Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοοίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Εικ. Καθηγητής Τηλ:

2 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Διαδικασία Posso

3 Σημειακή Διαδικασία 0 T T 2 T 3 T T k- T k Χρόνος μεταξύ δύο γεγονότων U k = T k T k- 0 αριθμός γεγονότων : N

4 Στοχαστική Διαδικασία Μια διαδικασία εριγράφεται είσης αό τον αριθμό των γεγονότων Ν ου συμβαίνουν σε ένα χρονικό διάστημα Ν: ο αριθμός των γεγονότων στο χρ. διάστημα [0,] Να,β]=Νβ-Να Μέσος αριθμός γεγονότων ριν την στιγμή : } { } { } { } { 2 T T T T N T T N E N m

5 Στοχαστική Διαδικασία Θεωρείστε ένα σύστημα το οοίο εξελίσσεται τυχαία στο χρόνο και έστω ότι αρατηρούμε το σύστημα στους χρόνους = 0,, 2, 3,. Έστω X η τυχαία κατάσταση του συστήματος στο χρόνο. Η ακολουθία των τυχαίων μεταβλητών {X 0, X, X 2, } ονομάζεται στοχαστική διαδικασία διακριτού χρόνου και γράφεται {Χ, 0} Αν με Ε συμβολίσουμε το σύνολο όλων των δυνατών τιμών ου μορεί να άρει η X για όλα τα, τότε το Ε ονομάζεται χώρος καταστάσεων της στοχαστικής διαδικασίας {Χ, 0}

6 Στοχαστική Διαδικασία Παραδείγματα σ.δ.δ.χ. X : η θερμοκρασία στην όλη της Χίου την ημέρα στις 2:00 το μεσημέρι. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε =-20,50 X : το αοτέλεσμα της -οστής ρίψης ενός κανονικού ζαριού. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = {, 2, 3, 4, 5, 6} X : ο δείκτης του Χ.Α.Α. την ημέρα. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = [0, X : ο αριθμός των εφημερίδων «ΕΝΗΜΕΡΩΣΗ» ου ουλάει ένα ερίτερο την ημέρα. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = {0,, 2, 3,.} διακριτή σ.δ. με διακριτό χώρο καταστάσεων διακριτή σ.δ. με συνεχή χώρο καταστάσεων

7 Στοχαστική Διαδικασία Θεωρείστε ένα σύστημα το οοίο εξελίσσεται τυχαία στο χρόνο και έστω ότι αρατηρούμε το σύστημα σε όλες τις χρ. στιγμές 0 και έστω X η κατάσταση του συστήματος χρ. στιγμή. Το σύνολο των καταστάσεων στις οοίες μορεί να βρεθεί το σύστημα σε οοιαδήοτε χρ. στιγμή καλείται χώρος καταστάσεων και συμβολίζεται με Ε. Η διαδικασία {X, 0} καλείται στοχαστική διαδικασία συνεχούς χρόνου με χώρο καταστάσεων Ε.

8 Στοχαστική Διαδικασία Παραδείγματα σ.δ.σ.χ. Έστω μια μηχανή η οοία μορεί να λειτουργεί ή να μην λειτουργεί. Εάν θεωρήσουμε ως X την κατάσταση της μηχανής στο χρόνο τότε η {X, 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =λειτουργία, μη-λειτουργία Έστω X ο αριθμός των ελατών ου μαίνουν σε ένα εμορικό κατάστημα στο χρόνο τότε η {X, 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =0,, 2, } Έστω X η θερμοκρασία στην όλη της Χίου στο χρόνο τότε η {X, 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =-20,50 συνεχής σ.δ. με διακριτό χώρο καταστάσεων συνεχής σ.δ. με συνεχή χώρο καταστάσεων

9 Στοχαστική Διαδικασία Μια διαφορετική ροσέγγιση: Ορισμός: Η συνάρτηση Χω, όου ω το αοτέλεσμα ενός ειράματος τύχης και ο χρόνος, λέγεται στοχαστική διαδικασία. Αν = 0 μια συγκεκριμένη χρονική στιγμή, τότε η Χω, 0 = Χ ω είναι τ.μ. Αν ζ = ζ 0 είναι ένα συγκεκριμένο αοτέλεσμα του ειράματος τύχης, τότε η Χζ 0, = x είναι μια συνάρτηση του χρόνου Χζ, * Χζ, 0 Χζ 2, Χζ 3, * Χζ 2, 0 0 * Χζ 3, 0

10 Διαδικασία Posso Ο αριθμός των γεγονότων Ν ακολουθεί την κατανομή Posso αν οι χρόνοι U ακολουθούν εκθετική κατανομή όου U U U U T T T N T T N Pr Pr Pr! Pr e N

11 Διαδικασία Posso Posso λ Υέρθεση Posso λ + λ 2 Posso λ 2 Posso λ Διαχωρισμός Posso λ Posso λ- *ΠΑΡΑΔΕΙΓΜΑ: Ανεξάρτητες τ.μ. Χ, Υ Pr k 2 2 X k e, PrY k e, PrX Y? k! k k!

12 ΜΑΡΚΟΒΙΑΝΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Μαρκοβιανές Αλυσίδες Δικριτού Χρόνου

13 Διακριτού Χρόνου Ορισμός Μαρκοβιανή Αλυσίδα Μια ακολουθία τ.μ. X με τιμές στο χώρο καταστάσεων Ε, είναι μια Μαρκοβιανή Αλυσίδα αν για οοιοδήοτε k > 0 και για οοιαδήοτε ακολουθία,, 0,,, - στοιχείων του Ε, έχουμε: X X0 0, X, X 2 2,, X PrX X Pr Μαρκοβιανή ιδιότητα Αν Pr X τότε η δεσμευμένη συνάρτηση μάζας ιθανότητας k m, Pr X k X 0 m m ονομάζεται συνάρτηση ιθανοτήτων μετάβασης της ΜΑ Ομογενής ΜΑ

14 Διακριτού Χρόνου Για μια ομογενή ΜΑ χρησιμοοιούμε την k Pr X k X m και ονομάζεται ιθανότητα μετάβασης -βημάτων m Λόγω της Μαρκοβιανής ιδιότητας μορούμε να ορίσουμε την αό κοινού ιθανότητα X 0 0,X,X 2,,X Pr 2 Αυτό ουσιαστικά σημαίνει ότι μορούμε να υολογίσουμε οοιαδήοτε αό κοινού ιθανότητα θέλουμε αρκεί να γνωρίζουμε την αρχική κατανομή 0 Pr X0 α και τις ιθανότητες μετάβασης μεταξύ των καταστάσεων

15 Διακριτού Χρόνου Δηλαδή: α P 0 0 ή a a Το άθροισμα κάθε γραμμής του ίνακα P είναι Pr X 0 X Pr X X E Ένας τέτοιος τετραγωνικός ίνακας ονομάζεται στοχαστικός

16 Διακριτού Χρόνου Παράδειγμα: Έστω ότι ένα σύστημα μορεί να βρεθεί σε μια αό τις καταστάσεις 0 βλάβη ή λειτουργία. Αρχικά, στο χρόνο = 0, το σύστημα λειτουργεί q q Pr X 0? Pr? X

17 Διακριτού Χρόνου Πιθανότητα -βημάτων: Γνωρίζουμε ότι Pr X X m m Prη διαδικασία άει στην κατάσταση k στο m-οστό βήμα, δοθέντος ότι Χ 0 = = k m Prαν η διαδικασία φτάνει στην κατάσταση μετά αό m+ βήματα, δοθέντος ότι Χ m = k = k Η μαρκοβιανή ιδιότητα υοδεικνύει ότι τα δύο αραάνω γεγονότα είναι ανεξάρτητα. Αό το θεώρημα ολικής ιθανότητας: m m k k ke Chama-Kolmogorov

18 Διακριτού Χρόνου Αν τώρα συμβολίσουμε με P τον ίνακα με στοιχεία, τότε με βάση τα ροηγούμενα ροκύτει : Μορούμε ακόμα να υολογίσουμε την εριθώρια σ.μ.. της τ.μ. Χ, με βάση τις ιθανότητες -βημάτων και την αρχική κατανομή Η εριθώρια σ.μ.. της. Χ σαν διάνυσμα: και με βάση τα ροηγούμενα E E E, a ή a X X X X Pr Pr Pr P P P P P P α α

19 Διακριτού Χρόνου Παράδειγμα: - 0 -q P 2 2?? q

20 Διακριτού Χρόνου Για ολλές εριτώσεις αλλά όχι για όλες τις Μ.Α. ισχύει: Ταξινόμηση Καταστάσεων lm 02,, Ορισμός: Μια κατάσταση ονομάζεται μεταβατική ή μη-εαναλητική αν και μόνο αν υάρχει θετική ιθανότητα η διαδικασία να μην ξαναγυρίσει σε αυτή Γενικά για μια εερασμένη Μ.Α. εριμένουμε ότι μετά αό ένα μεγάλο αριθμό βημάτων, η ιθανότητα η αλυσίδα να βρεθεί σε μια μεταβατική κατάσταση τείνει στο 0, ανεξάρτητα αό την αρχική κατάσταση. Έστω Χ ο αριθμός των εισκέψεων στην αό την. Τότε Αν η είναι μεταβατική τότε E[ X ] 0 0 και άρα 0

21 Διακριτού Χρόνου Ορισμός: Μια κατάσταση ονομάζεται εαναλητική αν και μόνο αν ξεκινώντας αό την η διαδικασία θα ειστρέψει κάοια στιγμή σε αυτή με ιθανότητα. Για τις εαναλητικές καταστάσεις είναι σημαντικός ο χρόνος ειστροφής σε αυτές Έστω f = Prη ρώτη είσκεψη αό την στην γίνεται με ακριβώς βήματα τότε k f k k

22 Διακριτού Χρόνου Έστω f = Prξεκινώντας αό την να φτάσω κάοια στιγμή στην τότε f f Αν f = τότε η είναι εαναλητική* Αν f < τότε η είναι μεταβατική * k l k l Έστω f = τότε ορίζεται ο μέσος χρόνος εανάληψης της μ ή m ή v μ f Αν μ = τότε η είναι μηδενικά εαναλητική Αν μ < τότε η είναι θετικά εαναλητική

23 Διακριτού Χρόνου Ορισμός: Για μια εαναλητική κατάσταση ισχύει > 0 για κάοιο. Ορίζουμε ως ερίοδο της και συμβολίζουμε με d, το μέγιστο κοινό διαιρέτη των θετικών ακεραίων για τους οοίους > 0 Ορισμός: Μια εαναλητική κατάσταση είναι αεριοδική αν d = και εριοδική αν d > 0 0 k k Ορισμός: Μια κατάσταση είναι αορροφητική αν = k μεταβατική εαναλητική μηδενικά θετικά εριοδική αεριοδική εριοδική αεριοδική

24 Διακριτού Χρόνου Ορισμός: Δύο καταστάσεις και λέμε ότι εικοινωνούν, αν υάρχει τουλάχιστον ένα μονοάτι ου οδηγεί αό την στην και αντίστροφα. Ορισμός: Ένα σύνολο C αό καταστάσεις ου εικοινωνούν είναι ένα κλειστό σύνολο αν καμία κατάσταση έκτος του C δεν είναι ροσβάσιμη αό καμία κατάσταση εντός του C. k k Ορισμός: Μια Μ.Α. ονομάζεται μη-διαχωρίσιμη ή μη-αναγωγίσιμη ή αμετάτωτη αν κάθε κατάστασή της είναι ροσβάσιμη αό οοιαδήοτε άλλη σε εερασμένο αριθμό βημάτων. Αν μια κατάσταση μιας μη-διαχωρίσιμης Μ.Α, είναι αεριοδική τότε όλες της οι καταστάσεις είναι αεριοδικές και η Μ.Α. λέγεται αεριοδική. Ομοίως εριοδικη, μεταβατική, εαναλητική.

25 Διακριτού Χρόνου Οριακή Κατανομή Οι ιθανότητες μετάβασης -βημάτων μιας εερασμένης, μη διαχωρίσιμης και αεριοδικής Μ.Α. εργοδικής γίνονται ανεξάρτητες αό την κατάσταση και αό το όταν Όταν η οριακή ιθανότητα είναι: lm lm lm lm Αυτό σημαίνει ότι όταν ο P συγκλίνει σε έναν ίνακα Π με όμοιες γραμμές = [ 0 ] Αν ισχύει και τότε το ονομάζεται οριακή κατανομή E lm

26 Διακριτού Χρόνου Αό το Θεώρημα Ολικής Πιθανότητας έχουμε ότι : και αφού αίρνουμε lm lm Προκύτει λοιόν το σύστημα γραμμικών εξισώσεων: ή - Οοιοδήοτε διάνυσμα x ικανοοιεί το σύστημα ονομάζεται στάσιμη κατανομή P P

27 Διακριτού Χρόνου Θεώρημα: Για μια αεριοδική Μ.Α. το lm υάρχει Θεώρημα : Για οοιαδήοτε μη-διαχωρίσιμη και αεριοδική Μ.Α. οι οριακές ιθανότητες lm lm υάρχουν και είναι ανεξάρτητες αό την αρχική κατανομή α Θεώρημα : Για μια εργοδική Μ.Α. η οριακή κατανομή ιθανοτήτων ονομάζεται = [ 0 ] είναι η μοναδική στάσιμη κατανομή. lm lm E 0 E 0 lm

28 Διακριτού Χρόνου Χρόνοι Παραμονής Για μια Μ.Α. γνωρίζουμε ότι ολόκληρη η ιστορία της συνοψίζεται στο τρέχον στάδιο Έστω ότι στο -οστό βήμα η αλυσίδα είναι στην κατάσταση, δηλ Χ = Η PrX + = ρέει να εξαρτάται μόνο αό την και όχι αό τον χρόνο αραμονής σε αυτή. Έστω λοιόν T ο χρόνος αραμονής στην κατά την διάρκεια μιας είσκεψης Σίγουρα θα αραμείνει χρ. στιγμή + όσες φορές η αλυσίδα κάνει την μετάβαση ριν την εγκαταλείψει. Το T όμως ρέει να είναι τ.μ. με κατανομή ου να μην έχει μνήμη έτσι ώστε η {Χ, = 0,, } να είναι Μ.Α.

29 Διακριτού Χρόνου Δοθέντος ότι η αλυσίδα μόλις μήκε στην κατάσταση στο βήμα, στο εόμενο βήμα είτε θα αραμείνει στην με ιθανότητα είτε θα την εγκαταλείψει ηγαίνοντας στην με ιθανότητα Pr T Εομένως: Beroul Οότε για τον χρόνο αραμονής στην έχουμε E T - - E Var T - 2

30 Διακριτού Χρόνου Παράδειγμα: - 0 -q E T [ ] 0? [ 0]?, E[ T ]? q

31 ΜΑΡΚΟΒΙΑΝΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Μαρκοβιανές Αλυσίδες Συνεχούς Χρόνου

32 Συνεχούς Χρόνου Η διαφορά με τις Μ.Α.Δ.Χ. είναι ότι η μετάβαση αό μια κατάσταση σε μια άλλη μορεί να γίνει οοιαδήοτε χρονική στιγμή Διακριτός χώρος καταστάσεων. Έστω λοιόν Ε = {0,, 2, 3, } Μια σ.δ.σ.χ.δ.χ. {Χ, 0} είναι Μ.Α. όταν για 0 < < < και r 0 για r = 0,, 2, ισχύει Pr X x X x, X x,, X 0 x0 Pr X Η συμεριφορά της Χ χαρακτηρίζεται αό: Την αρχική κατανομή της Μ.Α.Σ.Χ. δεδομένης της σ.μ.. της Χ 0 : PrΧ 0 = k, k = 0,, 2, Τις ιθανότητες μετάβασης με x X x v, Pr X X v 0 v,, 0,, 2,...,, 0, ά 2

33 Συνεχούς Χρόνου Στην ομογενή ερίτωση, συμβολίζουμε E v, : 0 v 3 Αφού η 2 είναι δεσμευμένη σ.μ.. ικανοοιεί την σχέση: Pr X v X v v 0 4 Ορίζουμε τις ιθανότητες κατάστασης για οοιαδήοτε χρ. στιγμή : Pr X 02,,, και ισχύει E 0

34 Συνεχούς Χρόνου Αό το Θεώρημα Ολικής Πιθανότητας για δοθέν > v, μορούμε να εκφράσουμε την σ.μ.. της Χ συναρτήσει των v, και της σ.μ.. της Χv: αό όου για v = 0 αίρνουμε: δηλαδή η συμεριφορά της Χ είναι λήρως καθορισμένη αν γνωρίζουμε την αρχική κατανομή α = [α0 α ] και τις ιθανότητες μετάβασης 0, 7 6 E E v v v X v X X X, Pr Pr Pr E E a 0, 0 0,

35 Συνεχούς Χρόνου Οι ιθανότητες μετάβασης μιας Μ.Α.Σ.Χ. ικανοοιούν τις εξισώσεις Chama-Kolmogorov: Η άμεση είλυση της 8 είναι δύσκολη και συνήθως βρίσκουμε τις ιθανότητες μετάβασης λύνοντας ένα σύστημα διαφορικών εξισώσεων Για τον λόγο αυτό μορούμε ν.δ.ο για κάθε υάρχει μια συνεχής μηαρνητική συνάρτηση q ου ορίζεται ως: q v, ke k v, v,u v k u, lm h0 h0 - lm 0 v u, - h, h, h h 8 9

36 Συνεχούς Χρόνου Ομοίως για κάθε υάρχει μια συνεχής μη-αρνητική συνάρτηση q ου ονομάζεται ρυθμός μετάβασης και ορίζεται ως: Τότε μορούμε να συνδέσουμε τις ιθανότητες μετάβασης με τους ρυθμούς μετάβασης: 0 h h h h v q h h v, lm, -, lm, 0 0 h o h q h, h o h q h,

37 Συνεχούς Χρόνου Αό την εξίσωση Chama Kolmogorov 8 για +h έχουμε: και άρα :h lm h0 u v, h v, v, h v,u u, h v, k k ke ke k k v,u a v,u k k k u, h v,u a k u, Kolmogorov forward equaos Ομοίως ροκύτουν και οι Kolmogorov backword equaos

38 Συνεχούς Χρόνου Ορίζουμε τον ίνακα Q =[q ] ή Α με στοιχεία της διαγωνίου q = - α Προκύτει εύκολα ότι Αν τώρα ορίσουμε τον ίνακα Pv, =[ v,], τότε οι εξισώσεις Kolmogorov γράφονται ως: q 0,,,, v v v v v P Q P Q P P

39 Συνεχούς Χρόνου Αό τις σχέσεις 6 και ροκύτει: d d ή με την μορφή ινάκων d d q k Q q Σε ολλές εριτώσεις οι ιθανότητες μετάβασης,+h δεν εξαρτώνται αό τον αρχικό χρόνο αλλά μόνο αό τον χρόνο h ου έχει εράσει ομογενής Αυτό σημαίνει ότι οι ρυθμοί μετάβασης q και q είναι ανεξάρτητοι του 2 3

40 Συνεχούς Χρόνου Σε αυτήν την ερίτωση οι ρυθμοί μετάβασης γίνονται q και q και οι ιθανότητες μετάβασης h. Εομένως οι και 2 γίνονται: ή με την μορφή ινάκων k k k k k q q d d q q d d 4 5 Q Q P P d d d d 6 7

41 Συνεχούς Χρόνου Η είλυση της 7 για τον υολογισμό των είναι δύσκολη, ωστόσο υάρχουν εριτώσεις όου μορεί αυτό να γίνει σχετικά αλά Στις ερισσότερες εριτώσεις όμως θεωρούμε ότι η τείνει σε ένα καθώς. Θα μελετήσουμε κάτω αό οιες συνθήκες συμβαίνει αυτό Χρειάζεται και εδώ να ταξινομήσουμε τις καταστάσεις Μια κατάσταση ονομάζεται αορροφητική αν q = 0 Μια κατάσταση ονομάζεται ροσιτή αό την αν για κάοιο > 0 ισχύει > 0 Μια Μ.Α.Σ.Χ. ονομάζεται μη-διαχωρίσιμη αμετάτωτη αν κάθε κατάσταση της είναι ροσιτή αό οοιαδήοτε άλλη

42 Συνεχούς Χρόνου Θεώρημα: Για μια μη-διαχωρίσιμη ΜΑΣΧ το όριο lm lm υάρχει και είναι ανεξάρτητο αό την, E 8 Αν οι οριακές ιθανότητες υάρχουν τότε: lm d d και αντικαθιστώντας στην 5 αίρνουμε το ακόλουθο σύστημα των γραμμικών εξισώσεων, ου ονομάζονται εξισώσεις ισορροίας: 0 q 0 q 9

43 Συνεχούς Χρόνου Αν ορίσουμε την στάσιμη κατανομή = [ 0 ] τότε οι οριακές ιθανότητες υάρχουν, και η 9 σε μορφή ινάκων μορεί να γραφεί ως: 20 Q 0 Για ένα τέτοιο ομογενές σύστημα, μια ιθανή λύση είναι η = 0, Για να βρούμε μια μοναδική μη-μηδενική λύση χρησιμοοιούμε την συνθήκη: E 2

44 Συνεχούς Χρόνου ΜΑΣΧ με αμοιβές Αν μορούμε να υολογίσουμε τα ή τα τότε μορούμε να υολογίσουμε αρκετά μέτρα ου μορεί να μας ενδιαφέρουν Έστω μια αμοιβή ή οινή r η οοία δίνεται σε κάθε κατάσταση. Έστω ακόμα Z = r X ο ρυθμός αμοιβής της ΜΑΣΧ στο χρόνο. Τότε, η αναμενόμενη αμοιβή στο χρόνο είναι: Για μια μη-διαχωρίσιμη ΜΑΣΧ ορίζεται η Y Z x dx Αν είναι η αθροιστική αμοιβή στο 0, ], τότε η 0 αναμενόμενη τιμή της είναι: Z E r E Z lm EZ E r E E Y 0 x dx E r

45 Συνεχούς Χρόνου Πιθανότητες κατάστασης στην μεταβατική ερίοδο Α Lalace 0 0 α 0 d f e f L s 2 3 a b λ μ Εξισώσεις ισορροίας 3 2 a a d d b d d b d d Μετασχηματισμός Lalace a a s s s s s b s s s b s s s s Λύνω το σύστημα και στην συνέχεια εφαρμόζω τον αντίστροφο μετασχηματισμό Lalace για να υολογίσω τα, 2, 3

46 Συνεχούς Χρόνου Β Εκθετική του ίνακα Α Q P e I Q! αp αe Q

47 Συνεχούς Χρόνου - Παράδειγμα Σε ένα υολογιστικό σύστημα καταφτάνουν εργασίες για εξυηρέτηση συμφώνα με μια κατανομή Posso αραμέτρου λ. Κάθε εργασία εεξεργάζεται σύμφωνα με τον κανόνα FIFO. Ο χρόνος ου χρειάζεται για την εεξεργασία κάθε εργασίας ακολουθεί την εκθετική κατανομή με αράμετρο μ. Το σύστημα διαθέτει μια ενδιάμεση μνήμη buffer στην οοία μορεί να αοθηκεύονται μέχρι 2 εργασίες οι οοίες αναμένουν να αρχίσει η εξυηρέτηση τους. Οι εργασίες ου φτάνουν στο σύστημα και βρίσκουν την ενδιάμεση μνήμη λήρη χάνονται. Να κατασκευαστεί το διάγραμμα καταστάσεων Να βρεθεί ο ίνακας ρυθμών μετάβασης Q Να βρεθεί ο ίνακας ιθανοτήτων μετάβασης P

48 Πίνακας ρυθμών μετάβασης Q P Μαρκοβιανές Αλυσίδες Συνεχούς Χρόνου - Παράδειγμα λ μ λ λ μ μ Q Πίνακας ιθανοτήτων μετάβασης P και q q, 0

49 Συνεχούς Χρόνου - Παράδειγμα Να βρεθεί η κατανομή ιθανοτήτων στον χρόνο αp αe Q εισροή d d Q d d q q μεταβολή στην ροή ιθανότητας q εκροή q k k q q k k εισροή εκροή

50 Συνεχούς Χρόνου - Παράδειγμα Q Q Να βρεθεί η ασυμτωτική κατανομή ιθανοτήτων 0 2 3

51 Συνεχούς Χρόνου - Παράδειγμα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοοίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

3.1 Αλυσίδες Markov διακριτού χρόνου

3.1 Αλυσίδες Markov διακριτού χρόνου Κεφάλαιο 3 Συστήµατα Markov Μια διαδικασία Markov µε διακριτό χώρο καταστάσεων ονοµάζεται αλυσίδα Markov Ένα σύνολο αό τυχαίες µεταβλητές { } αοτελούν µια αλυσίδα Markov όταν η ιθανότητα η εόµενη τιµή

Διαβάστε περισσότερα

ΜΔΕ Άσκηση 6 Α. Τόγκας

ΜΔΕ Άσκηση 6 Α. Τόγκας Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανειστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 17-18, Διδάσκων: Α.Τόγκας 3ο φύλλο ροβλημάτων Ονοματεώνυμο - ΑΜ: ΜΔΕ 3ο φύλλο ροβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας, ΣΕΙΡΕΣ FOURIER. Η ροσέγγιση συναρτήσεων µέσω ολυωνύµων, την οοία µελετήσαµε στην ροηγούµενη Ενότητα, αρά την αοτελεσµατικότητα και την, σχετική, αλότητά της, αοδεικνύεται ανεαρκής για την εριγραφή/ροσέγγιση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x ΠΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι 00-00 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. (0 µον.) Να υολογισθούν τα όρια:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...

Διαβάστε περισσότερα

( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive)

( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive) Παράδειγμα ( ϑσ ) amplg dsrbuo: y ϑ~ N, ϑ ~ όου = ( ϑ = ) με σ γνωστό και διακριτό pror. Να βρεθεί το margal probably desy του y (he pror predcve). Να εριγραφεί το samplg scheme αό την pror predcve. 3.

Διαβάστε περισσότερα

Δίνονται οι συναρτήσεις: f ( x)

Δίνονται οι συναρτήσεις: f ( x) http://eler.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές ααντήσεις 6 ης Γρατής Εργασίας ΠΛΗ 00-0: Άσκηση (5 μον.) (Για το ερώτημα (α) συμβουλευθείτε τα εδάφια. και. και για το (β) το εδάφιο. του συγγράμματος

Διαβάστε περισσότερα

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2 ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Ιουλίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του µαθήµατος, ενώ αό τα Θέµατα,, 4 και 5 µορείτε να ειλέξετε

Διαβάστε περισσότερα

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου. Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.. Βρείτε τον μετασχηματισμό Fourier της συνάρτησης x, αν x xχ [,] (x) =, αν x < ή < x Λύση. Εειδή η συνάρτηση είναι τμηματικά συνεχής και μηδενίζεται έξω

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 4 Φεβρουαρίου 005 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1 ο (.5) Αναλύστε

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 & Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin [] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ. Τμήμα Α (α) Για τη συνάρτηση f () : Παρατηρούμε ότι si u= y x και v x u = ycos x, u = si x, v =, v =. x y x y = οότε Οι ανωτέρω ρώτες μερικές

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2 ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό

Διαβάστε περισσότερα

1. Διδιάστατοι πίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων

1. Διδιάστατοι πίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων Διδιάστατοι ίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων Έστω Χ, Υ δύο κατηγορικές μεταβλητές αόκρισης με Ι και στάθμες αντίστοιχα Οι αοκρίσεις (Χ,Υ ενός τυχαία ειλεγμένου ατόμου αό

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Ιωάννης Χαρ. Κατσαβουνίδης Τμήμα Μηχ. Η/Υ, Τηλε. Δικτύων Πανειστήμιο Θεσσαλίας ΦΘινοωρινό Εξάμηνο 00/ Άσκηση Να βρείτε αν τα αρακάτω συστήματα είναι γραμμικά,

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις (3) Αγγελική Αλεξίου

Στοχαστικές Ανελίξεις (3) Αγγελική Αλεξίου Στοχαστικές Ανελίξεις (3) Αγγελική Αλεξίου alexiou@unipi.gr 1 Αλυσίδες Markov 2 Παράδειγμα 1: παιχνίδι τύχης Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Παράδειγμα 2: μηχανή Έστω μηχανή που παράγει ένα προϊόν με

Διαβάστε περισσότερα

7.1. Το ορισµένο ολοκλήρωµα

7.1. Το ορισµένο ολοκλήρωµα Κ Χριστοδουλίδης: Μαθηµατικό Συµλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 7 Το ορισµένο ολοκλήρωµα 7 Το ορισµένο ολοκλήρωµα Για το αόριστο ολοκλήρωµα βρήκαµε ότι: Αν η συνάρτηση F ( είναι µια αρχική συνάρτηση

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:

Διαβάστε περισσότερα

z έχει µετασχ-z : X(z)= 2z 2

z έχει µετασχ-z : X(z)= 2z 2 ΨΕΣ-Μετασχ- Λύσεις Ασκήσεων Σ.Φωτόουλος ΑΣΚΗΣΗ 4. Βρείτε τον µετασχηµατισµό- των σηµάτων ου φαίνονται στο αρακάτω σχήµα Α4. εκφράζοντάς τους σε όσο το δυνατόν αλούστερη-συµαγέστερη µορφή. a a a -->...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 202-203 ιδάσκων: Βασίλης ΚΟΥΤΡΑΣ ιδάσκων ε ί Συµβάσει Π. 407/80 v.koutras@fme.aegea.gr

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων ο Σετ Ασκήσεων - Λύσεις Νοέμβριος - Δεκέμβριος 205 Ερώτημα (α). Η νοσοκόμα ακολουθεί μια Ομογενή Μαρκοβιανή Αλυσίδα Διακριτού Χρόνου με χώρο καταστάσεων το σύνολο

Διαβάστε περισσότερα

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14  ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την

Διαβάστε περισσότερα

Tριγωνομετρικές εξισώσεις

Tριγωνομετρικές εξισώσεις Tριγωνομετρικές εξισώσεις Εχουμε μάθει να λύνουμε εξισώσεις ρώτου βαθμού και δευτέρου βαθμού ου είναι ισότητες ου εριέχουν έναν άγνωστο και ροσαθούμε να βρούμε για οιά (ή οιές) τιμές αυτού του αγνώστου

Διαβάστε περισσότερα

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA 1 Eisagwg Οι σειρές Fourier είναι ένα ιδιαίτερα χρήσιμο εργαλείο του Λογισμού ου βρίσκει ολλές εφαρμογές σε διάφορα εδία της ειστήμης, χ στις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση (8 µον) Χρησιµοοιώντας την αντικατάσταση acosθ, ή ataθ, για µια κατάλληλη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

Κεφάλαιο 7. Εισαγωγή στην Ανάλυση Fourier.

Κεφάλαιο 7. Εισαγωγή στην Ανάλυση Fourier. 7 Σειρές Fourier Κεφάλαιο 7 Εισαγωγή στην Ανάλυση Fourier Mια συνάρτηση : R καλείται εριοδική µε ερίοδο >, αν ισχύει ( x) = ( x+ ) για κάθε x R και ο είναι ο µικρότερος αριθµός για τον οοίο ισχύει αυτή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 8 ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 9. Γενικά για την ηµιτονοειδή συνάρτηση Η συνάρτηση αυτή χρησιµοοιείται ολύ στην Ηλεκτρολογία αλλά και σε άλλες Τεχνικές Ειστήµες. Οι λόγοι είναι οι ακόλουθοι: α Με

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5- ΛΥΣΕΙΣ Οι ασκήσεις της Εργασίας αυτής βασίζονται στην ύλη των Ενοτήτων 9 του συγγράµατος «Λογισµός Μιας Μεταβλητής»

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυο Yοβολής Αξιολόγησης ΓΕ O φοιτητής συμληρώνει την ενότητα «Υοβολή Εργασίας» και αοστέλλει το έντυο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος συμληρώνει

Διαβάστε περισσότερα

08.2 Αναπαράσταση περιοδικών ακολουθιών µε ιακριτές Σειρές Fourier

08.2 Αναπαράσταση περιοδικών ακολουθιών µε ιακριτές Σειρές Fourier ΜΑΘΗΜΑ 8: Ο ΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER 8. Εισαγωγή Έχουµε ήδη γνωρίσει τον Μετασχηµατισµό Fourir ιακριτού Χρόνου (ΜΦ Χ) ο οοίος µετασχηµατίζει µια ακολουθία σε µια συνάρτηση της συνεχούς µεταβλητής

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20 Περιεχόμενα Πρόλογος... 7 Κεφάλαιο Βασικές έννοιες... Διαφορικές εξισώσεις... Συμβολισμοί... Λύσεις... Προβλήματα αρχικών και συνοριακών τιμών... Κεφάλαιο Ταξινόμηση τν διαφορικών εξισώσεν ρώτης τάξης...

Διαβάστε περισσότερα

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις: Εφαρμογή: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Ένα σώμα εκτελεί ταυτόχρονα τρεις () αλές αρμονικές ταλαντώσεις, ου έχουν ίδια διεύθυνση, ίδια θέση ισορροίας και εξισώσεις: x1 ( t) = 0.1 ηµ 99 t (S.I.) ( ) ηµ ( ) x t =

Διαβάστε περισσότερα

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f.

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f. ΣΕΙΡΕΣ FOURIER Θεωρία (σειρές Fourier) Εάν μιά συνάρτηση f ορίζεται σε όλο το και υάρχει αριθμός λ> τέτοιος ώστε να ισχύει: f(x)f(x+λ), x Τότε η συνάρτηση καλείται εριοδική, ο δε ελάχιστος αριθμός λ για

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει ραγματικό μέρος φανταστικό μέρος u( x, y) xcos y και v( x, y) xsi y Αό την θεωρία γνωρίζουμε

Διαβάστε περισσότερα

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019 Διαφοριϰές Εξισώσεις ΜΕΜ 71 Λύσεις Θεμάτων Εξέτασης Ιούνη 19 Εστω η μη γραμμιϰή διαφοριϰή εξίσωση ρώτης τάξης Α 1. Δείξτε ότι η διαφοριϰή εξίσωση δεν είναι αϰριβής. Λύση. Η αντίστοιχη διαφοριϰή μορφή είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του

Διαβάστε περισσότερα

Δ Ι Π Λ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Δ Ι Π Λ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Α. Διλά ολοκληρώματα Θεωρούμε τη συνάρτηση z f, ου είναι ορισμένη και συνεχής σε ένα κλειστό και φραγμένο χωρίο Τ του ειέδου O. Υοθέτουμε ότι εμβαδόν του χωρίου Τ είναι ίσο με Α. ΔΑ i Διαμερίζουμε το χωρίο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων 1 Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων ρ. Παναγιώτης Λ. Θεοδωρόουλος ρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr ΠΡΟΛΟΓΟΣ Στην εργασία αυτή εισηµαίνονται και αναλύονται

Διαβάστε περισσότερα

Ράβδος σε σκαλοπάτι. = Fημθ και Fy

Ράβδος σε σκαλοπάτι. = Fημθ και Fy Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου

Διαβάστε περισσότερα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα . Εκφωνήσεις των θεμάτων των εξετάσεων Εεξεργασμένες ενδεικτικές ααντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα Εεξεργασία: Δημήτριος Σαθάρας Σχολικός Σύμβουλος Μαθηματικών Συντονιστής βαθμολογητών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αοστολής στους Φοιτητές: 7 Αριλίου 9 Ημερομηνία αράδοσης της Εργασίας: 9 Μαΐου 9 Πριν αό την λύση

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 18 Μαΐου 216 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

1.1 Τριγωνομετρικές Συναρτήσεις

1.1 Τριγωνομετρικές Συναρτήσεις 11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΣΕΠΤΕΜΒΡΙΟΥ 0 ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΘΕΜΑ Α Στις αρακάτω ροτάσεις να ειλέξετε την σωστή αάντηση A. Σε μια αλή αρμονική ταλάντωση η αομάκρυνση και η ειτάχυνση την ίδια χρονική

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου Σελίδα αό ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φροντιστήρια Ρούλα Μακρή

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό.

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό. Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙI: Η Εξίσωση Schöinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schöinge για ένα σωμάτιο το

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ

ΣΥΝΑΡΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ. Χρησιμοοιώντας τα στοιχεία του αρακάτω ίνακα, να γίνει η γραφική αράσταση της μάζας (Μ), του όγκου (V) και της αραγωγής γλυκόζης (G) σαν συνάρτηση της ηλικίας (α). Για οιες αό αυτές

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον.

Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον. Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον. Σε δύο σημεία Ο 1 και Ο, τα οοία αέχουν αόσταση (Ο 1 Ο )=d=4m, ενός άειρου γραμμικού ελαστικού μέσου, υάρχουν δυο ηγές κύματος, οι οοίες αρχίζουν να ταλαντώνονται

Διαβάστε περισσότερα

( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε

( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε 6 th Intenationa Physics Oypiad. Saaanca (España) 5 ΘΕΜΑ : «ΜΟΙΡΑΙΟΣ» ΔΟΡΥΦΟΡΟΣ. και. GM g R M G g R 4 R g / 4.. /s. g R g R E M g R G E. Η τιμή της κάθετης αόστασης αό το δορυφόρο στο μεγάλο άξονα της

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017 Α ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ Α Έστω, єδ με

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Το ραγματικό και το φανταστικό μέρος της f ( ) γράφονται uy (, ) = y και v(, y) = y Οι ρώτες μερικές

Διαβάστε περισσότερα

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων 8 Το θεώρηµα λλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων Όως έχουµε ήδη αναφέρει η δεύτερη βασική µέθοδος υολογισµού ολλαλών ολοκληρωµάτων είναι αυτή της αλλαγής µεταβλητής, την οοία έχουµε

Διαβάστε περισσότερα

fysikoblog.blogspot.com

fysikoblog.blogspot.com fysikobog.bogspot.com Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙV: Η Εξίσωση Schoedinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schoedinge

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΗΝ ΡΙΓΩΝΟΜΕΡΙΑ Νικ. Ιωσηφίδης, Μαθηµατικός Φροντιστής, ΒΕΡΟΙΑ e-mail: iossifid@yahoo.gr Η εργασία αυτή γράφτηκε για τους µαθητές της Β Λυκείου όταν (δεκαετία 98-990) η ριγωνοµετρία δεν

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: 9 Mαίου 7 Ηµεροµηνία Παράδοσης της Εργασίας αό τον Φοιτητή: Ιουνίου 7 Άσκηση. ( µον.) ίνεται το σύστηµα

Διαβάστε περισσότερα

Α=5 m ω=314 rad/sec=100π rad/sec

Α=5 m ω=314 rad/sec=100π rad/sec ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΚΕΦΑΛΑΙΟΥ 1. Ασκήσεις με τα χαρακτηριστικά της κίνησης. Μικρές ασκήσεις ου αναφέρονται στους ορισμούς της εριόδου, της συχνότητας, του λάτους και της ενέργειας της ταλάντωσης.

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης. Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: Mαΐου 6 Ηµεροµηνία Παράδοσης της Εργασίας αό τον

Διαβάστε περισσότερα

f p = lim (1 a n ) < n=0

f p = lim (1 a n ) < n=0 Πανειστήμιο Κρήτης Τμήμα Μαθηματικών Συντελεστές Taylor συναρτήσεων σε χώρους Hardy Καλλιόη Παολίνα Κουτσάκη Ειβλέων Καθηγητής: Μιχαήλ Πααδημητράκης Ειτροή: Μιχαήλ Κολουντζάκης, Θεμιστοκλής Μήτσης και

Διαβάστε περισσότερα

Στραγγίσεις (Θεωρία)

Στραγγίσεις (Θεωρία) Ελληνική Δημοκρατία Τεχνολογικό Εκαιδευτικό Ίδρυμα Ηείρου Στραγγίσεις (Θεωρία) Ενότητα 1 : Η ασταθής στράγγιση των εδαφών ΙΙ Δρ. Μενέλαος Θεοχάρης 6... Πρώτος τρόος γραμμικοοίησης Η μη γραμμικότητα της

Διαβάστε περισσότερα

Εφαρμογή πρώτη: Στάσιμο κύμα

Εφαρμογή πρώτη: Στάσιμο κύμα Εφαρμογή ρώτη: Στάσιμο κύμα Κατά μήκος μιας εαστικής χορδής x x διαδίδονται δύο όμοια κύματα με αντίθετες κατευθύνσεις. Αν η εξίσωση του ενός κύματος είναι y =0.2 ημ(0t 0x) (S.I.), τότε: Α. Να γραφεί η

Διαβάστε περισσότερα

Μια εναλλακτική θεμελίωση των κυμάτων

Μια εναλλακτική θεμελίωση των κυμάτων Μια εναλλακτική θεμελίωση των κυμάτων Τα κύµατα δεν είναι η συνέχεια των ταλαντώσεων, όως για διδακτικούς λόγους κάνουµε 1. Η διάδοση ενός αλµού. Έστω ότι έχουµε ένα ελαστικό µέσο,.χ. µια τεντωµένη οριζόντια

Διαβάστε περισσότερα

7. Επαναλαµβανόµενα υναµικά Παίγνια.

7. Επαναλαµβανόµενα υναµικά Παίγνια. 7 Εαναλαµβανόµενα υναµικά Παίγνια Τα εαναλαµβανόµενα υναµικά αίγνια αοτελούν συνυασµό ταυτόχρονου και υναµικού αιγνίου, είτε στην ερίτωση ου ένα ταυτόχρονο αίγνιο εαναλαµβάνεται ιαχρονικά, είτε εανάληψη

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ ΘΕΩΡΙΑ Να διαβάσετε τις σελίδες 8-1 του σχολικού βιβλίου. Να ροσέξετε ιδιαίτερα τα σχήµατα 1.1, 1.3 και 1.4 καθώς και τους ορισµούς της αρχικής φάσης και της φάσης της ταλάντωσης.

Διαβάστε περισσότερα

ειναι η υπαρξη σημειων ευσταθειας (stationary points) που αναλυονται παρακατω. f ειναι παραγωγισιμη, τοτε η ( x)

ειναι η υπαρξη σημειων ευσταθειας (stationary points) που αναλυονται παρακατω. f ειναι παραγωγισιμη, τοτε η ( x) 4 Κλασσικες Μεθοδοι Βελτιστοοιησης Στο κεφαλαιο αυτο αρουσιαζονται τα ροβληματα βελτιστοοιησης: () χωρις εριορισμους, () με εριορισμους ισοτητας, () με εριορισμους ανισοτητας, και (4) με Rewto-Rapso..

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ http://eepgr/pli/pli/studetshtm ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ), - ΕΡΓΑΣΙΑ ΣΤ Τα κάτωθι ροβλήµατα ροέρχονται αό την ύλη και των συγγραµµάτων της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 5 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.) Λύση: f ( ) ( ) ( ) ( )! f α) Ο τύος της σειράς µε κέντρο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

1.2 Βασικές Τριγωνομετρικές Εξισώσεις

1.2 Βασικές Τριγωνομετρικές Εξισώσεις 1. Βασικές Τριγωνομετρικές Εξισώσεις 1 η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: = α, α 0 = α, α 0 εφx = α, α 0 σφx = α, α 0 1. Να λυθούν οι εξ ισώσεις: i. ημ x =, ii. ημ x= 0, iii.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σουδών) η Σειρά Ασκήσεων //7 Ι. Σ. Ράτης Ειστροφή µέχρι //7. Η σχέση διασοράς για τη ζώνη αγωγιµότητας Ε c c () ενός κυβικού ηµιαγώγιµου

Διαβάστε περισσότερα

Τετραγωνική κυματομορφή συχνότητας 1 Hz

Τετραγωνική κυματομορφή συχνότητας 1 Hz Τετραγωνική κυματομορφή συχνότητας 1 Hz Η κυματομορφή, στην γενική της μορφή θα είναι : V 0 2 3 ωt -V Η κυματομορφή είναι εριττή Η κυματομορφή, όως φαίνεται εύκολα αό το σχήμα, έχει μέση τιμή μηδενική,

Διαβάστε περισσότερα

Θέµα 1 ο Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Στις ερωτήσεις 1-5 να επιλέξετε την σωστή απάντηση :

Θέµα 1 ο Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Στις ερωτήσεις 1-5 να επιλέξετε την σωστή απάντηση : Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Στις ερωτήσεις - 5 να ειλέξετε την σωστή αάντηση :. Η ερίοδος µιας γραµµικής αρµονικής ταλάντωσης α. εξαρτάται άντα αό τη

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 86 8767 www.iraklits.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (/1/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του Λυκείου

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα