ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος

2 Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων. Ο ανάστροφος ενός πίνακα. Μια εφαρμογή: Συστήματα γραμμικών εξισώσεων. Ο επαυξημένος πίνακας ενός συστήματος. Τετραγωνικοί πίνακες.8 Αντιστρέψιμοι πίνακες.9 Πως βρίσκουμε τον αντίστροφο ενός πίνακα Κεφάλαιο : ΟΡΙΖΟΥΣΕΣ σελ. Εισαγωγή. Ορίζουσες ης και ης τάξης. Σύστημα Crmer. Ορίζουσα ης τάξης. Ιδιότητες οριζουσών. Αντίστροφος πίνακα. Σύστημα Crmer.8 Ορίζουσα τάξης n Κεφάλαιο : ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ σελ. Η έννοια της πράξης. Διανυσματικός χώρος. Διανυσματικοί υποχώροι. Γραμμικός συνδυασμός χώρος παραγόμενος από διανύσματα. Γραμμική εξάρτηση και ανεξαρτησία διανυσμάτων. Διάσταση και βάση διανυσματικού χώρου. Άθροισμα και ευθύ άθροισμα Κεφάλαιο : ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ σελ 9. Ορισμοί. Πως βρίσκουμε τον ιδιοχώρο. Διαγωνιοποίηση πίνακα. Πολυώνυμα σε πίνακες Θεώρημα Cle-Hmilon Κεφάλαιο : ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ σελ 9. Ορισμοί. Ο πυρήνας και η εικόνα μιας γραμμικής απεικόνισης

3

4 ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΤΙ ΕΙΝΑΙ ΕΝΑΣ ΠΙΝΑΚΑΣ Ένας πίνακας είναι απλά μια ορθογώνια διάταξη στοιχείων της μορφής m m n n mn Εδώ θα θεωρήσουμε ότι τα στοιχεία του πίνακα ανήκουν στο σώμα των πραγματικών αριθμών R. Λέμε ότι ο πίνακας έχει m γραμμές και n στήλες είτε ότι είναι ένας m n πίνακας είτε ότι έχει διαστάσεις m n. Προσέξτε ότι ο συμβολισμός παριστάνει το στοιχείο που βρίσκεται στην i-γραμμή και j-στήλη. Ο παραπάνω πίνακας συμβολίζεται πολλές φορές και ( όπου παριστάνει το γενικό στοιχείο του πίνακα. Οι πίνακες θα συμβολίζονται με κεφαλαία γράμματα Α Β κλπ ενώ τα στοιχεία τους με μικρά α b κλπ. Ας δούμε τον επόμενο ορισμό Δύο πίνακες Α( και Β ( b θα λέμε ότι είναι ίσοι και θα γράφουμε ΑΒ εάν καταρχάς οι δύο πίνακες έχουν τις ίδιες διαστάσεις και επιπλέον τα αντίστοιχα στοιχεία τους είναι ίσα με άλλα λόγια αν για όλα τα ij b Τα πράγματα είναι πιο απλά αν τα δούμε μέσα από ένα παράδειγμα. ΠΑΡΑΔΕΙΓΜΑ Έστω οι πίνακες Α και Β b c. Μπορεί να ανήκουν και στο σώμα των μιγαδικών αριθμών C είτε σε οποιοδήποτε άλλο σώμα F. Εάν δεν γνωρίζετε τι είναι σώμα δεν υπάρχει λόγος ανησυχίας. Το γεγονός ότι θεωρούμε στοιχεία του R για τους πίνακές μας εξυπηρετεί μια χαρά το σκοπό μας.

5 ΚΕΦΑΛΑΙΟ Το στοιχείο του πίνακα Α είναι το ενώ το στοιχείο είναι το. Η ισότητα ΑΒ των δύο πινάκων ανάγεται ουσιαστικά σε έξι εξισώσεις: - b c Ένας πίνακας n έχει τη μορφή ( b b b n και θα ονομάζεται πίνακας-γραμμή. Επίσης ένας πίνακας m έχει τη μορφή b b b m και θα ονομάζεται πίνακας-στήλη. Τέλος υπάρχει και η περίπτωση να έχουμε έναν πίνακα-στοιχείο δηλαδή έναν πίνακα όπως είναι οι πίνακες ( (- κλπ.. ΑΠΛΕΣ ΠΡΑΞΕΙΣ ΠΙΝΑΚΩΝ Πρόσθεση πινάκων Μπορούμε να προσθέτουμε δύο πίνακες Α και Β αρκεί να έχουν τις ίδιες διαστάσεις. Απλά προσθέτουμε τα αντίστοιχα στοιχεία και το αποτέλεσμα που έχει επίσης τις ίδιες διαστάσεις το συμβολίζουμε ΑΒ. Δηλαδή Για τους m n πίνακες Α( και Β( b ορίζουμε όπου c b για όλα τα ij. Πιο πρακτικά ας δούμε το ΑΒ ( c ΠΑΡΑΔΕΙΓΜΑ Αν Α και Β

