A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings"

Transcript

1 International Journal of Computational Science and Mathematics. ISSN Volume 3, Number 1 (2011), pp International Research Publication House A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings N. Palaniappan 1, P.S. Veerappan 2 and D. Ezhilmaran 2 1 Professor of Mathematics, Alagappa University, Karaikudi Tamilnadu, India. palaniappan.nallappan@gmail.com 2 Department of Mathematics, K.S.R. College of Technology, Tiruchengode , Tamilnadu, India. peeyesvee@yahoo.co.in, ezhil.devarasan@yahoo.com Abstract In this paper, we study some properties of intuitionistic fuzzy ideals of a Γ near ring and prove some results on these Mathematics Subject Classification: 16D25, 03E72, 03G25. Keywords and phrases: Γ near- ring, fuzzy set, intuitionistic fuzzy set, intuitionistic fuzzy ideal. Introduction The notion of a fuzzy set was introduced by L.A.Zadeh[10], and since then this concept have been applied to various algebraic structures. The idea of Intuitionistic Fuzzy Set was first published by K.T.Atanassov[1] as a generalization of the notion of fuzzy set. Γ- near-rings were defined by Bh.Satyanarayana [9] and G.L.Booth [2, 3] studied the ideal theory in Γ-near-rings. W. Liu[7] introduced fuzzy ideals and it has been studied by several authors. The notion of fuzzy ideals and its properties were applied to semi groups, BCK- algebras and semi rings. Y.B. Jun [5, 6] introduced the notion of fuzzy left (resp.right) ideals. In this paper, we introduce the notion of intuitionistic fuzzy ideals in Γ near- rings and study some of its properties. Preliminaries In this section we include some elementary aspects that are necessary for this paper.

2 62 N. Palaniappan et al Definition 2.1 A non empty set R with two binary operations + (addition) and. (multiplication) is called a near-ring if it satisfies the following axioms: i. (R, + ) is a group, ii. iii. (R,. ) is a semigroup, (x + y). z = x. z +y. z, for all x, y, z R. It is a right near-ring because it satisfies the right distributive law. Definition 2.2 A Γ-near-ring is a triple (M, +, Γ ) where i. (M, +) is a group, ii. is a nonempty set of binary operators on M such that for each α Γ, ( M, +, α ) is a near ring, iii. xα(yβz) = (xαy)βz for all x, y, z M and α, β Γ. Definition 2.3 A subset A of a Γ-near-ring M is called a left (resp. right) ideal of M if i. (A, +) is a normal divisor of (M, +), ii. uα(x + v) -uαv A ( resp. xαu A ) for all x A, α Γ and u,v M. Definition 2.4 A fuzzy set μ in a Γ-near-ring M is called a fuzzy left (resp.right) ideal of M if i. μ(x-y) min{ μ(x), μ(y) }, ii. μ(y + x-y ) μ(x), for all x, y M. iii. μ(uα(x + v) -uαv) μ(x) (resp. μ(xαu) μ(x) ) for all x, u, v M and α Γ. Definition 2.5 [1] Let X be a nonempty fixed set.an intuitionistic fuzzy set (IFS) A in X is an object having the form A = { < x, μ A (x), ν A (x) >/ x X }, where the functions μ A : X [ 0, 1] and ν A : X [ 0, 1] denote the degree of membership and degree of non membership of each element x X to the set A, respectively, and 0 μ A (x) + ν A (x) 1. Notation. For the sake of simplicity, we shall use the symbol A= < μ A, ν A > for the IFS A = {< x, μ A (x), ν A (x) > /x X }. Definition 2.6 [1]. Let X be a non-empty set and let Α = < μ Α, ν Α > and Β = < μ Β, ν Β > be IFSs in X. Then 1. Α Β iff μ Α μ Β and ν Α ν Β. 2. Α = Β iff Α Β and Β Α. 3. Α c = < ν Α, μ Α >. 4. Α I Β = ( μ Α μ Β, ν Α ν Β ). 5. Α U Β = ( μ Α μ Β, ν Α ν Β ). 6. Α = (μ Α,1 μ Α ), Α = (1 ν Α, ν Α ). Definition 2.7. Let µ and ν be two fuzzy sets in a Γ-near-ring For s, t [0, 1] the set U(µ,s) = { x µ(x) s } is called upper level of µ. The set L(ν,t)={x ν(x) t } is

3 A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings 63 called lower level of ν. Definition 2.8. Let Α be an IFS in a Γ ring Μ. For each pair < t, s > [0, 1] with t + s 1, the set Α < t, s > = { x X / μ Α (x) t and ν Α (x) s } is called a <t, s> level subset of Α. Definition 2.9. Let Α = < μ Α, ν Α > be an intuitionistic fuzzy set in Μ and let t [0, 1]. Then the sets U(μ Α ; t) = {x Μ : μ Α (x) t} and L(ν Α ; t) = {x Μ : ν Α (x) t} are called upper level set and lower level set of Α respectively. Intuitionistic fuzzy ideals In what follows, let Μ denote a Γ near-ring unless otherwise specified. Definition 3.1. An IFS A = < μ Α, ν Α > in Μ is called an intuitionistic fuzzy left ( resp. right ) ideal of a Γ near-ring M if 1. μ Α (x y) { μ Α (x) μ Α (y) }, 2. μ Α (y + x y) μ Α (x), 3. μ Α (uα(x+v)-uαv) μ Α (x) ( resp. μ Α (xαu) μ Α (x) ), 4. ν Α (x y) { ν Α (x) ν Α (y) }, 5. ν Α (y+x y) ν Α (x), 6. ν Α (uα(x+v)-uαv) ν Α (x) ( resp. ν Α (xαu) ν Α (x) ), for all x, y, u, v Μ and α Γ. Example 3.2. Let R be the set of all integers then R is a ring. Take M = Γ = R. Let a, b Μ, α Γ, suppose aαb is the product of a, α, b R. Then M is a Γ- near-ring. Define an IFS Α = < μ Α,ν Α > in R as follows. μ Α (0) = 1 and μ Α (±1) = μ Α (±2) = μ Α (±3) =... = t and ν Α (0) = 0 and ν Α (±1) = ν Α (±2) = ν Α (±3) =... = s, where t [0, 1], s [0, 1] and t + s 1. By routine calculations, clearly A is an intuitionistic fuzzy ideal of a Γ- near-ring R. Theorem 3.3. Α is an ideal of a Γ near-ring M if and only if à = < μ Ã, ν à > where 1 x A 0 x A μ à (x) = ν à (x) = 0 Otherwise 1 Otherwise is an intuitionistic fuzzy left (resp.right) ideal of Μ. Proof ( ) : Let Α be a left (resp.right) ideal of Μ. Let x, y, u, v Μ and α Γ. If x, y Α, then x y Α, y + x y Α and (uα(x +v) -uαv) Α. Therefore

4 64 N. Palaniappan et al μ à (x y) = 1 { μ à (x) μ à (y) },μ à (y + x y) = 1 μ à (x) and μ à (uα(x +v) -uαv) = 1 = μ à (x) (resp. μ à (xαu) = μ à (x) = 1), ν à (x y) = 0 {ν à (x) ν à (y) },ν à (y + x y) = 0 ν à (x) and ν à (uα(x +v) -uαv) = 0 = ν à (x) (resp. ν à (xαu) = ν à (x) = 0). If x Α or y Α then μ à (x) = 0 or μ à (y) = 0. Thus we have μ à (x y) { μ à (x) μ à (y) },μ à (y + x y) μ à (x) and μ à (uα(x +v) -uαv) μ à (x) (resp. μ à (xαu) μ à (x)), ν à (x y) {ν à (x) ν à (y) },ν à (y + x y) ν à (x) and ν à (uα(x +v) -uαv) ν à (x) (resp. ν à (xαu) ν à (x)). Hence à is an intuitionistic fuzzy left (resp.right) ideal of Μ. ( ) : Let à be an intuitionistic fuzzy left (resp.right) ideal of Μ. Let x, y Μ and α Γ. If x, y, u, v Α, then μ à (x y) { μ à (x ) μ à ( y)} = 1 ν à (x y) {ν à (x ) ν à ( y)} = 0 So x y Α. μ à (y + x y) μ à (x ) = 1 ν à (y + x y) ν à (x ) = 0 So (y + x y) Α. Also μ à (uα(x +v) -uαv) μ à (x) = 1 ( resp. μ à (xαu) = μ à (x) = 1) ν à (uα(x +v) -uαv) ν à (x) = 0 ( resp. ν à (xαu) = ν à (x) = 0) So (uα(x +v) -uαv) Α. Hence Α is a left (resp.right) ideal of Μ. Theorem 3.4. Let Α be an intuitionistic fuzzy left (resp.right) ideal of Μ and t [0,1], then I. U(μ Α ; t) is either empty or an ideal of Μ. II. L(ν Α ; t) is either empty or an ideal of Μ. Proof. (i) Let x, y U(μ Α ; t). Then μ Α (x y) { μ Α (x) μ Α (y) } t, Hence x y L(ν A ; t). μ Α (y + x y) μ Α (x) t Hence (y + x y) U(μ Α ; t).

5 A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings 65 Let x Μ, α Γ and u, v U(μ Α ; t). Then μ Α (uα(x +v) -uαv) μ Α (x) t and so (uα(x +v) -uαv) U(μ Α ; t). Hence U(μ Α ; t) is an ideal of Μ. III.Let x, y L(ν A ; t). Then ν A (x - y) {ν A (x) ν A (y)} t. Hence x y L(ν A ; t). ν A (y + x y) ν A (x) t. Hence (y + x y) L(ν A ; t). Let x Μ, α Γ and u, v L(ν Α ; t). Then ν Α (uα(x +v) -uαv) ν Α (x) t and so (uα(x +v) -uαv) L(ν Α ; t). Hence L(ν Α ; t) is an ideal of Μ. Theorem 3.5. Let Ι be the left (resp.right) ideal of Μ. If the intuitionistic fuzzy set A= < μ Α,ν Α > in Μ is defined by p if x I u if x I μ Α (x) = and ν Α (x) = s Otherwise v Otherwise for all x Μ and α Γ, where 0 s < p, 0 v < u and p + u 1, s + v 1, then Α is an intuitionistic fuzzy left (resp.right) ideal of Μ and U(μ Α ; p) = Ι = L(ν Α ; u). Proof. Let x, y Μ and α Γ. If at least one of x and y does not belong to I, then μ Α (x y) s = {μ Α (x) μ Α (y)}, ν Α (x y) v = {ν Α (x) ν Α (y)}. If x, y Ι, then x y I and so μ Α (x y) = p = {μ Α (x) μ Α (y)} and ν Α (x y) = v = {ν Α (x) ν Α (y)}. μ Α (y + x y) s = μ Α (x), ν Α (y + x y) v = ν Α (x). If x, y Ι, then (y + x y) I and so μ Α (y + x y) = p = μ Α (x) and ν Α (y + x y) = v = ν Α (x). If u, v I, x Μ and α Γ, then (uα(x +v) -uαv) I, μ Α (uα(x +v) -uαv) = p = μ Α (x) and ν Α (uα(x +v) -uαv) = u = ν Α (x). (resp. μ Α (xαu) = p = μ Α (x) and ν Α (xαx) = u = ν Α (x) ) If y I, then μ Α (uα(x +v) -uαv) = s = μ Α (x), ν Α (uα(x +v) -uαv) = v = ν Α (x). (resp., μ Α (xαu) = s = μ Α (x) and ν Α (xαu) = v = ν Α (x) ) Therefore Α is an intuitionistic fuzzy left (resp.right) ideal. Definition3.6. Let f be a mapping from a Γ near-ring Μ onto a Γ near-ring N. Let Α

6 66 N. Palaniappan et al be an intuitionistic fuzzy ideal of Μ. Now Α is said to be f invariant if f(x) = f(y) implies μ Α (x) = μ Α (y) and ν Α (x) = ν Α (y). Definition 3.7 [2]. A function f : Μ Ν, where Μ and Ν are Γ near-rings, is said to be a Γ homomorphism if f(a +b) = f(a) + f(b), f(aαb) = f(a)αf(b), for all a, b Μ and α Γ. Definition 3.8 Let f : X Y be a mapping of a Γ near-ring and Α be an intuitionistic fuzzy set of Y. Then the map f -1 (A) is the pre-image of Α under f, if μ f (Α) (x) = μ Α (f(x)) and ν f (Α) (x) = ν Α (f(x)), for all x X. Definition 3.9. Let f be a mapping from a set X to the set Y. If A = <μ A, ν A > and B = < μ B, ν B > are intuitionistic fuzzy subsets in X and Y respectively, then the image of Α under f is the intuitionistic fuzzy set f(α) = < μ f(a), ν f(a) > defined by -1 μ f (A) μ 1 A( x) if f ( y) ϕ, (x) = x f ( y) 0 Otherwise, -1 ν f (A) ν 1 A( x) if f ( y) ϕ, (x) = x f ( y) 1 Otherwise, for all y Y. (b) the pre image of Α under f is the intuitionistic fuzzy set f (B) = < μ f (B), ν f (B) > defined by -1 μ f (B) μ 1 B( y) if f ( x) ϕ, (x) = y f ( x) 0 Otherwise, -1 ν f (B) ν 1 A( y) if f ( x) ϕ, (x) = y f ( x) 1 Otherwise, -1-1 for all x X, where μ f (B) (x) = μ B (f(x)) and ν f (B) (x) = ν B (f(x)). Theorem Let Μ and Ν be two Γ near-rings and θ : Μ Ν be a Γ epimorphism and let Β = < μ Β, ν Β > be an intuitionistic fuzzy set of N. If θ (Β) = < μ θ (Β), ν θ (Β) > is an intuitionistic fuzzy left (resp.right) ideal of Μ, then Β is an intuitionistic fuzzy left (resp.right) ideal of Ν. Proof. Let x, y, u, v Ν and α Γ, then there exists a, b, c, d Μ such that θ(a) = x, θ(b) = y, θ(c) = u, θ(d) = v. It follows that μ Β (x y) = μ Β (θ(a) θ(b)) = μ Β (θ(a b)) = μ θ (Β) (a b) { μ θ (Β) (a) μ θ (Β) (b)} = {μ Β (θ (a)) μ Β (θ(b))}

7 A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings 67 = {μ Β (x) μ Β (y)} ν Β (x y) = ν Β (θ(a) θ(b)) = ν Β (θ(a b)) = ν θ (Β) (a b) {ν θ (Β) (a) ν θ (Β) (b)} = {ν Β (θ(a)) ν Β (θ(b))} = {ν Β (x) ν Β (y)}. μ Β (y + x y) = μ Β (θ(b) + θ(a) θ(b)) = μ Β (θ(b + a b)) = μ θ (Β) (b + a b) μ θ (Β) (a) = μ Β (θ(a)) = μ Β (x) ν Β (y + x y) = ν Β (θ(b) + θ(a) θ(b)) = ν Β (θ(b + a b)) = ν θ (Β) (b + a b) ν θ (Β) (a) = ν Β (θ(a)) = ν Β (x). Also μ Β (uα(x +v) -uαv) = μ Β (θ(c)α(θ(a)+θ(d)) θ(c)αθ(d)) = μ Β (θ(cα(a+d)-cαd)) = μ θ (Β) (cα(a+d)-cαd) μ θ (Β) (a) = μ Β (θ(a)) = μ Β (x) ν Β (uα(x +v) -uαv) = ν Β (θ(c)α(θ(a)+θ(d)) θ(c)αθ(d)) = ν Β (θ(cα(a+d)-cαd)) = ν θ (Β) (cα(a+d)-cαd) ν θ (Β) (a) = ν Β (θ(a)) = μ Β (x) Similarly, μ Β (xαu) μ Β (x) and ν Β (xαu) ν Β (x). Hence B is an intuitionistic fuzzy left (resp. right) ideal of Ν. Theorem An intuitionistic fuzzy set Α= < μ Α, ν Α > in a Γ near-ring M is an intuitionistic fuzzy left (resp. right) ideal if and only if Α < t, s> ={ x Μ μ Α (x) t, ν Α (x) s} is a left (resp.right) ideal of M for μ Α (0) t, ν Α (0) s. Proof.( ) Suppose that Α = < μ Α, ν Α > is an intuitionistic fuzzy left (resp.right) ideal of M and let μ Α (0) t, ν Α (0) s. Let x, y, u, v Α < t, s > and α Γ. Then μ Α (x) t, ν Α (x) s and μ Α (y) t, ν Α (y) s. Hence μ Α (x y) {μ Α (x) μ Α (y) } t, ν Α (x y) {ν Α (x) ν Α (y) } s. μ Α (y + x y) μ Α (x) t, ν Α (y + x y) ν Α (x) s. μ Α (uα(x +v) -uαv) μ Α (x) t and ν Α (uα(x +v) -uαv) ν Α (x) s (resp. μ Α (xαu) μ Α (x) t and ν Α (xαu) ν Α (x) s). Therefore x y Α < t,s>, (y + x y) Α < t,s> and (uα(x +v) -uαv) Α < t,s> for all x, y A < t,s> and α Γ. So Α < t,s> is a left (resp. right) ideal of M. ( ) Suppose that Α < t,s> is a left (resp. right) ideal of M for μ Α (0) t and ν Α (0) s. Let x, y M be such that μ Α (x) = t 1, ν Α (x) = s 1, μ Α (y) = t 2 and ν Α (y) = s 2.

8 68 N. Palaniappan et al Then x and y. We may assume that t 2 t 1 and s 2 s 1 without loss of generality. It follows that so that x, y. Since is an ideal of M, we have x y and (uα(x +v) -uαv) for all α Γ. μ Α (x y) t 1 t 2 = {μ Α Α(x) μ Α (y)}, ν Α (x y) s 1 s 2 = {ν Α Α(x) ν Α (y)}. μ Α (y + x y) t 1 t 2 = μ Α (x), ν Α (y + x y) s 1 s 2 = ν Α (x). μ Α (uα(x +v) -uαv) t 1 t 2 = μ Α (x) and ν Α (uα(x +v) -uαv) s 1 s 2 = ν Α (x). (y + x y) Therefore A is an intuitionistic fuzzy left (resp.right) ideal of M. Theorem If the IFS Α = < μ Α, ν Α > is an intuitionistic fuzzy left (resp.right) ideal of a Γ near-ring Μ, then the sets Μμ Α ={x Μ /μ Α (x) = μ Α (0)} and Μν Α ={x Μ /ν Α (x) = ν Α (0)} are left (resp.right) ideals. Proof. Let x, y, u, v Μμ Α and α Γ. Then μ Α (x) = μ Α (0), μ Α Α(y) = μ Α (0). Since Α is an intuitionistic fuzzy left (resp.right) ideal of a Γ near-rinμ Α (y)} = μ Α (0). M, we get μ Α (x y) {μ Α (x) But μ Α (0) μ Α (x y). So x y Μμ Α. μ Α (y + x y) μ Α (x) = μ Α (0). But μ Α (0) μ Α (y + x y). So (y + x y) Μμ Α. μ Α (uα(x +v) -uαv) μ Α (x) = μ Α (0) ( resp. μ Α (xαu) μ Α (x) = μ Α (0)). Hence (uα(x +v) -uαv) Μμ Α. Therefore Μμ Α is a left (resp.right) ideal of M. Similarly, let x, y, u, v Μν Α and α Γ. Then ν Α (x) = ν Α (0), ν Α (y) = ν Α (0). Since Α is an intuitionistic fuzzy left (resp.right) ideal of a Γ near-rinν Α (y)} = ν Α (0). Μ, ν Α (x y) {ν Α (x) But ν Α (0) ν Α (x y). So x y Μν Α. ν Α (y + x y) ν Α (x) = ν Α (0). But ν Α (0) ν Α (y + x y). So (y + x y) Μν Α. ν Α (uα(x +v) -uαv) ν Α (x) = ν Α (0) ( resp. ν Α (xαu) ν Α (x) = v A (0) ). Hence (uα(x +v) -uαv) Μν Α. Therefore Μν Α is a left (resp.right) ideal of Μ. Definition A Γ near-ring M is said to be regular if for each a M there exists

9 A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings 69 an x M and α, β Γ such that a = aαxβa. Definition Let Α = < μ Α, ν Α > and Β = < μ Β, ν Β > be two intuitionistic fuzzy subsets of a Γ-near-ring Μ. The product ΑΓΒ is defined by μ ΑΓΒ ( μa( u ) μb( v) ) if x ( uγ( v w) uγw), u, v, w, γ (x) = x= ( uγ( v+ w) uγw ) = + Μ Γ 0 otherwise, A( ) B( ) ν ΑΓΒ ν u v ( ( ) ),,,, (x) = x ( u ( v w) u w( ν ) if x = uγ v + w uγw u v w Μ γ Γ = γ + γ ) 1 otherwise. Theorem If Α = < μ Α, ν Α > and Β = < μ Β, ν Β > are two intuitionistic fuzzy left (resp. right) ideals of Μ, then Α Β is an intuitionistic fuzzy left (resp. right) ideal of Μ. If Α is an intuitionistic fuzzy right ideal and Β is an intuitionistic fuzzy left ideal, then ΑΓΒ Α Β. Proof. Suppose Α and Β are intuitionistic fuzzy ideals of Μ and let x, y, z, z' Μ and α Γ. Then μ Α Β (x y) = μ Α (x y) μ Β (x y) [μ Α (x) μ Α (y)] [ μ Β (x) μ Β (y)] = [μ Α (x) μ Β (x)] [ μ Α (y) μ Β (y)] = μ Α Β (x) μ Α Β (y), ν Α Β (x y) = ν Α (x y) ν Β (x y) [ν Α (x) ν Α (y)] [ v Β (x) ν Β ( y)] = [ν Α (x) ν Β (x)] [ ν Α (y) ν Β (y)] = ν Α Β (x) ν Α Β (y). μ Α Β (y + x y) = μ Α (y + x y) μ Β (y + x y) [μ Α (x)] [μ Β (x)] = μ Α Β (x) μ Α Β (y), ν Α Β (y + x y) = ν Α (y + x y) ν Β (y + x y) [ν Α (x)] [v Β (x)] = ν Α Β (x) ν Α Β (y). Since A and B are intuitionistic fuzzy ideals of M, we have μ Α (xα(y+z)-xαz) μ Α (x), ν Α (xα(y+z)-xαz) ν Α (x) and μ Β (yαx) μ Β (x), ν Β (yαx) ν Β (x). Now μ Α Β (xα(y+z)-xαz) = μ Α (xα(y+z)-xαz) μ Β (xα(y+z)-xαz) μ Α (x) μ Β (x) = μ Α Β (x)(resp. μ Α Β (yαx) μ Α Β (x)), ν Α Β (xα(y+z)-xαz) = ν Α (xα(y+z)-xαz) ν Β (xα(y+z)-xαz) ν Α (x) ν Β (x) = ν Α Β (x)(resp. ν Α Β (yαx) ν Α Β (x)). Hence Α Β is an intuitionistic fuzzy left ideal of M.

10 70 N. Palaniappan et al To prove the second part if μ ΑΓΒ (x) = 0 andν ΑΓΒ (x) = 1, there is nothing to show. From the definition of ΑΓΒ, μ Α (x) = μ Α (yα(z+z') yαz') μ Α (z), ν Α (x) = ν Α (yα(z+z') yαz') ν Α (z). Since Α is an intuitionistic fuzzy right ideal and Β is an intuitionistic fuzzy left ideal, we have μ Α (x) = μ Α (zαy) μ Α (z), ν Α (x) = ν Α (zαy) ν Α (z), μ Β (x) = μ Β (zαy) μ Β (z), ν Β (x) = ν Β (zαy) ν Β (z). Hence by Definition 3.5, μ ΑΓΒ (x) = μ Α (x) μ Β (x) = μ Α Β (x) and ν ΑΓΒ (x) = x= α y z x= α y z {μ Α (y) μ Β (z)} {ν Α (y) ν Β (z)} ν Α (x) ν Β (x) = ν Α Β (x) which means that ΑΓΒ Α Β. Theorem A Γ near-ring M is regular if and only if for each intuitionistic fuzzy right ideal A and each intuitionistic fuzzy left ideal B of M, AΓB = A B. Proof. ( ) Suppose R is regular. AΓB A B. Thus it is sufficient to show that A B AΓB. Let a M and α, β Γ. Then, by hypothesis, there exists an x M such that a = aαxβa. Thus μ A (a) = μ A (aαxβa) μ A (aαx) μ A (a), ν A (a) = ν A (aαxβa) ν A (aαx) ν A (a). So μ A (aαx) = μ A (a) and ν A (aαx) = ν A (a). On the other hand, μ AΓB (a) = a= aαxβa [μ A (aαx) μ B (a)] [μ A (a) μ B (a)] = μ A B (a) and ν AΓB (a) = a= aαxβa [ν A (aαx) ν B (a)] [ν A (a) ν B (a)] = ν A B (a). Thus A B AΓB. Hence AΓB = A B. References [1] Atanassov. K., 1986, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1), pp [2] Booth. G.L., 1988, A note on Γ -near-rings Stud. Sci. Math. Hung. 23, pp

11 A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings 71 [3] Booth. G.L. 1987, Jacobson radicals of Γ -near-rings Proceedings of the Hobart Conference, Longman Sci. & technical, pp [4] Jun. Y.B., Sapanci. M. and Ozturk. M.A., 1998, Fuzzy ideals in Gamma near rings,tr. J. of Mathematics 22, pp [5] Jun. Y.B., Kim. K. H. and Ozturk. M. A., 2001, On fuzzy ideals of gamma near-rings, J.Fuzzy Math. 9(1), [6] Jun. Y. B., Kim. K. H. and Ozturk. M. A., 2001, Fuzzy Maximal ideals in gamma near-rings, Tr. J. of Mathematics 25, pp [7] Liu. W., 1982,Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8, pp [8] Palaniappan. N., Veerappan. P. S., Ezhilmaran. D.,2009, Some properties of intuitionistic fuzzy ideals in Γ-near-rings, Journal of Indian Acad. Maths, 31(2), pp [9] Satyanarayana Bh., 1984, Contributions to near-ring theory, Doctoral Thesis, Nagarjuna Univ. [10] Zadeh. L.A..1965, Fuzzy sets, Information and control, 8, pp

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHARACTERIZATION OF BIPOLAR FUZZY IDEALS IN ORDERED GAMMA SEMIGROUPS

CHARACTERIZATION OF BIPOLAR FUZZY IDEALS IN ORDERED GAMMA SEMIGROUPS JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS / JOURNAL Vol. 8(2018), 141-156 DOI: 10.7251/JIMVI1801141C Former BULLETIN OF

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Fuzzy Soft Rings on Fuzzy Lattices

Fuzzy Soft Rings on Fuzzy Lattices International Journal of Computational Science and Mathematics. ISSN 0974-389 Volume 3, Number 2 (20), pp. 4-59 International Research Publication House http://www.irphouse.com Fuzzy Soft Rings on Fuzzy

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

On Annihilator of Fuzzy Subsets of Modules

On Annihilator of Fuzzy Subsets of Modules International Journal of Algebra, Vol. 3, 2009, no. 10, 483-488 On Annihilator of Fuzzy Subsets of Modules Helen K. Saikia 1 and Mrinal C. Kalita 2 1 Department of Mathematics, Gauhati university, Guwahati-781014,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SEMI DERIVATIONS OF PRIME GAMMA RINGS

SEMI DERIVATIONS OF PRIME GAMMA RINGS GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) xx (2011) 31 (2011) 65-70 SEMI DERIVATIONS OF PRIME GAMMA RINGS Kalyan Kumar Dey 1 and Akhil Chandra Paul 2 1,2 Department of Mathematics Rajshahi University,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

The operators over the generalized intuitionistic fuzzy sets

The operators over the generalized intuitionistic fuzzy sets Int. J. Nonlinear Anal. Appl. 8 (2017) No. 1, 11-21 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.11099.1542 The operators over the generalized intuitionistic fuzzy sets Ezzatallah

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Young Bae Jun Madad Khan Florentin Smarandache Saima Anis. Fuzzy and Neutrosophic Sets in Semigroups

Young Bae Jun Madad Khan Florentin Smarandache Saima Anis. Fuzzy and Neutrosophic Sets in Semigroups Young Bae Jun Madad Khan Florentin Smarandache Saima Anis Fuzzy and Neutrosophic Sets in Semigroups Young Bae Jun, Madad Khan, Florentin Smarandache, Saima Anis Fuzzy and Neutrosophic Sets in Semigroups

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Commun. Korean Math. Soc. 25 (2010), No. 3, pp. 457 475 DOI 10.4134/CKMS.2010.25.3.457 ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Ahmed Abd El-Kader Ramadan, Salah El-Deen Abbas, and Ahmed Aref

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution

Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution Ali Kareem Kadhim School of Mathematical Sciences Universiti Sains Malaysia, 11800 USM Penang, Malaysia Hajar Sulaiman School of Mathematical

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

On Intuitionistic Fuzzy LI -ideals in Lattice Implication Algebras

On Intuitionistic Fuzzy LI -ideals in Lattice Implication Algebras Journal of Mathematical Research with Applications Jul., 2015, Vol. 35, No. 4, pp. 355 367 DOI:10.3770/j.issn:2095-2651.2015.04.001 Http://jmre.dlut.edu.cn On Intuitionistic Fuzzy LI -ideals in Lattice

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

ON INTUITIONISTIC FUZZY SUBSPACES

ON INTUITIONISTIC FUZZY SUBSPACES Commun. Korean Math. Soc. 24 (2009), No. 3, pp. 433 450 DOI 10.4134/CKMS.2009.24.3.433 ON INTUITIONISTIC FUZZY SUBSPACES Ahmed Abd El-Kader Ramadan and Ahmed Aref Abd El-Latif Abstract. We introduce a

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

MINIMAL INTUITIONISTIC GENERAL L-FUZZY AUTOMATA

MINIMAL INTUITIONISTIC GENERAL L-FUZZY AUTOMATA italian journal of pure applied mathematics n. 35 2015 (155 186) 155 MINIMAL INTUITIONISTIC GENERAL L-UZZY AUTOMATA M. Shamsizadeh M.M. Zahedi Department of Mathematics Kerman Graduate University of Advanced

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites ao DOI: 10.2478/s12175-012-0080-3 Math. Slovaca 63 (2013), No. 1, 41 52 SEMIGROUP ACTIONS ON ORDERED GROUPOIDS Niovi Kehayopulu* Michael Tsingelis** (Communicated by Miroslav Ploščica ) ABSTRACT. In this

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα