ο μηδενικός πίνακας συμπεριφέρεται όπως και το στους αριθμούς δηλαδή ΑΟ Α ΟΑ Η γενική μορφή Α( βοηθάει να αποδεικνύουμε τέτοιου είδους ιδιότητες καθώς μας επιτρέπει να «περνάμε» από πράξεις πινάκων σε πράξεις αριθμών. Πράγματι για το πρώτο σκέλος της παραπάνω ιδιότητας έχουμε ΑΟ ( [από τον ορισμό του αθροίσματος πινάκων] ( [από την ιδιότητα του αριθμού ] Α Με τον ίδιο τρόπο μπορούμε να αποδείξουμε τις επόμενες ιδιότητες οποιουσδήποτε m n πίνακες B C και αριθμούς λμ R. για. (BC (BC [προσεταιριστική ιδιότητα]. O [ύπαρξη ουδέτερου στοιχείου]. (- O [ύπαρξη αντίθετου στοιχείου]. B B [αντιμεταθετική ιδιότητα]. λ(αβ λαλβ [επιμεριστική ιδιότητα ]. (λμα λαμ [επιμεριστική ιδιότητα ]. (λμα λ(μα 8. Α Α Η απόδειξή τους αφήνεται ως άσκηση.. ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΙΝΑΚΩΝ Η χρησιμότητα των πινάκων οφείλεται στον ιδιόμορφο τρόπο με τον οποίο πολλαπλασιάζουμε πίνακες. Μετά από όσα είπαμε θα περίμενε κανείς να ορίσουμε τον πολλαπλασιασμό πινάκων κατά ανάλογο τρόπο με την πρόσθεση δηλαδή σε δύο πίνακες ίδιων διαστάσεων να πολλαπλασιάζουμε τα αντίστοιχα στοιχεία. Αν ήταν έτσι οι πίνακες θα αποτελούσαν απλά «αποθήκες» στοιχείων χωρίς ουσιαστικό λόγο ύπαρξης καθώς δεν θα έκαναν τίποτα περισσότερο από το να ομαδοποιούν πράξεις συμβολίζεται έτσι ανεξάρτητα από τις διαστάσεις του υπονοώντας κάθε φορά ότι έχει τις κατάλληλες διαστάσεις αυτές τις 8 ιδιότητες θα τις συναντήσουμε αργότερα σε μια γενικότερη παρουσίαση όταν θα μιλήσουμε για διανυσματικούς χώρους βαθμωτού πολλαπλασιασμού ως προς την πρόσθεση πινάκων βαθμωτού πολλαπλασιασμού ως προς την πρόσθεση αριθμών

8 ΚΕΦΑΛΑΙΟ μεταξύ αριθμών. Ο ορισμός του πολλαπλασιασμού πινάκων είναι λίγο πιο περίπλοκος. Για να βοηθηθούμε ας ορίσουμε πρώτα το γινόμενο ενός πίνακα-γραμμή με έναν πίνακα-στήλη. Ορίζεται όπως το γνωστό μας εσωτερικό γινόμενο: b b ( s b b s b s s kbk k b s Όπως καταλαβαίνουμε οι δύο αρχικοί πίνακες πρέπει να έχουν τον ίδιο αριθμό στοιχείων. Αλλιώς δεν γίνεται αυτός ο πολλαπλασιασμός. Τώρα είμαστε έτοιμοι να ορίσουμε τον πολλαπλασιασμό δύο πινάκων Α και Β. Η προϋπόθεση εδώ είναι ότι όσες στήλες έχει ο πίνακας Α τόσες γραμμές έχει ο πίνακας Β. Με άλλα λόγια αν ο Α έχει διαστάσεις m s o B πρέπει να έχει διαστάσεις s n. Τότε το γινόμενο έχει διαστάσεις m n. Σχηματικά θα λέγαμε για τις διαστάσεις (m s Χ (s n (m n Όσον αφορά την πράξη για να βρούμε το στοιχείο του γινομένου ΑΒ πολλαπλασιάζουμε την i-γραμμή του πίνακα Α με την j-στήλη του πίνακα Β. Πιο αυστηρά Εάν Α( είναι ένας m s πίνακας και Β( b είναι ένας s n πίνακας τότε ορίζουμε ως γινόμενό τους τον m n πίνακα ΑΒ ( c όπου για όλα τα ij. c i b j i b j isbsj c b Πρέπει να πούμε ότι το γινόμενο «αδικείται» από τον ορισμό του. Στην πράξη είναι πιο απλό απ ότι φαίνεται. s k ik kj ΠΑΡΑΔΕΙΓΜΑΤΑ α β γ δ ε ζ 8 9 α β γ δ ε ζ α β γ δ ε ζ α β8 γ 9 δ ε8 ζ 9 α β γ δ ε ζ ( ( (

9 ΚΕΦΑΛΑΙΟ Πολλαπλασιάζουμε δηλαδή την πρώτη γραμμή (α β γ του πίνακα Α διαδοχικά και με τις στήλες του πίνακα Β. Έτσι προκύπτει η πρώτη γραμμή του ΑΒ. Στη συνέχεια επαναλαμβάνουμε την ίδια διαδικασία με τη δεύτερη γραμμή (δ ε ζ. Έτσι π.χ. για να βρούμε το στοιχείο ( του ΑΒ πολλαπλασιάζουμε την η γραμμή του Α με την η στήλη του Β. Ένα καθαρά αριθμητικό παράδειγμα ίσως βοηθήσει περισσότερο Παρατηρήστε ότι ο πολλαπλασιασμός των δύο πινάκων δεν γίνεται αντίστροφα καθώς ο δεύτερος πίνακας έχει διαστάσεις ενώ ο δεύτερος Αν πάρουμε έναν πίνακα Α και έναν πίνακα Β ώστε να μπορούμε να τους πολλαπλασιάσουμε και με τους δύο τρόπους τότε ο ΑΒ έχει διαστάσεις ενώ ο ΒΑ έχει διαστάσεις. Γενικά λοιπόν ΑΒ ΒΑ. Ας πάρουμε δύο πίνακες έστω και B Τότε μπορούμε εύκολα να βρούμε ότι B ενώ B 8 Και πάλι λοιπόν ΑΒ ΒΑ. Αυτό σημαίνει ότι στον πολλαπλασιασμό πινάκων δεν ισχύει η αντιμεταθετική ιδιότητα. Υπάρχουν βέβαια περιπτώσεις (πιο σπάνιες όπου δύο πίνακες αντιμετατίθενται. Ας πάρουμε π.χ. τους πίνακες και B. Τότε B B 9. Μπορεί η αντιμεταθετική ιδιότητα να μην ισχύει στον πολλαπλασιασμό πινάκων άλλα όλες οι άλλες ιδιότητες που δεν εμπλέκουν αντιμετάθεση πινάκων ισχύουν. Έχουμε λοιπόν τις ιδιότητες:

10 ΚΕΦΑΛΑΙΟ. (BC (BC [προσεταιριστική ιδιότητα]. (BC BC [επιμεριστική ιδιότητα (από αριστερά]. (BC B C [επιμεριστική ιδιότητα (από δεξιά]. λ(b (λαβ Α(λΒ. ΟΑ Ο. ΒΟ Ο Η απόδειξή τους αφήνεται ως άσκηση.. Ο ΑΝΑΣΤΡΟΦΟΣ ΕΝΟΣ ΠΙΝΑΚΑ Ο ανάστροφος ενός πίνακα Α προκύπτει εάν διατάξουμε τις γραμμές του Α ως στήλες με την ίδια σειρά (οπότε αυτόματα οι στήλες γίνονται γραμμές. Συμβολίζεται Α Τ. Έτσι το στοιχείο που βρίσκεται στη θέση στον ανάστροφο θα πάρει τη θέση ji. Πιο αυστηρά Εάν Α( πίνακας όπου είναι ένας m n πίνακας τότε ο ανάστροφος Α Τ ( είναι ο n m ji για όλα τα ij ΠΑΡΑΔΕΙΓΜΑ Αν Α τότε T Εύκολα μπορούμε να αποδείξουμε τις ιδιότητες. (ΑΒ Τ Α Τ Β Τ. (Α Τ Τ Α. (λα Τ λα Τ. (ΑΒ Τ Β Τ Α Τ (προσέξτε εδώ ότι αλλάζει η σειρά των ΑΒ Ας δείξουμε την ιδιότητα που είναι και η πιο δύσκολη. Έστω Α( ένας m s πίνακας Β( b ένας s n πίνακας ΑΒ ( c το m n γινόμενό τους όπου c ikbkj (ΑΒ Τ ( c ο n m ανάστροφος πίνακας του ΑΒ. Β T ( b ο n s ανάστροφος πίνακας του Β Α T ( ο s m ανάστροφος πίνακας του Α s k

11 ΚΕΦΑΛΑΙΟ Για τον n m πίνακα B T T ( οπότε s d έχουμε λοιπόν d b ik kj bki jk jkbki c ji c k s k Β Τ Α Τ (ΑΒ Τ s k. ΜΙΑ ΕΦΑΡΜΟΓΗ: ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ας θεωρήσουμε το σύστημα Αν ονομάσουμε Α Χ Β τον πίνακα των συντελεστών τον πίνακα στήλη των αγνώστων τον πίνακα στήλη των σταθερών το σύστημά μας γράφεται με τη χρήση πινάκων ΑΧΒ Πράγματι ΑΧ Β. Γενικά ένα σύστημα m γραμμικών εξισώσεων με n αγνώστους n n b n n b... b m m mn n m μπορεί να γραφεί στη μορφή όπου ΑΧΒ 8

12 ΚΕΦΑΛΑΙΟ n n Α Χ και Β m m mn n b b b m Παρατήρηση: Προσέξτε ότι οι διαστάσεις των πινάκων είναι m n n και m αντίστοιχα. Η απλοποιημένη μορφή ΑΧΒ είναι αρκετά βολική για τη μελέτη γραμμικών συστημάτων. Με τη μορφή αυτή για παράδειγμα μπορούμε εύκολα να δείξουμε πως αν ένα σύστημα έχει περισσότερες από μια λύσεις τότε έχει άπειρες (αφήνεται ως άσκηση. Έτσι λοιπόν για ένα σύστημα μπορεί να ισχύει ένα από τα παρακάτω. να μην έχει καμία λύση (τότε λέγεται αδύνατο. να έχει μία και μοναδική λύση. να έχει άπειρες λύσεις Μια τελευταία παρατήρηση στη μορφή ΑΧΒ είναι ότι μας θυμίζει την εξίσωση πρώτου βαθμού b την οποία λύναμε διαδοχικά ως εξής: - ( - b ( - - b - b - b Εάν καταφέρουμε λοιπόν (έστω και σε ορισμένες περιπτώσεις να ακολουθήσουμε μια ανάλογη διαδικασία και στους πίνακες αντιλαμβανόμαστε τη χρησιμότητα αυτής της μορφής.. Ο ΕΠΑΥΞΗΜΕΝΟΣ ΠΙΝΑΚΑΣ ΕΝΟΣ ΣΥΣΤΗΜΑΤΟΣ Θεωρούμε και πάλι το σύστημα των m γραμμικών εξισώσεων με n αγνώστους L : n n b L : n n b... L m : b m m (το L i παριστάνει την i στη σειρά εξίσωση mn n m 9

13 ΚΕΦΑΛΑΙΟ Λύση του συστήματος είναι κάθε n-άδα ( u u un που επαληθεύει όλες τις εξισώσεις του συστήματος. Όταν δεν υπάρχει τέτοια λύση είπαμε πως το σύστημα λέγεται αδύνατο. Μια ειδική περίπτωση έχουμε όταν οι σταθεροί όροι b b b m είναι όλοι. Τότε το σύστημα λέγεται ομογενές και είμαστε σίγουροι ότι έχει τουλάχιστον μία λύση την μηδενική ( n (... Οπότε σύμφωνα με προηγούμενη παρατήρηση το σύστημα είτε έχει μόνο την μηδενική λύση είτε έχει άπειρες λύσεις Εδώ θα περιγράψουμε το σύστημα με έναν άλλον πίνακα που περιέχει τους συντελεστές των αγνώστων αλλά και τους σταθερούς όρους. Τον ονομάζουμε επαυξημένο πίνακα του συστήματος και είναι ο πίνακας m m n n mn b b b m Ας θυμηθούμε πως λύνουμε ένα γραμμικό σύστημα. Συνήθως το μετατρέπουμε με κατάλληλες ενέργειες πάνω στις εξισώσεις σε ένα άλλο ισοδύναμο σύστημα που έχει προφανείς λύσεις (καθώς στην πορεία απαλείφονται κάποιοι άγνωστοι. Οι ενέργειες αυτές είναι Αντιμεταθέτουμε δύο εξισώσεις του συστήματος (Li Lj Πολλαπλασιάζουμε μια εξίσωση επί λ (Li λli Προσθέτουμε σε μια εξίσωση μ φορές μια άλλη εξίσωση (Li LiμLj Οι δύο τελευταίες ενέργειες βέβαια μπορούν να γίνουν σε ένα βήμα (Li λliμlj αρκεί να είναι λ. Να πολλαπλασιάσουμε δηλαδή δύο εξισώσεις με κατάλληλους συντελεστές και μετά να τις προσθέσουμε έτσι ώστε να απαλειφθεί ένας άγνωστος. Έτσι π.χ. το σύστημα γίνεται (αρχικά με L L μετά (L -L (L -L u u n u θέτοντας n

14 ΚΕΦΑΛΑΙΟ (L 8 8L μετά ( L μετά Μπορούμε βέβαια να συνεχίσουμε (απαλείφοντας το από τη δεύτερη εξίσωση και τα από την πρώτη αλλά το τελευταίο σύστημα είναι ήδη βολικό ώστε με αντικατάσταση «προς τα πίσω» να πάρουμε -. Οπότε η λύση είναι ( ( Αν προσέξουμε τη διαδικασία θα διαπιστώσουμε ότι οι άγνωστοι δεν έπαιξαν σημαντικό ρόλο. Τα βήματα καθορίστηκαν από τους συντελεστές των αγνώστων και από τους σταθερούς όρους. Σχηματίζουμε λοιπόν τον επαυξημένο πίνακα του συστήματος ( ( L L και με διαδοχικές ισοδυναμίες παίρνουμε ( ( L L L L 8 8 ( L L ( L ( ( L L L L ( L L θα λέμε ότι δύο επαυξημένοι πίνακες είναι ισοδύναμοι όταν ο ένας προκύπτει από τον άλλον με διαδοχικές εφαρμογές των τριών ενεργειών που περιγράψαμε. Τότε τα αντίστοιχα συστήματα έχουν τις ίδιες λύσεις

15 ΚΕΦΑΛΑΙΟ που αντιστοιχεί στο σύστημα - Αυτή προφανώς είναι και η μοναδική λύση του αρχικού συστήματος. Ας ονομάσουμε για ευκολία το πρώτο μη μηδενικό στοιχείο κάθε γραμμής του πίνακα ηγετικό στοιχείο της γραμμής. Ο σκοπός μας λοιπόν είναι να αναγάγουμε τον επαυξημένο πίνακα σε έναν ισοδύναμο πίνακα όπου σε πρώτη φάση Όλες οι μηδενικές γραμμές (αν υπάρχουν να βρίσκονται στη βάση του πίνακα Το ηγετικό στοιχείο κάθε γραμμής να βρίσκεται στα δεξιά του ηγετικού στοιχείου της προηγούμενης γραμμής Εάν σε κάποιον πίνακα εμφανιστεί μια γραμμή της μορφής (... b με b τότε το σύστημα είναι αδύνατο διότι αυτή η γραμμή αντιστοιχεί στην εξίσωση Εάν εμφανιστεί μια γραμμή της μορφής n b (... τη διαγράφουμε και συνεχίζουμε με τις υπόλοιπες διότι αυτή αντιστοιχεί στην εξίσωση n Αν αποφανθούμε ότι υπάρχει λύση τότε συνεχίζουμε με την αναζήτηση ενός ισοδύναμου πίνακα όπου σε σε δεύτερη φάση Το ηγετικό στοιχείο κάθε γραμμής να είναι και να αποτελεί το μοναδικό μη μηδενικό στοιχείο στη στήλη του. Η τελευταία μορφή του επαυξημένου που ικανοποιεί και τις τρεις ιδιότητες που αναφέραμε ονομάζεται κανονική μορφή. Μένει να διαπιστώσουμε αν από μια τέτοια μορφή προκύπτει μία και μοναδική λύση ή άπειρες λύσεις.

16 ΚΕΦΑΛΑΙΟ Παρατηρούμε ότι ανάμεσα στις στήλες ενός επαυξημένου πίνακα σε κανονική μορφή εμφανίζονται οι στήλες του μοναδιαίου πίνακα. Στο παράδειγμα μας πιο πάνω φτάσαμε στην κανονική μορφή Πριν τη διακεκομμένη γραμμή εμφανίζεται ακριβώς ο μοναδιαίος πίνακας και το γεγονός αυτό αντιστοιχεί σε μια και μοναδική λύση. Υπάρχει βέβαια η περίπτωση να εμφανίζονται και άλλες στήλες εκτός από αυτές του μοναδιαίου. Για παράδειγμα ας υποθέσουμε ότι σε ένα σύστημα με αγνώστους μετά από διαδοχικές ισοδυναμίες φτάνουμε στον επαυξημένο πίνακα ( s Ο πίνακας αυτός βρίσκεται επίσης σε κανονική μορφή και φανερώνει ότι υπάρχουν άπειρες λύσεις. Οι μεταβλητές και που δεν αντιστοιχούν σε στήλες του μοναδιαίου πίνακα θα αποτελέσουν τις ελεύθερες μεταβλητές της λύσης του συστήματος που σημαίνει ότι η τελική λύση θα εκφραστεί βάσει αυτών. Οι εξισώσεις που προκύπτουν από τον πίνακα είναι s οι οποίες δίνουν την τελική λύση s με R Μια διαφορετική έκφραση της απάντησης θα ήταν ότι το σύνολο λύσεων του συστήματος είναι } {( R S ΠΑΡΑΔΕΙΓΜΑΤΑ Να λυθεί το σύστημα w w w

17 ΚΕΦΑΛΑΙΟ Έχουμε διαδοχικά ~ ~ Άρα το σύστημα δεν έχει λύση. Να λυθεί το σύστημα Έχουμε διαδοχικά ~ ~ ~ ~ 9 Ο τελευταίος πίνακας είναι σε κανονική μορφή με τον μοναδιαίο πίνακα να εμφανίζεται στις στήλες του και του. Οι ελεύθερες μεταβλητές είναι λοιπόν οι. Η λύση του συστήματος είναι 9 με R Με άλλα λόγια το σύνολο λύσεων είναι } 9 {( R S Να λυθεί το σύστημα Έχουμε διαδοχικά ~ 8 ~

18 ΚΕΦΑΛΑΙΟ ~ 8 8 ~ ~ ~ Άρα η μοναδική λύση του συστήματος είναι ( (. ΤΕΤΡΑΓΩΝΙΚΟΙ Στην παράγραφο αυτή θα ασχοληθούμε με n n πίνακες. Επειδή έχουν τον ίδιο αριθμό γραμμών και στηλών τους ονομάζουμε τετραγωνικούς πίνακες τάξης n. Εδώ έχουμε το πλεονέκτημα να εφαρμόζουμε ανάμεσα σε n n πίνακες όλες τις πράξεις που μάθαμε ως τώρα όπως την πρόσθεση τον πολλαπλασιασμό αριθμού με πίνακα τον πολλαπλασιασμό πινάκων τον ανάστροφο ενός πίνακα και να παίρνουμε και πάλι n n πίνακες. Σε έναν τετραγωνικό πίνακα τάξης n n n Α n n nn τα στοιχεία nn λέμε ότι αποτελούν την (κύρια διαγώνιο του πίνακα. Το άθροισμά τους ονομάζεται ίχνος του πίνακα (rce και συμβολίζεται Για το ίχνος ισχύουν οι ιδιότητες. r ( B r rb. r( λ λ r. r ( B r( B Οι αποδείξεις αφήνονται ως άσκηση. r nn ii Ιδιαίτερο ενδιαφέρον παρουσιάζει ο τετραγωνικός πίνακας που έχει στην κύρια διαγώνιο και παντού αλλού. Ονομάζεται μοναδιαίος και συμβολίζεται Ι n ή απλά Ι (όταν δεν υπάρχει πρόβλημα σύγχυσης στις διαστάσεις του πίνακα. n i

19 ΚΕΦΑΛΑΙΟ Είναι δηλαδή όπου δ Ι (δ αν αν i j i j (το σύμβολο αυτό είναι γνωστό ως δέλτα του Kronecker. Η ονομασία του μοναδιαίου πίνακα είναι δικαιολογημένη αν παρατηρήσουμε ότι ΑΙ Α ΙΑ Α για κάθε τετραγωνικό πίνακα Α (ουσιαστικά ισχύει ακόμη και όταν ο Α δεν είναι τετραγωνικός αρκεί βέβαια να ορίζεται ο πολλαπλασιασμός. Πράγματι για την πρώτη σχέση αν Α( και ΑΙ ( c τότε s c ikδ kj δjj k (διότι το δ kj μηδενίζεται πάντοτε εκτός από την μοναδική περίπτωση όπου kj. Συνεπώς ΑΙ Α. Όμοια δείχνεται και η δεύτερη σχέση. Με μερικά παραδείγματα μπορούμε να καταλάβουμε πιο εύκολα γιατί συμβαίνει αυτό. Ας δούμε ένα. ΠΑΡΑΔΕΙΓΜΑ Έστω ο τετραγωνικός πίνακας Έχουμε 8 9 r 9 και I I Α 8 9 Α 9 8 9

20 ΚΕΦΑΛΑΙΟ Οι δυνάμεις πινάκων (με εκθέτη φυσικό αριθμό ορίζονται όπως και στους πραγματικούς αριθμούς δηλαδή Α ΑΑ Α Α Α... Α n Α n ενώ ορίζουμε επίσης Ι. ΠΑΡΑΔΕΙΓΜΑ Ας υπολογίσουμε όλες τις δυνάμεις του τετραγωνικού πίνακα Έχουμε Ι και Ο οπότε n Ο για. n.8 ΑΝΤΙΣΤΡΕΨΙΜΟΙ Ένας τετραγωνικός πίνακας Α θα λέγεται αντιστρέψιμος 8 αν υπάρχει πίνακας Β τέτοιος ώστε B I B Εάν υπάρχει τέτοιος πίνακας τότε είναι μοναδικός. Πράγματι ας υποθέσουμε ότι υπάρχει και άλλος πίνακας B που έχει την ίδια ιδιότητα δηλαδή 8 Σκεφτείτε κατ αναλογία ότι στο R κάθε μη μηδενικός αριθμός α είναι αντιστρέψιμος γιατί υπάρχει ο α - τέτοιος ώστε αα - α - α.

21 ΚΕΦΑΛΑΙΟ B I B. Τότε ο B συμπίπτει με τον Β καθώς B IB B B B B B I B ( (. Επειδή είναι μοναδικός τον ονομάζουμε αντίστροφο του Α και τον συμβολίζουμε Α -. ΠΑΡΑΔΕΙΓΜΑΤΑ Έστω οι πίνακες και B Έχουμε B I και B I. Συνεπώς οι δύο πίνακες είναι αντιστρέψιμοι και μάλιστα ο ένας είναι αντίστροφος του άλλου δηλαδή B και B Υπάρχουν πίνακες που δεν είναι αντιστρέψιμοι. Π.χ. ο πίνακας. Πράγματι ας υποθέσουμε αντίθετα ότι έχει ως αντίστροφο τον πίνακα. Τότε έχουμε διαδοχικά d c b B I B d c b d b c d b c οπότε η πρώτη στήλη δίνει c c το οποίο είναι άτοπο. Άρα δεν ορίζεται ο. 8

22 ΚΕΦΑΛΑΙΟ Ωραία λοιπόν όταν μας δίνουν τον Β μπορούμε να ελέγξουμε αν είναι πράγματι ο αντίστροφος του Α. Το ερώτημα είναι «όταν μας δίνουν μόνο τον πίνακα Α πως βρίσκουμε τον αντίστροφο του;»..9 ΠΩΣ ΒΡΙΣΚΟΥΜΕ ΤΟΝ ΑΝΤΙΣΤΡΟΦΟ ΤΟΥ Α (ΟΤΑΝ ΥΠΑΡΧΕΙ Όταν μας δίνεται ένας τετραγωνικός πίνακας Α τάξης n ο επόμενος αλγόριθμος είτε αποφαίνεται ότι ο Α δεν είναι αντιστρέψιμος είτε βρίσκει τον αντίστροφο. ΒΗΜΑ : Σχηματίζουμε τον n(n πίνακα M( I n BHM : Προσπαθούμε να αναγάγουμε τον Μ σε κανονική μορφή. Εάν στην πρώτη φάση εμφανιστεί μηδενική γραμμή στο πρώτο μισό του πίνακα σταματάμε. Ο πίνακας δεν είναι αντιστρέψιμος. Αν όχι συνεχίζουμε στη δεύτερη φάση. ΒΗΜΑ : Βρίσκουμε την κανονική μορφή (Ι n Β. ΒΗΜΑ : Είναι B ΠΑΡΑΔΕΙΓΜΑΤΑ Δίνεται ο πίνακας 8. Να εξεταστεί αν είναι αντιστρέψιμος και αν είναι να βρεθεί ο αντίστροφος. Έχουμε διαδοχικά Μ 8 ( I Άρα (Βεβαιωθείτε ότι ΑΑ - Ι Α - Α 9

23 ΚΕΦΑΛΑΙΟ Ομοίως για τον πίνακα. Έχουμε Μ Εφόσον εμφανίζεται μηδενική γραμμή στο πρώτο μισό του πίνακα ο Α δεν είναι αντιστρέψιμος.

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Γεώργιος Δ Ακρίβης Τμήμα Πληροφορικής Πανεπιστήμιο Ιωαννίνων ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (πανεπιστημιακές παραδόσεις) ΙΩΑΝΝΙΝΑ, 2003 i Πρόλογος Η Γραμμική Άλγεβρα αποτελεί, μαζί με την Ανάλυση, το θεμέλιο των μαθηματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ Νικόλαος Ι. Ιωακειμίδης Ομότιμος Καθηγητής Πολυτεχνικής Σχολής Πανεπιστημίου Πατρών ΠΑΤΡΑ 2014 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

6 η Δραστηριότητα στο MicroWorlds Pro (1)

6 η Δραστηριότητα στο MicroWorlds Pro (1) 6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα