5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ"

Transcript

1 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση n μεταβλητών ΙΙ Αν Α R και Β R n τότε έχουμε διανυσματική συνάρτηση μίας πραγματικής μεταβλητής ΙIΙ Εδώ θα ασχοληθούμε με την περίπτωση Α R και Β R δηλαδή με πραγματικές συναρτήσεις δύο μεταβλητών ΣΥΜΒΟΛΙΣΜΟΣ: n : εξαρτημένη μεταβλητή n : ανεξάρτητες μεταβλητές [Για n εναλλακτικά z] ΠΑΡΑΤΗΡΗΣΗ IV: Για n η γραική παράσταση είναι τρισδιάστατη μήκος πλάτος και ύψος Εναλλακτική απεικόνιση γίνεται με τα διαγράμματα ισοϋψών καμπύλων contour lots ΟΡΙΣΜΟΣ: Ισοϋψείς καμπύλες με ύψος c αποτελούνται από όλα τα σημεία c για τα οποία ισχύει c ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ: Καμπύλες ίσου κέρδους Καμπύλες ίσης Παραγωγής 3 Καμπύλες ίσου κόστους 4 Καμπύλες ίσης χρησιμότητας 5 Καμπύλες ίσων εσόδων

2 Z Z -e -5e 5e e 3 Y X 3 ΔΙΑΓΡΑΜΜΑ : Διάγραμμα Συνάρτησης Πυκνότητας Πιθανότητας της Διμεταβλητής Κανονικής Κατανομής για ρ8 5 Y X 5 ΔΙΑΓΡΑΜΜΑ 3 : Διάγραμμα της Συνάρτησης Y Y e 4e 6e 8e e -8e-6e-4e-e -8e-6e-4e-e e4e 6e 8e e e 8e 6e 4ee -e-4e-6e-8e -8e -6e -4e -e e 8e 6e 4e e X ΔΙΑΓΡΑΜΜΑ : Διάγραμμα Ισοϋψών Καμπύλων της Συνάρτησης Πυκνότητας Πιθανότητας της Διμεταβλητής Κανονικής Κατανομής για ρ8 ΔΙΑΓΡΑΜΜΑ 4: Διάγραμμα ισοϋψών Καμπύλων της Συνάρτησης X

3 ΣΗΜΕΙΑ ΔΙΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΠΕΡΙΟΧΗ ΕΝΟΣ ΣΗΜΕΙΟΥ ΟΡΙΣΜΟΣ: Περιοχή ενός σημείου R ονομάζεται ένα υποσύνολο Π του R που περιέχει το σημείο και τα κοντινά σε αυτό Η περιοχή που ορίζεται από τα σημεία που ικανοποιούν τις συνθήκες - <ε και - <ε για ε> ορίζουν μια τετραγωνική περιοχή γύρω από το σημείο Η περιοχή που ορίζεται από τα σημεία που ικανοποιούν τη συνθήκη - - <δ για δ> ορίζουν μια κυκλική περιοχή με κέντρο το σημείο και ακτίνα δ Y e -e -e e X ΔΙΑΓΡΑΜΜΑ 5: Διαγραμματική Απεικόνιση τετραγωνικής περιοχής ενός σημείου Y e -e -e X e ΔΙΑΓΡΑΜΜΑ 6: Διαγραμματική Απεικόνιση Κυκλικής περιοχής ενός σημείου

4 ΕΣΩΤΕΡΙΚΑ ΣΗΜΕΙΑ ΟΡΙΣΜΟΣ: Ένα σημείο A λέγεται εσωτερικό σημείο του συνόλου Α αν και μόνο αν υπάρχει Π η οποία είναι υποσύνολο του Α δηλαδή Π Α 53 ΣΗΜΕΙΑ ΟΛΙΚΟΥ ΕΛΑΧΙΣΤΟΥ ΚΑΙ ΜΕΓΙΣΤΟΥ ΟΡΙΣΜΟΣ: Για τη συνάρτηση το σημείο D λέγεται σημείο ολικού ελάχιστου αν ή ολικού μέγιστου αν για κάθε D 53 ΣΥΓΚΛΙΣΗ ΚΑΙ ΣΥΝΕΧΕΙΑ ΟΡΙΣΜΟΣ: Έστω η πραγματική συνάρτηση και το σημείο τότε η συνάρτηση συγκλίνει στην τιμή L όταν προσεγγίζουν το αν για κάθε ε> υπάρχει μια περιοχή του τέτοια ώστε για κάθε σημείο που ανήκει σε αυτή την περιοχή ισχύει -L <ε ΙΔΙΟΤΗΤΑ: Αν lim L τότε lim{ lim } lim { lim } L ΠΑΡΑΤΗΡΗΣΗ: Οι ιδιότητες που ισχύουν στη σύγκλιση συναρτήσεων μίας μεταβλητής ισχύουν και για τις σύγκλιση συναρτήσεων μεταβλητών ΟΡΙΣΜΟΣ: Η συνάρτηση είναι συνεχής στο σημείο D αν lim

5 ΣΥΝΑΡΤΗΣΕΙΣ ΓΑΜΜΑ ΚΑΙ ΒΗΤΑ ΟΡΙΣΜΟΣ: Η συνάρτηση γάμμα ορίζεται για και δίδεται από τον τύπο: Γ t t e dt ΙΔΙΟΤΗΤΕΣ: ΓΓ για > Γκκ! για κ υσικό αριθμό 3 ΓΓ 4 Γ/ π ΟΡΙΣΜΟΣ: Η συνάρτηση Βήτα ορίζεται για και δίδεται από τον τύπο: Β t t dt ΙΔΙΟΤΗΤΕΣ: BΓ Γ/ Γ B B 55 ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 55 ΕΙΣΑΓΩΓΗ - ΣΥΜΒΟΛΙΣΜΟΣ Έστω ότι έχουμε δύο αγαθά τότε με και συμβολίζουμε τις τιμές τους και με q και q τις ποσότητες τους Τότε έχουμε: D D είναι οι συναρτήσεις ζητήσεως των δύο αγαθών S S είναι οι συναρτήσεις προσοράς των δύο αγαθών Rq q είναι η συνάρτηση εσόδων έσοδα που προκύπτουν από την πώληση q μονάδων του πρώτου αγαθού και q μονάδων του δευτέρου αγαθού Cq q είναι η συνάρτηση κόστους κόστος που προκύπτει από την παραγωγή q μονάδων του πρώτου αγαθού και q μονάδων του δευτέρου αγαθού Uq q είναι η συνάρτηση χρησιμότητας του καταναλωτή

6 58 59 Π ή Q είναι η συνάρτηση παραγωγής από δύο συντελεστές παραγωγής πχ κεάλαιο και εργασία 55 ΣΧΕΣΕΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΑΓΑΘΩΝ ΟΡΙΣΜΟΣ: Δύο αγαθά ονομάζονται ανταγωνιστικά αν η αύξηση της τιμής του ενός συνεπάγεται αύξηση της ζήτησης του άλλου ΟΡΙΣΜΟΣ: Δύο αγαθά ονομάζονται συμπληρωματικά αν η αύξηση της τιμής του ενός συνεπάγεται μείωση της ζήτησης του άλλου ΟΡΙΣΜΟΣ: Δύο αγαθά ονομάζονται ουδέτερα αν δεν είναι ούτε ανταγωνιστικά ούτε συμπληρωματικά 553 ΚΑΜΠΥΛΕΣ ΑΔΙΑΦΟΡΙΑΣ ΟΡΙΣΜΟΣ: Οι ισοϋψείς καμπύλες μίας συνάρτησης χρησιμότητας δίνουν τις καμπύλες αδιαορίας Όλοι οι συνδυασμοί στην ίδια καμπύλη αδιαορίας μας δίνουν την ίδια χρησιμότητα για τον καταναλωτή 56 ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ ΟΡΙΣΜΟΣ: Έστω η πραγματική συνάρτηση z και ένα εσωτερικό σημείο του πεδίου ορισμού Τότε η οριακή τιμή lim δ lim δ δ oνομάζεται μερική παράγωγος της ως προς στο σημείο ΣΥΜΒΟΛΙΣΜΟΣ: ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι: Όμοια έχουμε ή γενικότερα δ lim δ δ ΙΙ: Μπορούμε να γενικεύσουμε τον παραπάνω ορισμό της μερικής παραγώγου για συναρτήσεις περισσοτέρων από δύο μεταβλητές

7 ΟΛΙΚΟ ΔΙΑΦΟΡΙΚΟ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ: Έστω διαορίσιμη σε ένα εσωτερικό σημείο τότε η γραμμική απεικόνιση gdd d ονομάζεται ολικό διαορικό της συνάρτησης στο σημείο ΣΥΜΒΟΛΙΣΜΟΣ: d ή d ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι: Οι ποσότητες d και d d 58 ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΣΥΝΘΕΣΕΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΡΟΤΑΣΗ: Έστω η συνάρτηση οποία μπορεί να γρατεί ως g h h τότε g h h h g h h h h h και g h h h g h h h h h ονομάζονται και μερικά διαορικά ΙΙ: Αν η είναι παραγωγίσιμη σε κάθε εσωτερικό σημείο του πεδίου ορισμού τότε μπορούμε να γράψουμε: d d d

8 ΠΕΠΛΕΓΜΕΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΣΜΟΣ: Οι συναρτήσεις οι οποίες γράονται υπό τη μορή k όπου η εξαρτημένη μεταβλητή και δεν μπορούμε να λύσουμε ως προς ονομάζονται πεπλεγμένες συναρτήσεις ΠΑΡΑΓΩΓΟΣ ΠΕΠΛ ΣΥΝΑΡΤΗΣΗΣ: Αν τότε η παράγωγος d/d δίδεται από τον τύπο: d d Όμοια αν k τότε η μερική παράγωγος / i δίδεται από τον τύπο i i 5 ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΜΕΡΙΚΩΝ ΠΑΡΑΓΩΓΩΝ 5 ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΩΓΗΣ ΟΡΙΣΜΟΣ: Η συνάρτηση παραγωγής QΠ k εκράζει την ποσότητα του παραγόμενου προϊόντος ως προς τους συντελεστές παραγωγής k κεάλαιο εργασία πρώτες ύλες κλπ ΟΡΙΣΜΟΣ: Οριακή παραγωγικότητα του συντελεστή i ονομάζεται η μερική παράγωγος της συνάρτησης παραγωγής προς τον συντελεστή αυτό δηλαδή Π/ i ΠΑΡΑΤΗΡΗΣΗ: Συνήθως Π/ i > δηλαδή όσο αυξάνει ένας συντελεστής τόσο αυξάνει η παραγωγή Πέρα ενός σημείου i η παραγωγή συνεχίζει να αυξάνει αλλά με θίνων ρυθμό δηλαδή η δεύτερη παράγωγος ως προς i είναι αρνητική Αυτό το αινόμενο λέγεται και «Νόμος της θίνουσας παραγωγικότητας»

9 ΟΡΙΑΚΗ ΧΡΗΣΙΜΟΤΗΤΑ ΟΡΙΣΜΟΣ: Σαν οριακή χρησιμότητα του i προϊόντος ονομάζουμε τη μερική παράγωγο δηλαδή U/q i 53 ΜΕΡΙΚΗ ΕΛΑΣΤΙΚΟΤΗΤΑ ΟΡΙΣΜΟΣ: Αν k τότε η μερική ελαστικότητα ως προς i ονομάζεται η ποσότητα Ε i i i k i ΕΡΜΗΝΕΙΑ: Η μερική ελαστικότητα δίνει την ποσοστιαία μεταβολή της αν η i αυξηθεί κατά % και όλες οι υπόλοιπες εξαρτημένες μεταβλητές μείνουν σταθερές ΣΥΜΒΟΛΙΣΜΟΣ: Ε i ή Ε/Ε i ή Ε/Ε i ΠΑΡΑΤΗΡΗΣΗ: Ε/Ε i ln/ ln k i 5 ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΑΝΩΤΕΡΑΣ ΤΑΞΗΣ ΟΡΙΣΜΟΣ: Μερικές παράγωγοι δευτέρας τάξεως της συνάρτησης ονομάζονται οι συναρτήσεις που προκύπτουν αν παραγωγίσουμε τις μερικές παραγώγους / και / και δίδονται ως εξής: ΠΑΡΑΤΗΡΗΣΕΙΣ: και Ι Μπορούμε να γενικεύσουμε τον παραπάνω ορισμό σε μερική παράγωγος n-τάξης και τη συμβολίζουμε ως n k n k για k n IΙ Όμοια μπορούμε να ορίσουμε τη μερική παράγωγο n-τάξης για συνάρτηση μεταβλητών και τη συμβολίζουμε ως k k k n με k k n

10 66 ΘΕΩΡΗΜΑ: Αν οι μερικές παράγωγοι της / και / είναι συνεχείς σε ένα εσωτερικό σημείο του πεδίου ορισμού τότε ΟΡΙΣΜΟΣ: Διάνυσμα κλίσης της συνάρτησης στο σημείο ονομάζουμε το διάνυσμα με στοιχεία τις πρώτες μερικές παραγώγους στο σημείο αυτό ΣΥΜΒΟΛΙΣΜΟΣ: / / ΟΡΙΣΜΟΣ: Εσσιανή Μήτρα Hessian Matri ονομάζεται ο πίνακας Η με στοιχεία H ij / i j που αντιστοιχούν στην i γραμμή και j στήλη και δίδεται ως εξής: H 67 5 ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ ΟΡΙΣΜΟΣ: Το άθροισμα udυd ονομάζεται ακριβές διαορικό αν και μόνο αν u/υ/ ΟΡΙΣΜΟΣ: Κάθε εξίσωση της μορής udυd ονομάζεται διαορική εξίσωση ΠΑΡΑΤΗΡΗΣΗ: Αρκεί να βρούμε μια εξίσωση τέτοια ώστε d udυd όποτε η εξίσωση δίνει τη ζητούμενη συνάρτηση σε πεπλεγμένη μορή

11 ΑΚΡΟΤΑΤΑ ΚΑΙ ΣΑΓΜΑΤΙΚΑ ΣΗΜΕΙΑ ΟΡΙΣΜΟΣ: Έστω η συνάρτηση Το σημείο D ονομάζεται στάσιμο αν / / ΠΡΟΤΑΣΗ: Αν μια συνάρτηση είναι παραγωγίσιμη σε ένα εσωτερικό σημείο D το οποίο είναι τοπικό ακρότατο τότε αυτό το σημείο είναι στάσιμο ΠΡΟΤΑΣΗ: Αν ένα σημείο D είναι στάσιμο και τότε I Αν Δ> και / < / < τότε η παρουσιάζει τοπικό μέγιστο στο σημείο II Αν Δ> και / > / > τότε η παρουσιάζει τοπικό ελάχιστο στο σημείο ΙII Αν Δ< τότε το σημείο ονομάζεται σαγματικό ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Δ δεν μπορούμε να συμπεράνουμε τη ύση του σημείου μπορεί να είναι ακρότατο ή σαγματικό σημείο Ι Αν το σημείο δεν είναι εσωτερικό τότε μπορεί έχουμε ακρότατο με Δ<

12 7 54 ΔΕΣΜΕΥΜΕΝΑ ΑΚΡΟΤΑΤΑ [ΜΕΘΟΔΟΣ ΠΟΛΛΑΠΛΑΣΙΑΣΤΩΝ LANGRANGE] Πολλές ορές στόχος είναι να βρούμε το μέγιστο μιας συνάρτησης υπό κάποιο περιορισμό Για παράδειγμα ο καταναλωτής θέλει να μεγιστοποίησει τη χρησιμότητα του υπό τον περιορισμό να υπάρχει κάποιο όριο στις αγορές που καθορίζεται από το εισόδημα ΠΡΟΤΑΣΗ: Αν η συνάρτηση παρουσιάζει δεσμευμένο τοπικό ακρότατο στο σημείο υπό τον περιορισμό τότε υπάρχει λ R τέτοιο ώστε: λ και λ 7 ΠΑΡΑΤΗΡΗΣΗ: Αν Fλλ τότε τα δεσμευμένα τοπικά ακρότατα θα πρέπει να αναζητηθούν στις λύσεις του συστήματος: Fλ/ λ Fλ/ λ Fλ/λ ΠΡΟΤΑΣΗ: Αν Fλλ και το σημείο λ είναι λύση του συστήματος Fλ/ Fλ/ και και I Αν Δ > τότε η παρουσιάζει δεσμευμένο τοπικό μέγιστο IΙ Αν Δ < τότε η παρουσιάζει δεσμευμένο τοπικό ελάχιστο

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

Γενικά. Διάλεξη 12. Υπερβάλλον βάρος: Ορισμός. Ορισμός. Ορισμός. Ορισμός

Γενικά. Διάλεξη 12. Υπερβάλλον βάρος: Ορισμός. Ορισμός. Ορισμός. Ορισμός Γενικά Διάλεξη Φορολογία και αποτελεσματικότητα ν η φορολογία από μηδέν που είναι τώρα αυξηθεί στο 0% π.χ., αυτό πως επηρεάζει την ευημερία του καταναλωτή; Σίγουρα η κατανάλωση θα μεταβληθεί λόγω της αύξησης

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α Στις προτάσεις, από Α.1. μέχρι και Α.5., να γράψετε τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ (009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑΔΑ Α Α.1. Σωστό. Α.. Λάθος. Ο πληθωρισμός πλήττει όλα τα άτομα που το χρηματικό τους εισόδημα είναι σταθερό ή αυξάνεται

Διαβάστε περισσότερα

Μακροοικονομική - Μικροοικονομική

Μακροοικονομική - Μικροοικονομική Μακροοικονομική Μικροοικονομική Η Μακροοικονομική είναι ο κλάδος της Οικονομικής Επιστήμης που ασχολείται με τη μελέτη του οικονομικού συστήματος στο σύνολό του ή μεγάλων επιμέρους τομέων του Η Μικροοικονομική

Διαβάστε περισσότερα

Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ

Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ Άντε πάλι.. Για να δούμε πόσες φορές θα κάνουμε αυτή τη δουλειά Κεφάλαιο 2 Οικονομικά των Επιχειρήσεων Ε.Σ.Σαρτζετάκης 1 Εισαγωγή? Η λειτουργία των αγορών προσδιορίζεται από δύο

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ 100 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ ΠΡΟΣ ΕΠΙΛΥΣΗ Vol. 1 ΑΘΗΝΑ ΜΑΪΟΣ 2013 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ 1 ΤΟΜΟΣ 1 ΜIΚΡΟΟΙΚΟΝΟΜΙΑ ΘΕΩΡΙΑ ΚΑΤΑΝΑΛΩΤΗ 1) Εάν ο οριακός λόγος υποκατάστασης

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση είναι

Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση είναι ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Κεφάλαιο 1 ο : Βασικές Οικονομικές Έννοιες Επαναληπτική άσκηση στο Κεφάλαιο 1 Δίνεται ο παρακάτω πίνακας

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16//201)-ΣΕΙΡΑ Α ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό Α2. (β) Α. (γ) ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.Η μεταβολή στην προσφερόμενη ποσότητα ενός αγαθού

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 Να λυθούν οι παρακάτω ασκήσεις: 1. Αν η τιµή των Ιταλικών επίπλων µειωθεί τι θα συµβεί στη ζήτηση α) των Ιταλικών επίπλων και β) των Ελληνικών επίπλων. 2. Αν η τιµή του υγραερίου

Διαβάστε περισσότερα

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και A5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,

Διαβάστε περισσότερα

Εισαγωγή στην οικονοµία των µεταφορών

Εισαγωγή στην οικονοµία των µεταφορών 1 Εισαγωγή στην οικονοµία των µεταφορών Βασικές συνιστώσες της οικονοµικής ανάλυσης στις µεταφορές Ζήτηση, Προσφορά και αλληλεπίδραση προσφοράς και ζήτησης Εξωτερικές αλληλεπιδράσεις, κοινωνικό κόστος

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά - Ορισμός: Η αγορά ενός αγαθού είναι η διαδικασία (θεσμικό πλαίσιο) μέσω της οποίας έρχονται σε επικοινωνία οι αγοραστές και οι πωλητές του συγκεκριμένου

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα -Σκοπός: Εξήγηση Διακυμάνσεων του Πραγματικού ΑΕΠ - Δυνητικό Προϊόν: Το προϊόν που θα μπορούσε

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Κεφάλαιο 7 Οικονοµικά της ευηµερίας! Τα οικονοµικά της ευηµερίας εξετάζουν τους τρόπους µε τους οποίους η κατανοµή των πόρων επηρεάζει την ευηµερία

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29 Περιεχόμενα Πρόλογος 5 Κεφάλαιο ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα βελτιστοποίησης Γραμμικά προγράμματα Ακέραια προγράμματα Τετραγωνικά προγράμματα Διατύπωση προβλήματος Σύμβαση λύσης Κεφάλαιο ΓΡΑΜΜΙΚΟΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Παραγωγή: είναι η διαδικασία με την οποία οι διάφοροι παραγωγικοί συντελεστές

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 Μάθημα: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ Ημερομηνία και ώρα εξέτασης: Δευτέρα, 3 Ιουνίου 2013

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α Α.1: Σωστό, Α.: Λάθος, Α.: Σωστό, Α.: Λάθος, Α.5: Σωστό Α.6: β, Α.7: γ ΟΜΑ Α Β Υπάρχουν αγαθά στα οποία η τιµή του ενός αγαθού επηρεάζει τη ζήτηση ενός άλλου αγαθού. Τα αγαθά αυτά τα

Διαβάστε περισσότερα

ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ. Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός

ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ. Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ Β.1. Το Πλεόνασµα του Καταναλωτή Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός ότι κάποιοι καταναλωτές πληρώνουν για ένα αγαθό λιγότερο από αυτό

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης 1.1. Τι είναι η Οικονομική της Διοίκησης 1.2. Τι παρέχει η οικονομική θεωρία στην Οικονομική της Διοίκησης 1.3. Οι σχέσεις της οικονομικής της

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΜΕΡΟΣ Β Ερωτήσεις πολλαπλών επιλογών Στις παρακάτω 10 ερωτήσεις, να γράψετε τον αριθμό της κάθε ερώτησης στην εργασία σας και δίπλα του το γράμμα που αντιστοιχεί στη σωστή απάντηση. Η κάθε σωστή απάντηση

Διαβάστε περισσότερα

H Ελαστικότητα και οι Εφαρμογές της

H Ελαστικότητα και οι Εφαρμογές της H Ελαστικότητα και οι Εφαρμογές της (1) Ελαστικότητα της Ζήτησης 1A. Ελαστικότητα της Ζήτησης ως προς την Τιμή - Γιαναμετρήσουμετηνευαισθησίατηςζητούμενηςποσότητας( ) στις μεταβολές της τιμής (), μπορούμε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ & Γ ΤΑΞΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 2 ΙΟΥΝΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ & Γ ΤΑΞΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 2 ΙΟΥΝΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ & Γ ΤΑΞΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 2 ΙΟΥΝΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α.1. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Λάθος Α.2. β Α.3. δ ΘΕΜΑ Β ΟΜΑ Α

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Ειδικά Θέµατα της Θεωρίας της Συµπεριφοράς του Καταναλωτή Το Συνολικό Αποτέλεσµα. Το Αποτέλεσµα Υποκατάστασης. Το Εισοδηµατικό Αποτέλεσµα. Κανονικά Αγαθά. Κατώτερα Αγαθά. Παράδοξο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model Πάντειο Πανεπιστήμιο Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics Lecture 1: Trading in a Ricardian Model Το Ρικαρδιανό υπόδειγμα με ένα συντελεστή (συνέχεια) 1. Ο μόνος σημαντικός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα.

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Η εξέταση αποτελείται από δύο

Διαβάστε περισσότερα

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Συνολική Ζήτηση για εγχώριο προϊόν (ΑΕΠ/GDP) απαρτίζεται από Y = C + I + G + NX απάνες Κατανάλωσης από τα νοικοκυριά Επενδυτικές απάνες από τα νοικοκυριά

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 5 Μαΐου 5 Απαντήσεις Θεμάτων Θέμα Α Α. Θεωρία, βλ. σχολικό βιβλίο σελ. 94

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚOΤΗΤΑ ΤΗΤΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡOΣΦ ΣΦOΡΑΣ. Ελαστικότητα... Κεφάλαιο 5

ΕΛΑΣΤΙΚOΤΗΤΑ ΤΗΤΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡOΣΦ ΣΦOΡΑΣ. Ελαστικότητα... Κεφάλαιο 5 ΕΛΑΣΤΙΚOΤΗΤΑ ΤΗΤΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡOΣΦ ΣΦOΡΑΣ Κεφάλαιο 5 Ελαστικότητα...... µετρά τον βαθµό αντίδρασης των καταναλωτών και των παραγωγών στις αλλαγές στις συνθήκες της αγοράς...... µας επιτρέπει να αναλύουµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

Κεφάλαιο 5 Νίκολσον (κεφ. 6,7,8,14 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης

Κεφάλαιο 5 Νίκολσον (κεφ. 6,7,8,14 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης Συναρτήσεις ζήτησης Κεφάλαιο 5 Νίκολσον (κεφ. 6784 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης Τα άριστα επίπεδα των 2 n ως συναρτήσεις όλων των τιμών και του εισοδήματος n συναρτήσεις ζήτησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

ΤΟ ΚΟΣΤΟΣ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 10. Το κόστος παραγωγής. ! Οι επιχειρήσεις επιθυµούν να παράγουν µεγαλύτερη ποσότητα, όσο υψηλότερη είναι η τιµή

ΤΟ ΚΟΣΤΟΣ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 10. Το κόστος παραγωγής. ! Οι επιχειρήσεις επιθυµούν να παράγουν µεγαλύτερη ποσότητα, όσο υψηλότερη είναι η τιµή ΤΟ ΚΟΣΤΟΣ ΠΑΡΑΓΩΓΗΣ Κεφάλαιο 10 Το παραγωγής! Ο Νόµος της προσφοράς:! Οι επιχειρήσεις επιθυµούν να παράγουν µεγαλύτερη ποσότητα, όσο υψηλότερη είναι η τιµή! Ως εκ τούτου, η καµπύλη προσφοράς έχει αρνητική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΝΟΤΗΤΑ Νο. 1 ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ : ΣΤΟΧΟΙ, ΜΕΘΟΔΟΛΟΓΙΑ, ΒΑΣΙΚΑ ΔΕΔΟΜΕΝΑ & ΜΕΤΡΗΣΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 5. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 5. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΘΩΡΙΑ ΠΑΡΑΓΩΓΗΣ Κεφάλαιο 5. Σαρτζετάκης 1 Συνάρτηση παραγωγής Προσδιορίζει τις δυνατότητες παραγωγής ενός αγαθού ή υπηρεσίας (εκροής) ως συνάρτησης των παραγωγικών συντελεστών (εισροών) δεδομένης της τεχνολογίας.

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή Διάκριση Τιμών ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) -H διάκριση τιμών 1 ου βαθμού προϋποθέτει ότι η μονοπωλιακή επιχείρηση γνωρίζει τις ατομικές συναρτήσεις ζήτησης όλων των καταναλωτών.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 270727 222594 ΑΡΤΑΚΗΣ 12 Κ. ΤΟΥΜΠΑ THΛ : 919113 949422 www.syghrono.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Εξεταστική περίοδος Φεβρουαρίου Η εξέταση αποτελείται από

Διαβάστε περισσότερα