6 ΚΕΦΑΛΑΙΟ τότε ΑΒ ή και απευθείας. Πολλαπλασιασμός αριθμού με πίνακα (βαθμωτός πολλαπλασιασμός Μπορούμε να πολλαπλασιάσουμε έναν αριθμό λ με έναν πίνακα Α πολλαπλασιάζοντας απλά τον αριθμό λ με κάθε στοιχείο του πίνακα. Το αποτέλεσμα έχει προφανώς τις ίδιες διαστάσεις με τον Α και συμβολίζεται λα. Με άλλα λόγια Εάν λ R και Α είναι ένας m n πίνακας Α( τότε ορίζουμε λα ( c όπου λ για όλα τα ij. c Επίσης συμβολίζουμε με Α τον πίνακα ( Α οπότε μπορούμε να μιλάμε και για αφαίρεση πινάκων αν ορίσουμε Α - Β Α (-Β. Πιο πρακτικά ΠΑΡΑΔΕΙΓΜΑ Για τους πίνακες Α και Β του προηγούμενου παραδείγματος Α -Β -Β - ενώ Α-Β - 8

7 ΚΕΦΑΛΑΙΟ Ανάμεσα στους mn πίνακες ιδιαίτερο ενδιαφέρον παρουσιάζει ο μηδενικός πίνακας δηλαδή ο πίνακας που έχει όλα τα στοιχεία του ίσα με. Τον συμβολίζουμε O. Π.χ. ο μηδενικός πίνακας είναι ο O. Είναι εύκολο να διαπιστώσουμε ότι ο μηδενικός πίνακας συμπεριφέρεται όπως και το στους αριθμούς δηλαδή ΑΟ Α ΟΑ Η γενική μορφή Α( βοηθάει να αποδεικνύουμε τέτοιου είδους ιδιότητες καθώς μας επιτρέπει να «περνάμε» από πράξεις πινάκων σε πράξεις αριθμών. Πράγματι για το πρώτο σκέλος της παραπάνω ιδιότητας έχουμε ΑΟ ( [από τον ορισμό του αθροίσματος πινάκων] ( [από την ιδιότητα του αριθμού ] Α Με τον ίδιο τρόπο μπορούμε να αποδείξουμε τις επόμενες ιδιότητες οποιουσδήποτε m n πίνακες B C και αριθμούς λμ R. για. (BC (BC [προσεταιριστική ιδιότητα]. O [ύπαρξη ουδέτερου στοιχείου]. (- O [ύπαρξη αντίθετου στοιχείου]. B B [αντιμεταθετική ιδιότητα]. λ(αβ λαλβ [επιμεριστική ιδιότητα ]. (λμα λαμ [επιμεριστική ιδιότητα ]. (λμα λ(μα 8. Α Α Η απόδειξή τους αφήνεται ως άσκηση.. ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΙΝΑΚΩΝ Η χρησιμότητα των πινάκων οφείλεται στον ιδιόμορφο τρόπο με τον οποίο πολλαπλασιάζουμε πίνακες. Μετά από όσα είπαμε θα περίμενε κανείς να ορίσουμε τον πολλαπλασιασμό πινάκων κατά ανάλογο τρόπο με την πρόσθεση δηλαδή σε δύο πίνακες ίδιων διαστάσεων να πολλαπλασιάζουμε τα αντίστοιχα στοιχεία. Αν ήταν έτσι οι πίνακες θα αποτελούσαν απλά «αποθήκες» στοιχείων χωρίς ουσιαστικό λόγο ύπαρξης καθώς δεν θα έκαναν τίποτα περισσότερο από το να ομαδοποιούν πράξεις συμβολίζεται έτσι ανεξάρτητα από τις διαστάσεις του υπονοώντας κάθε φορά ότι έχει τις κατάλληλες διαστάσεις αυτές τις 8 ιδιότητες θα τις συναντήσουμε αργότερα σε μια γενικότερη παρουσίαση όταν θα μιλήσουμε για διανυσματικούς χώρους βαθμωτού πολλαπλασιασμού ως προς την πρόσθεση πινάκων βαθμωτού πολλαπλασιασμού ως προς την πρόσθεση αριθμών

8 ΚΕΦΑΛΑΙΟ μεταξύ αριθμών. Ο ορισμός του πολλαπλασιασμού πινάκων είναι λίγο πιο περίπλοκος. Για να βοηθηθούμε ας ορίσουμε πρώτα το γινόμενο ενός πίνακα-γραμμή με έναν πίνακα-στήλη. Ορίζεται όπως το γνωστό μας εσωτερικό γινόμενο: b b ( s b b s b s s kbk k b s Όπως καταλαβαίνουμε οι δύο αρχικοί πίνακες πρέπει να έχουν τον ίδιο αριθμό στοιχείων. Αλλιώς δεν γίνεται αυτός ο πολλαπλασιασμός. Τώρα είμαστε έτοιμοι να ορίσουμε τον πολλαπλασιασμό δύο πινάκων Α και Β. Η προϋπόθεση εδώ είναι ότι όσες στήλες έχει ο πίνακας Α τόσες γραμμές έχει ο πίνακας Β. Με άλλα λόγια αν ο Α έχει διαστάσεις m s o B πρέπει να έχει διαστάσεις s n. Τότε το γινόμενο έχει διαστάσεις m n. Σχηματικά θα λέγαμε για τις διαστάσεις (m s Χ (s n (m n Όσον αφορά την πράξη για να βρούμε το στοιχείο του γινομένου ΑΒ πολλαπλασιάζουμε την i-γραμμή του πίνακα Α με την j-στήλη του πίνακα Β. Πιο αυστηρά Εάν Α( είναι ένας m s πίνακας και Β( b είναι ένας s n πίνακας τότε ορίζουμε ως γινόμενό τους τον m n πίνακα ΑΒ ( c όπου για όλα τα ij. c i b j i b j isbsj c b Πρέπει να πούμε ότι το γινόμενο «αδικείται» από τον ορισμό του. Στην πράξη είναι πιο απλό απ ότι φαίνεται. s k ik kj ΠΑΡΑΔΕΙΓΜΑΤΑ α β γ δ ε ζ 8 9 α β γ δ ε ζ α β γ δ ε ζ α β8 γ 9 δ ε8 ζ 9 α β γ δ ε ζ ( ( (

9 ΚΕΦΑΛΑΙΟ Πολλαπλασιάζουμε δηλαδή την πρώτη γραμμή (α β γ του πίνακα Α διαδοχικά και με τις στήλες του πίνακα Β. Έτσι προκύπτει η πρώτη γραμμή του ΑΒ. Στη συνέχεια επαναλαμβάνουμε την ίδια διαδικασία με τη δεύτερη γραμμή (δ ε ζ. Έτσι π.χ. για να βρούμε το στοιχείο ( του ΑΒ πολλαπλασιάζουμε την η γραμμή του Α με την η στήλη του Β. Ένα καθαρά αριθμητικό παράδειγμα ίσως βοηθήσει περισσότερο Παρατηρήστε ότι ο πολλαπλασιασμός των δύο πινάκων δεν γίνεται αντίστροφα καθώς ο δεύτερος πίνακας έχει διαστάσεις ενώ ο δεύτερος Αν πάρουμε έναν πίνακα Α και έναν πίνακα Β ώστε να μπορούμε να τους πολλαπλασιάσουμε και με τους δύο τρόπους τότε ο ΑΒ έχει διαστάσεις ενώ ο ΒΑ έχει διαστάσεις. Γενικά λοιπόν ΑΒ ΒΑ. Ας πάρουμε δύο πίνακες έστω και B Τότε μπορούμε εύκολα να βρούμε ότι B ενώ B 8 Και πάλι λοιπόν ΑΒ ΒΑ. Αυτό σημαίνει ότι στον πολλαπλασιασμό πινάκων δεν ισχύει η αντιμεταθετική ιδιότητα. Υπάρχουν βέβαια περιπτώσεις (πιο σπάνιες όπου δύο πίνακες αντιμετατίθενται. Ας πάρουμε π.χ. τους πίνακες και B. Τότε B B 9. Μπορεί η αντιμεταθετική ιδιότητα να μην ισχύει στον πολλαπλασιασμό πινάκων άλλα όλες οι άλλες ιδιότητες που δεν εμπλέκουν αντιμετάθεση πινάκων ισχύουν. Έχουμε λοιπόν τις ιδιότητες:

10 ΚΕΦΑΛΑΙΟ. (BC (BC [προσεταιριστική ιδιότητα]. (BC BC [επιμεριστική ιδιότητα (από αριστερά]. (BC B C [επιμεριστική ιδιότητα (από δεξιά]. λ(b (λαβ Α(λΒ. ΟΑ Ο. ΒΟ Ο Η απόδειξή τους αφήνεται ως άσκηση.. Ο ΑΝΑΣΤΡΟΦΟΣ ΕΝΟΣ ΠΙΝΑΚΑ Ο ανάστροφος ενός πίνακα Α προκύπτει εάν διατάξουμε τις γραμμές του Α ως στήλες με την ίδια σειρά (οπότε αυτόματα οι στήλες γίνονται γραμμές. Συμβολίζεται Α Τ. Έτσι το στοιχείο που βρίσκεται στη θέση στον ανάστροφο θα πάρει τη θέση ji. Πιο αυστηρά Εάν Α( πίνακας όπου είναι ένας m n πίνακας τότε ο ανάστροφος Α Τ ( είναι ο n m ji για όλα τα ij ΠΑΡΑΔΕΙΓΜΑ Αν Α τότε T Εύκολα μπορούμε να αποδείξουμε τις ιδιότητες. (ΑΒ Τ Α Τ Β Τ. (Α Τ Τ Α. (λα Τ λα Τ. (ΑΒ Τ Β Τ Α Τ (προσέξτε εδώ ότι αλλάζει η σειρά των ΑΒ Ας δείξουμε την ιδιότητα που είναι και η πιο δύσκολη. Έστω Α( ένας m s πίνακας Β( b ένας s n πίνακας ΑΒ ( c το m n γινόμενό τους όπου c ikbkj (ΑΒ Τ ( c ο n m ανάστροφος πίνακας του ΑΒ. Β T ( b ο n s ανάστροφος πίνακας του Β Α T ( ο s m ανάστροφος πίνακας του Α s k

11 ΚΕΦΑΛΑΙΟ Για τον n m πίνακα B T T ( οπότε s d έχουμε λοιπόν d b ik kj bki jk jkbki c ji c k s k Β Τ Α Τ (ΑΒ Τ s k. ΜΙΑ ΕΦΑΡΜΟΓΗ: ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ας θεωρήσουμε το σύστημα Αν ονομάσουμε Α Χ Β τον πίνακα των συντελεστών τον πίνακα στήλη των αγνώστων τον πίνακα στήλη των σταθερών το σύστημά μας γράφεται με τη χρήση πινάκων ΑΧΒ Πράγματι ΑΧ Β. Γενικά ένα σύστημα m γραμμικών εξισώσεων με n αγνώστους n n b n n b... b m m mn n m μπορεί να γραφεί στη μορφή όπου ΑΧΒ 8

12 ΚΕΦΑΛΑΙΟ n n Α Χ και Β m m mn n b b b m Παρατήρηση: Προσέξτε ότι οι διαστάσεις των πινάκων είναι m n n και m αντίστοιχα. Η απλοποιημένη μορφή ΑΧΒ είναι αρκετά βολική για τη μελέτη γραμμικών συστημάτων. Με τη μορφή αυτή για παράδειγμα μπορούμε εύκολα να δείξουμε πως αν ένα σύστημα έχει περισσότερες από μια λύσεις τότε έχει άπειρες (αφήνεται ως άσκηση. Έτσι λοιπόν για ένα σύστημα μπορεί να ισχύει ένα από τα παρακάτω. να μην έχει καμία λύση (τότε λέγεται αδύνατο. να έχει μία και μοναδική λύση. να έχει άπειρες λύσεις Μια τελευταία παρατήρηση στη μορφή ΑΧΒ είναι ότι μας θυμίζει την εξίσωση πρώτου βαθμού b την οποία λύναμε διαδοχικά ως εξής: - ( - b ( - - b - b - b Εάν καταφέρουμε λοιπόν (έστω και σε ορισμένες περιπτώσεις να ακολουθήσουμε μια ανάλογη διαδικασία και στους πίνακες αντιλαμβανόμαστε τη χρησιμότητα αυτής της μορφής.. Ο ΕΠΑΥΞΗΜΕΝΟΣ ΠΙΝΑΚΑΣ ΕΝΟΣ ΣΥΣΤΗΜΑΤΟΣ Θεωρούμε και πάλι το σύστημα των m γραμμικών εξισώσεων με n αγνώστους L : n n b L : n n b... L m : b m m (το L i παριστάνει την i στη σειρά εξίσωση mn n m 9

13 ΚΕΦΑΛΑΙΟ Λύση του συστήματος είναι κάθε n-άδα ( u u un που επαληθεύει όλες τις εξισώσεις του συστήματος. Όταν δεν υπάρχει τέτοια λύση είπαμε πως το σύστημα λέγεται αδύνατο. Μια ειδική περίπτωση έχουμε όταν οι σταθεροί όροι b b b m είναι όλοι. Τότε το σύστημα λέγεται ομογενές και είμαστε σίγουροι ότι έχει τουλάχιστον μία λύση την μηδενική ( n (... Οπότε σύμφωνα με προηγούμενη παρατήρηση το σύστημα είτε έχει μόνο την μηδενική λύση είτε έχει άπειρες λύσεις Εδώ θα περιγράψουμε το σύστημα με έναν άλλον πίνακα που περιέχει τους συντελεστές των αγνώστων αλλά και τους σταθερούς όρους. Τον ονομάζουμε επαυξημένο πίνακα του συστήματος και είναι ο πίνακας m m n n mn b b b m Ας θυμηθούμε πως λύνουμε ένα γραμμικό σύστημα. Συνήθως το μετατρέπουμε με κατάλληλες ενέργειες πάνω στις εξισώσεις σε ένα άλλο ισοδύναμο σύστημα που έχει προφανείς λύσεις (καθώς στην πορεία απαλείφονται κάποιοι άγνωστοι. Οι ενέργειες αυτές είναι Αντιμεταθέτουμε δύο εξισώσεις του συστήματος (Li Lj Πολλαπλασιάζουμε μια εξίσωση επί λ (Li λli Προσθέτουμε σε μια εξίσωση μ φορές μια άλλη εξίσωση (Li LiμLj Οι δύο τελευταίες ενέργειες βέβαια μπορούν να γίνουν σε ένα βήμα (Li λliμlj αρκεί να είναι λ. Να πολλαπλασιάσουμε δηλαδή δύο εξισώσεις με κατάλληλους συντελεστές και μετά να τις προσθέσουμε έτσι ώστε να απαλειφθεί ένας άγνωστος. Έτσι π.χ. το σύστημα γίνεται (αρχικά με L L μετά (L -L (L -L u u n u θέτοντας n

14 ΚΕΦΑΛΑΙΟ (L 8 8L μετά ( L μετά Μπορούμε βέβαια να συνεχίσουμε (απαλείφοντας το από τη δεύτερη εξίσωση και τα από την πρώτη αλλά το τελευταίο σύστημα είναι ήδη βολικό ώστε με αντικατάσταση «προς τα πίσω» να πάρουμε -. Οπότε η λύση είναι ( ( Αν προσέξουμε τη διαδικασία θα διαπιστώσουμε ότι οι άγνωστοι δεν έπαιξαν σημαντικό ρόλο. Τα βήματα καθορίστηκαν από τους συντελεστές των αγνώστων και από τους σταθερούς όρους. Σχηματίζουμε λοιπόν τον επαυξημένο πίνακα του συστήματος ( ( L L και με διαδοχικές ισοδυναμίες παίρνουμε ( ( L L L L 8 8 ( L L ( L ( ( L L L L ( L L θα λέμε ότι δύο επαυξημένοι πίνακες είναι ισοδύναμοι όταν ο ένας προκύπτει από τον άλλον με διαδοχικές εφαρμογές των τριών ενεργειών που περιγράψαμε. Τότε τα αντίστοιχα συστήματα έχουν τις ίδιες λύσεις

15 ΚΕΦΑΛΑΙΟ που αντιστοιχεί στο σύστημα - Αυτή προφανώς είναι και η μοναδική λύση του αρχικού συστήματος. Ας ονομάσουμε για ευκολία το πρώτο μη μηδενικό στοιχείο κάθε γραμμής του πίνακα ηγετικό στοιχείο της γραμμής. Ο σκοπός μας λοιπόν είναι να αναγάγουμε τον επαυξημένο πίνακα σε έναν ισοδύναμο πίνακα όπου σε πρώτη φάση Όλες οι μηδενικές γραμμές (αν υπάρχουν να βρίσκονται στη βάση του πίνακα Το ηγετικό στοιχείο κάθε γραμμής να βρίσκεται στα δεξιά του ηγετικού στοιχείου της προηγούμενης γραμμής Εάν σε κάποιον πίνακα εμφανιστεί μια γραμμή της μορφής (... b με b τότε το σύστημα είναι αδύνατο διότι αυτή η γραμμή αντιστοιχεί στην εξίσωση Εάν εμφανιστεί μια γραμμή της μορφής n b (... τη διαγράφουμε και συνεχίζουμε με τις υπόλοιπες διότι αυτή αντιστοιχεί στην εξίσωση n Αν αποφανθούμε ότι υπάρχει λύση τότε συνεχίζουμε με την αναζήτηση ενός ισοδύναμου πίνακα όπου σε σε δεύτερη φάση Το ηγετικό στοιχείο κάθε γραμμής να είναι και να αποτελεί το μοναδικό μη μηδενικό στοιχείο στη στήλη του. Η τελευταία μορφή του επαυξημένου που ικανοποιεί και τις τρεις ιδιότητες που αναφέραμε ονομάζεται κανονική μορφή. Μένει να διαπιστώσουμε αν από μια τέτοια μορφή προκύπτει μία και μοναδική λύση ή άπειρες λύσεις.

16 ΚΕΦΑΛΑΙΟ Παρατηρούμε ότι ανάμεσα στις στήλες ενός επαυξημένου πίνακα σε κανονική μορφή εμφανίζονται οι στήλες του μοναδιαίου πίνακα. Στο παράδειγμα μας πιο πάνω φτάσαμε στην κανονική μορφή Πριν τη διακεκομμένη γραμμή εμφανίζεται ακριβώς ο μοναδιαίος πίνακας και το γεγονός αυτό αντιστοιχεί σε μια και μοναδική λύση. Υπάρχει βέβαια η περίπτωση να εμφανίζονται και άλλες στήλες εκτός από αυτές του μοναδιαίου. Για παράδειγμα ας υποθέσουμε ότι σε ένα σύστημα με αγνώστους μετά από διαδοχικές ισοδυναμίες φτάνουμε στον επαυξημένο πίνακα ( s Ο πίνακας αυτός βρίσκεται επίσης σε κανονική μορφή και φανερώνει ότι υπάρχουν άπειρες λύσεις. Οι μεταβλητές και που δεν αντιστοιχούν σε στήλες του μοναδιαίου πίνακα θα αποτελέσουν τις ελεύθερες μεταβλητές της λύσης του συστήματος που σημαίνει ότι η τελική λύση θα εκφραστεί βάσει αυτών. Οι εξισώσεις που προκύπτουν από τον πίνακα είναι s οι οποίες δίνουν την τελική λύση s με R Μια διαφορετική έκφραση της απάντησης θα ήταν ότι το σύνολο λύσεων του συστήματος είναι } {( R S ΠΑΡΑΔΕΙΓΜΑΤΑ Να λυθεί το σύστημα w w w

17 ΚΕΦΑΛΑΙΟ Έχουμε διαδοχικά ~ ~ Άρα το σύστημα δεν έχει λύση. Να λυθεί το σύστημα Έχουμε διαδοχικά ~ ~ ~ ~ 9 Ο τελευταίος πίνακας είναι σε κανονική μορφή με τον μοναδιαίο πίνακα να εμφανίζεται στις στήλες του και του. Οι ελεύθερες μεταβλητές είναι λοιπόν οι. Η λύση του συστήματος είναι 9 με R Με άλλα λόγια το σύνολο λύσεων είναι } 9 {( R S Να λυθεί το σύστημα Έχουμε διαδοχικά ~ 8 ~

18 ΚΕΦΑΛΑΙΟ ~ 8 8 ~ ~ ~ Άρα η μοναδική λύση του συστήματος είναι ( (. ΤΕΤΡΑΓΩΝΙΚΟΙ Στην παράγραφο αυτή θα ασχοληθούμε με n n πίνακες. Επειδή έχουν τον ίδιο αριθμό γραμμών και στηλών τους ονομάζουμε τετραγωνικούς πίνακες τάξης n. Εδώ έχουμε το πλεονέκτημα να εφαρμόζουμε ανάμεσα σε n n πίνακες όλες τις πράξεις που μάθαμε ως τώρα όπως την πρόσθεση τον πολλαπλασιασμό αριθμού με πίνακα τον πολλαπλασιασμό πινάκων τον ανάστροφο ενός πίνακα και να παίρνουμε και πάλι n n πίνακες. Σε έναν τετραγωνικό πίνακα τάξης n n n Α n n nn τα στοιχεία nn λέμε ότι αποτελούν την (κύρια διαγώνιο του πίνακα. Το άθροισμά τους ονομάζεται ίχνος του πίνακα (rce και συμβολίζεται Για το ίχνος ισχύουν οι ιδιότητες. r ( B r rb. r( λ λ r. r ( B r( B Οι αποδείξεις αφήνονται ως άσκηση. r nn ii Ιδιαίτερο ενδιαφέρον παρουσιάζει ο τετραγωνικός πίνακας που έχει στην κύρια διαγώνιο και παντού αλλού. Ονομάζεται μοναδιαίος και συμβολίζεται Ι n ή απλά Ι (όταν δεν υπάρχει πρόβλημα σύγχυσης στις διαστάσεις του πίνακα. n i

19 ΚΕΦΑΛΑΙΟ Είναι δηλαδή όπου δ Ι (δ αν αν i j i j (το σύμβολο αυτό είναι γνωστό ως δέλτα του Kronecker. Η ονομασία του μοναδιαίου πίνακα είναι δικαιολογημένη αν παρατηρήσουμε ότι ΑΙ Α ΙΑ Α για κάθε τετραγωνικό πίνακα Α (ουσιαστικά ισχύει ακόμη και όταν ο Α δεν είναι τετραγωνικός αρκεί βέβαια να ορίζεται ο πολλαπλασιασμός. Πράγματι για την πρώτη σχέση αν Α( και ΑΙ ( c τότε s c ikδ kj δjj k (διότι το δ kj μηδενίζεται πάντοτε εκτός από την μοναδική περίπτωση όπου kj. Συνεπώς ΑΙ Α. Όμοια δείχνεται και η δεύτερη σχέση. Με μερικά παραδείγματα μπορούμε να καταλάβουμε πιο εύκολα γιατί συμβαίνει αυτό. Ας δούμε ένα. ΠΑΡΑΔΕΙΓΜΑ Έστω ο τετραγωνικός πίνακας Έχουμε 8 9 r 9 και I I Α 8 9 Α 9 8 9

20 ΚΕΦΑΛΑΙΟ Οι δυνάμεις πινάκων (με εκθέτη φυσικό αριθμό ορίζονται όπως και στους πραγματικούς αριθμούς δηλαδή Α ΑΑ Α Α Α... Α n Α n ενώ ορίζουμε επίσης Ι. ΠΑΡΑΔΕΙΓΜΑ Ας υπολογίσουμε όλες τις δυνάμεις του τετραγωνικού πίνακα Έχουμε Ι και Ο οπότε n Ο για. n.8 ΑΝΤΙΣΤΡΕΨΙΜΟΙ Ένας τετραγωνικός πίνακας Α θα λέγεται αντιστρέψιμος 8 αν υπάρχει πίνακας Β τέτοιος ώστε B I B Εάν υπάρχει τέτοιος πίνακας τότε είναι μοναδικός. Πράγματι ας υποθέσουμε ότι υπάρχει και άλλος πίνακας B που έχει την ίδια ιδιότητα δηλαδή 8 Σκεφτείτε κατ αναλογία ότι στο R κάθε μη μηδενικός αριθμός α είναι αντιστρέψιμος γιατί υπάρχει ο α - τέτοιος ώστε αα - α - α.

21 ΚΕΦΑΛΑΙΟ B I B. Τότε ο B συμπίπτει με τον Β καθώς B IB B B B B B I B ( (. Επειδή είναι μοναδικός τον ονομάζουμε αντίστροφο του Α και τον συμβολίζουμε Α -. ΠΑΡΑΔΕΙΓΜΑΤΑ Έστω οι πίνακες και B Έχουμε B I και B I. Συνεπώς οι δύο πίνακες είναι αντιστρέψιμοι και μάλιστα ο ένας είναι αντίστροφος του άλλου δηλαδή B και B Υπάρχουν πίνακες που δεν είναι αντιστρέψιμοι. Π.χ. ο πίνακας. Πράγματι ας υποθέσουμε αντίθετα ότι έχει ως αντίστροφο τον πίνακα. Τότε έχουμε διαδοχικά d c b B I B d c b d b c d b c οπότε η πρώτη στήλη δίνει c c το οποίο είναι άτοπο. Άρα δεν ορίζεται ο. 8

22 ΚΕΦΑΛΑΙΟ Ωραία λοιπόν όταν μας δίνουν τον Β μπορούμε να ελέγξουμε αν είναι πράγματι ο αντίστροφος του Α. Το ερώτημα είναι «όταν μας δίνουν μόνο τον πίνακα Α πως βρίσκουμε τον αντίστροφο του;»..9 ΠΩΣ ΒΡΙΣΚΟΥΜΕ ΤΟΝ ΑΝΤΙΣΤΡΟΦΟ ΤΟΥ Α (ΟΤΑΝ ΥΠΑΡΧΕΙ Όταν μας δίνεται ένας τετραγωνικός πίνακας Α τάξης n ο επόμενος αλγόριθμος είτε αποφαίνεται ότι ο Α δεν είναι αντιστρέψιμος είτε βρίσκει τον αντίστροφο. ΒΗΜΑ : Σχηματίζουμε τον n(n πίνακα M( I n BHM : Προσπαθούμε να αναγάγουμε τον Μ σε κανονική μορφή. Εάν στην πρώτη φάση εμφανιστεί μηδενική γραμμή στο πρώτο μισό του πίνακα σταματάμε. Ο πίνακας δεν είναι αντιστρέψιμος. Αν όχι συνεχίζουμε στη δεύτερη φάση. ΒΗΜΑ : Βρίσκουμε την κανονική μορφή (Ι n Β. ΒΗΜΑ : Είναι B ΠΑΡΑΔΕΙΓΜΑΤΑ Δίνεται ο πίνακας 8. Να εξεταστεί αν είναι αντιστρέψιμος και αν είναι να βρεθεί ο αντίστροφος. Έχουμε διαδοχικά Μ 8 ( I Άρα (Βεβαιωθείτε ότι ΑΑ - Ι Α - Α 9

23 ΚΕΦΑΛΑΙΟ Ομοίως για τον πίνακα. Έχουμε Μ Εφόσον εμφανίζεται μηδενική γραμμή στο πρώτο μισό του πίνακα ο Α δεν είναι αντιστρέψιμος.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/24 Κ2: Γραµµικά συστήµατα 1. Ορισµοί 2. Σύστηµα σε µορφή πίνακα 3. Επίλυση Crammer 4. Επίλυση Gauss

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0 ΕΞΙΣΩΣΕΙΣ.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ Η εξίσωση α 0 Στο Γυμνάσιο μάθαμε τον τρόπο επίλυσης των εξισώσεων της μορφής α 0 για συγκεκριμένους αριθμούς α,,με α 0 Γενικότερα τώρα, θα δούμε πώς με την οήθεια των

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ

ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ ÐÁÍÅÐÉÓÔÇÌÉÏ ÉÙÁÍÍÉÍÙÍ ÓïöïêëÞò Ä. ÃáëÜíçò ÁíáðëçñùôÞò ÊáèçãçôÞò ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ É Ù Á Í Í É Í Á 0 0 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Γενικά. Αλγόριθμος του Συμπληρώματος 6.3

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θέµα α) (µ) Θεωρούµε ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουλίου 3 (διάρκεια: 3 ώρες

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήσ τος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014

Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήσ τος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Εισαγωγή Θα συμπληρωθεί 1 Κεφάλαιο 1 Γεωμετρικά διανύσματα στο επίπεδο Ενα γεωμετρικό διάνυσμα

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

OXFORD UNIVERSITY PRESS, ISBN 978 0 19 285361-5

OXFORD UNIVERSITY PRESS, ISBN 978 0 19 285361-5 W.T. Gowers Mathematics A very short introduction OXFORD UNIVERSITY PRESS, ISBN 978 0 19 285361-5 Μετάφραση του κεφαλαίου Numbers and abstraction στα Ελληνικά από τον Παππά Ιωάννη. 1 Κάποια χρόνια πριν,

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα