ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ
|
|
- Ευγένεια Κακριδής
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ 4 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑ : ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ : 4 / 5 / 01 ΕΞΕΤΑΣΤΕΣ : ΒΟΥΛΓΑΡΕΛΗΣ Α. ΠΑΝΑΓΙΩΤΙΔΗΣ Β. ΔΙΟΛΑΤΖΗΣ Θ. ΘΕΜΑ Α 1. Να αποδείξετε ότι το εμβαδόν τραπεζίου ισούται με το γινόμενο του ημιαθροίσματος των βάσεών του επί το ύψος του. (10 μονάδες). Πότε ένα πολύγωνο λέγεται κανονικό; (5 μονάδες) 3. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α) Το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Ισχύει. β) Αν δύο τρίγωνα έχουν ίσα εμβαδά, τότε τα τρίγωνα αυτά είναι ίσα. γ) Η γωνία ενός κανονικού ν-γώνου και η κεντρική του γωνία είναι συμπληρωματικές. δ) Η πλευρά ενός τετραγώνου εγγεγραμμένου σε κύκλο, ισούται με την ακτίνα του περιγεγραμμένου κύκλου. ε) Σε κύκλο (Ο, R), το εμβαδόν Ε κυκλικού τομέα μ ο δίνεται από τον τύπο (5χ=10 μονάδες) E πr μ ΘΕΜΑ Β Σε ορθογώνιο 90 οι δύο κάθετες πλευρές του είναι 3 και 4. Να υπολογιστούν: 1. οι προβολές των κάθετων πλευρών στην υποτείνουσα. τις διαμέσους και. 3. το εμβαδόν του τριγώνου. 4. τις ακτίνες του εγγεγραμμένου και του περιγεγραμμένου κύκλου. ( μονάδες)
2 ΘΕΜΑ Γ Κανονικού πολυγώνου, η ακτίνα R είναι 6 cm και το απόστημά του α είναι 3 cm. Να υπολογιστούν: 1. Το πλήθος ν των πλευρών του. Αν ν=4 να βρεθούν:. η κεντρική του γωνία και η γωνία του πολυγώνου 3. Το εμβαδόν του κανονικού πολυγώνου. 4. Το εμβαδόν του εγγεγραμμένου κύκλου στο κανονικό πολύγωνο ( μονάδες) ΘΕΜΑ Δ Με διάμετρο την πλευρά ΒΓ = α ισοπλεύρου τριγώνου ΑΒΓ γράφουμε ημικύκλιο προς το ίδιο μέρος που τέμνει τις πλευρές του τριγώνου στα σημεία Δ και Ε. α) Να δείξετε ότι τα τρίγωνο ΟΒΔ και ΟΕΓ είναι ισόπλευρα. β) Nα υπολογισθεί το εμβαδόν του κυκλικού τομέα (ΟΔΒ) συναρτήσει του α. γ) Να υπολογισθούν τα εμβαδά των δύο κυκλικών τμημάτων που βρίσκονται έξω από το τρίγωνο συναρτήσει του α. δ) Να βρεθεί το εμβαδόν του μεικτόγραμμου τριγώνου ΑΔΕ ( μονάδες) Ο Δ/ΝΤΗΣ ΟΙ ΕΞΕΤΑΣΤΕΣ Σ. ΑΝΔΡΕΑΔΕΛΛΗΣ ΒΟΥΛΓΑΡΕΛΗΣ Α. ΠΑΝΑΓΙΩΤΙΔΗΣ Β. ΔΙΟΛΑΤΖΗΣ Θ.
3 ΘΔΜΑ Α ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ B ΣΑΞΖ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΓΔΩΜΔΣΡΗΑ ΠΔΜΠΣΖ 7 ΗΟΤΝΗΟΤ Να αποδείξεηε όηι ζε κάθε οπθογώνιο ηπίγυνο ηο ηεηπάγυνο ηος ύτοςρ πος ανηιζηοισεί ζηην ςποηείνοςζα ιζούηαι με ηο γινόμενο ηυν πποβολών ηυν κάθεηυν πλεςπών ηος ζηην ςποηείνοςζα.. Πόηε ένα κςπηό πολύγυνο λέγεηαι κανονικό; Μονάδες 10 Μονάδες 5 3. Να σαπακηηπίζεηε ηιρ πποηάζειρ πος ακολοςθούν γπάθονηαρ ζηην κόλλα ζαρ ηη λέξη Σωστό ή Λάθος δίπλα ζηο γπάμμα πος ανηιζηοισεί ζε κάθε ππόηαζη. α. Αν α, β, γ πλεςπέρ ηπιγώνος ΑΒΓ με α < β + γ ηόηε β. Σε ένα κανονικό ν γυνο εγγεγπαμμένο ζε κύκλο ακηίναρ R ιζσύει: α ν +λ ν = R, όπος λ ν η πλεςπά και α ν ηο απόζηημα ηος. γ. Το μήκορ ηόξος μ 0 ενόρ κύκλος (Ο, R) ιζούηαι με: R. 180 δ. Η πλεςπά ενόρ κανονικού ηεηπαγώνος εγγεγπαμμένος ζε κύκλο (Ο, R) ιζούηαι με 4 R. ε. Έναρ ηύπορ για ηον ςπολογιζμό ηος εμβαδού ηπιγώνος ΑΒΓ είναι και ο Δ = η π, όπος π η ακηίνα ηος εγγεγπαμμένος κύκλος ηος ηπιγώνος και η, η ημιπεπίμεηπορ ηος. Μονάδες 5x=10 ΘΔΜΑ Β Έζηυ ηπίγυνο ΑΒΓ με πλεςπέρ α = 6, β = 14, γ = Να βπεθεί ηο είδορ ηος ηπιγώνος υρ ππορ ηιρ γυνίερ ηος.. Να αποδεισθεί όηι ηο εμβαδόν ηος ηπιγώνος είναι ( ) Να ςπολογιζηεί ηο εμβαδόν ηος εγγεγπαμμένος κύκλος (Ι, π) ηος ηπιγώνος ΑΒΓ. 4. Να ςπολογιζηεί ηο μήκορ ηηρ διαμέζος μ β. Μονάδες =5
4 ΘΔΜΑ Γ Σε κύκλο (Ο, R) πποεκηείνοςμε ηην διάμεηπο ΑΒ καηά ημήμα Δ Μ ΒΓ = R και καηά ημήμα ΑΓ = R. Φέπνοςμε ηέμνοςζα ΓΔΜ ηέηοια Γ Α Ο Β Γ ώζηε R Να αποδείξεηε όηι R 3.. Να αποδείξεηε όηι ηο ΓΜ είναι εθαπηόμενο ημήμα. 3. Να ςπολογίζεηε ηην ΓΔ ζε ζςνάπηηζη ηος R. 4. Να ςπολογίζεηε ηο εμβαδόν ηος γπαμμοζκιαζμένος μικηόγπαμμος ηπιγώνος ΜΒΓ. Μονάδες =5 ΘΔΜΑ Γ Σηο διπλανό ζσήμα δίνονηαι: Α 3,, 3 4 Μ μέζο ηηρ ΑΓ και ΜΗ // ΑΒ. Μ Να αποδείξεηε όηι: 1. (ΗΜΔ) = (ΗΔΓ). Γ Δ. (ΗΜΑ)= (ΑΒΗ). 3. ( ) 1. ( ) 3 Β Η Γ Μονάδες 8+8+9=5 Ο ΓΗΔΤΘΤΝΣΖ ΟΗ ΔΗΖΓΖΣΔ
5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ B ΤΑΞΗ ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΡΟ ΟΥ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΤΡΙΤΗ 19 IOYN ΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΓΕ ΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΥΟ () ( ) Ονοµατεπώνυµο: Ονοµατεπώνυµο:.... Α.Κ. Α.Κ.. ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ Α.Κ. ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του, είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην υποτείνουσα. Μονάδες 10 Α. Να διατυπώσετε το αντίστροφο του Πυθαγορείου Θεωρήµατος. Μονάδες 5 Α3. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν σε ένα τρίγωνο ΑΒΓ ισχύει β >α +γ τότε το τρίγωνο είναι αµβλυγώνιο. β. Η δύναµη ενός σηµείου Ρ ως προς κύκλο (O,R) δίνεται από τον τύπο Ρ (O,R) = OΡ + R. α β γ γ. Το εµβαδόν τριγώνου ΑΒΓ, δίνεται από τον τύπο (ΑΒΓ) =, 4ρ όπου ρ η ακτίνα του εγγεγραµµένου κύκλου του τριγώνου. δ. Για την κεντρική γωνία ω ν κάθε κανονικού πολυγώνου µε ν πλευρές ισχύει o 360 ω =. ν ν ε. Σε κάθε κανονικό πολύγωνο µε ν πλευρές, εγγεγραµµένο σε κύκλο αν ακτίνας R ισχύει λ ν + = R. 4 Μονάδες 5x=10 ΘΕΜΑ Β α 3 ίνεται τρίγωνο ΑΒΓ µε α= γ και µ α=. Β1. Να δείξετε ότι β= γ 7
6 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ B ΤΑΞΗ Β. Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. γ 7 Β3. Αν Β το ύψος του τριγώνου, να δείξετε ότι: Α = 7 Β4. Βρείτε το λόγο των εµβαδών: ( Β Μ ), όπου Μ το µέσο της πλευράς β. ( ΑΒΓ ) Μονάδες =5 ΘΕΜΑ Γ o Θεωρούµε ορθογώνιο τρίγωνο ΑΒΓ, ( Α = 90 ) µε ΒΓ =0 και τον κύκλο που διέρχεται από τα Α, Γ και τέµνει τις προεκτάσεις των ΒΓ και ΑΒ στα σηµεία και Ζ αντίστοιχα ώστε Β = 1,8, ΑΒ>ΒΖ και ΑΖ= 15. Γ1. Να αποδείξετε ότι ΑΒ =1. Γ. Να υπολογίσετε το µήκος της ΑΓ. Γ3. Αν Κ το µέσο της ΒΓ και Η το µέσο της ΚΓ, να αποδείξετε ότι 3(ΑΚΓ)=8( ΒΗΖ). Μονάδες 9+7+9=5 ΘΕΜΑ ίνεται κύκλος (K,5),η διάµετρος του ΑΒ και ένα σηµείο του Γ διαφορετικό των Α και Β. Η εφαπτόµενη του κύκλου στο Γ τέµνει,τις κάθετες στα άκρα Α και Β της διαµέτρου ΑΒ στα σηµεία Ε και Ζ αντίστοιχα. Έστω Μ το µέσο της ΕΖ. 1. Να αποδείξετε ότι το τρίγωνο ΕΚΖ είναι ορθογώνιο.. Να αποδείξετε ότι : ΑΕ ΒΖ=5. 3. Να υπολογίσετε την τιµή της παράστασης: Ε Ζ. ( Κ,R) ( Κ,R) 4. Να αποδείξετε ότι το εµβαδόν του τραπεζίου ( ZE) K ΑΒ =ΑΒ Μ. Ζ Μ Γ Ε Α K Β Μονάδες =5 Ο ΙΕΥΘΥΝΤΗΣ ΟΙ ΕΙΣΗΓΗΤΕΣ ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ
7 3º Γενικό Λύκειο Σερρών Περίοδος: Μαΐου Ιουνίου 01 ΕΙΣΗΓΗΤΕΣ : Τάξη : ευτέρα (Β) Μάθηµα : Γεωµετρία Θ Ε Μ Α Τ Α Γραπτών προαγωγικών εξετάσεων περιόδου Μαΐου Ιουνίου 01 των µαθητών της B τάξης στο µάθηµα της Γεωµετρίας ΘΕΜΑ 1 0 Α. Nα αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο το άθροισµα των τετραγώνων των κάθετων πλευρών του είναι ίσο µε το τετράγωνο της υποτείνουσας. Μον.10 Β. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) κάθε µια από τις παρακάτω προτάσεις: 1. Αν σε τρίγωνο ισχύει ότι α < β + γ τότε A > Το εµβαδόν τραπεζίου δίνεται από τον τύπο Ε = (Β + β) υ. 3. Για το εµβαδόν τριγώνου ισχύει και ο τύπος Ε = 1 βγηµα. 4. Το µήκος κύκλου δίνεται από τον τύπο L = πr. 5. Αν φ ν η γωνία κανονικού ν-γώνου και ω ν η κεντρική γωνία του τότε φ ν = ω ν. Μον.15 ΘΕΜΑ 0 ίνονται δύο οµόκεντροι κύκλοι (Ο, R) και (Ο, ρ) µε R > ρ. Αν η διάµετρος ΑΒ του κύκλου (Ο, R) τέµνει τον (Ο, ρ) στα σηµεία Γ και και Μ τυχαίο σηµείο του κύκλου (Ο, R) διαφορετικό των Α, Β ενώ Ν τυχαίο σηµείο του (Ο, ρ) διαφορετικό των Γ, να δείξετε ότι: 1. ΝΑ + ΝΒ = ρ + R. Μον.15. MΓ + Μ = ΝΑ + ΝΒ. Μον.10 ΘΕΜΑ 3 0 ίνεται κύκλος (Ο, R) και σηµείο Ρ έξω από αυτόν. Από το Ρ φέρνουµε την τέµνουσα ΡΑΒ έτσι ώστε ΡΑ =ΑΒ και την εφαπτοµένη ΡΚ = R 6. Να δείξετε ότι: 1. ΑΒ = λ 3. Μον.1. Να βρείτε τον λόγο των εµβαδών των τριγώνων ΡΒΚ και ΡΑΚ. Μον.13 ΘΕΜΑ 4 0. ίνεται το τετράγωνο ΑΒΓ µε πλευρά α = 8 cm. Φέρνουµε τις διαγωνίους ΑΓ και Β που τέµνονται στο Ο. Με κέντρο το Α και ακτίνα το ΑΟ κάνουµε τεταρτοκύκλιο µέσα στο τετράγωνο που τέµνει τις πλευρές ΑΒ και Α στα σηµεία Κ και Λ αντίστοιχα. 1. Να βρείτε το εµβαδόν του τετραγώνου ΑΒΓ. Μον. 5. Το µήκος του ΑΟ. Μον Το άθροισµα των εµβαδών των µικτόγραµµων τριγώνων ΚΟΒ και ΛΟ. Μον.10 ΣΕΡΡΕΣ : 0 ΙΟΥΝΙΟΥ 01 Ο /ΝΤΗΣ ΟΙ ΚΑΘΗΓΗΤΕΣ
8 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟ ΟΥ ΜΑЇΟΥ - ΙΟΥΝΙΟΥ 01 1 ο Θέµα Α) Να αποδείξετε ότι η πλευρά λ 6 και το απόστηµα α 6 ενός κανονικού εξαγώνου που είναι εγγεγραµµένο σε κύκλο ακτίνας R, δίνονται από τους τύπους λ6 = R και α6 R 3 =. (Μονάδες 15) Β) Να γράψετε στην κόλλα απαντήσεων τον αριθµό κάθε µίας από τις παρακάτω προτάσεις και δίπλα τον χαρακτηρισµό ΣΩΣΤΟ αν η πρόταση είναι σωστή, ή ΛΑΘΟΣ αν η πρόταση είναι λάθος: 1. Αν σε τρίγωνο ΑΒΓ ισχύει α > β + γ, τότε το τρίγωνο είναι αµβλυγώνιο.. Αν δύο τρίγωνα είναι όµοια τότε ο λόγος των εµβαδών τους είναι ίσος µε τον λόγο οµοιότητάς τους. 3. Αν η µ α είναι η διάµεσος τριγώνου ΑΒΓ που αντιστοιχεί στην πλευρά του α, β + γ α τότε: µ α = Το εµβαδό τριγώνου ΑΒΓ είναι ίσο µε Ε= τρ, όπου ρ η ακτίνα του εγγεγραµµένου του κύκλου. 5. Το εµβαδό κυκλικού τοµέα µ κύκλου ακτίνας R, είναι ίσο µε πr µ 360. (Μονάδες 10) ο Θέµα ίνεται ένα ορθογώνιο τραπέζιο ΑΒΓ µε τα εξής στοιχεία: ΑΒ / /Γ, ΑΒ< Γ, Αˆ ˆ = = 90, ΑΒ= 4, Α = 3 και ΒΓ= 5. Να υπολογίσετε: Α) την προβολή της ΒΓ πάνω στην Γ, (Μονάδες 8) Β) το εµβαδό του τραπεζίου ΑΒΓ, (Μονάδες 9) Γ) το εµβαδό του τριγώνου ΒΓ. (Μονάδες 8)
9 3 ο Θέµα ίνεται κύκλος ( Ο,R ) και µία χορδή του AB= R. Να υπολογίσετε: Α) Την κυρτή επίκεντρη γωνία ˆω = AOB. (Μονάδες 6) Β) Το µήκος του κυρτού τόξου AB, συναρτήσει της ακτίνας R του κύκλου. (Μονάδες 6) Γ) Το εµβαδό του κυκλικού τοµέα OAB µε αντίστοιχο ( ) τόξο το κυρτό τόξο AB, συναρτήσει της ακτίνας R του κύκλου. (Μονάδες 6) ε1 ) Τον λόγο των εµβαδών ε 1 και ε των κυκλικών ε τµηµάτων στα οποία διαιρείται ο κυκλικός δίσκος ( Ο,R ) από τη χορδή ΑΒ. (Μονάδες 7) 4 ο Θέµα Έστω τρίγωνο ΑΒΓ µε πλευρές α= 13cm, β= 8cm και γ= 7cm. Α) Να βρείτε το είδος του τριγώνου ως προς τις πλευρές και ως προς τις γωνίες του. (Μονάδες 6) Β) Να υπολογίσετε τη γωνία του ˆΑ. (Μονάδες 7) Γ) Να αποδείξετε ότι το εµβαδόν του είναι ίσο µε 14 3 cm. (Μονάδες 6) ) Να υπολογίσετε την ακτίνα ρ του εγγεγραµµένου κύκλου του τριγώνου. (Μονάδες 6) ίνονται: συν30 = ηµ60 = ηµ10 = 3, 1 ηµ30 = συν60 =, συν10 1 =. Οδηγίες: 1. Να απαντήσετε σε όλα τα θέµατα.. Όλες οι απαντήσεις να γραφούν στην κόλλα αναφοράς και όχι στην κόλλα των θεµάτων. 3. Να γράψετε το ονοµατεπώνυµό σας και στο αντίγραφο των θεµάτων. Ο Εισηγητής Νικολόπουλος Αθανάσιος
10 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΓΙΑΣΟΥ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 01 ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι το εμβαδόν τραπεζίου ισούται με το γινόμενο του ημιαθροίσματος των βάσεών του επί το ύψος του. Δηλαδή, όπου Β και β οι βάσεις του τραπεζίου και υ το ύψος του. Α. Να γράψετε στην κόλλα σας τον αριθμό κάθε ερωτήματος και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μονάδες 7 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο ( =90 ) και το ΑΔ είναι ύψος. (i) Για την πλευρά ΒΓ ισχύει: Α. Β. Γ. Δ. (ii) Για την πλευρά ΔΓ ισχύει: Α. Β. Γ. Δ. (iii) Για την πλευρά ΑΔ ισχύει: Α. Β. Γ. Δ. (iv) Για την πλευρά ΑΒ ισχύει: Α. Β. Γ. Δ. Μονάδες 8 Α3. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας την κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Αν σε τρίγωνο ΑΒΓ με πλευρές α, β, γ ισχύει, τότε το τρίγωνο ΑΒΓ είναι πάντα οξυγώνιο. β. Το εμβαδόνe κυκλικού δίσκου ακτίνας R, είναι γ. Σε κάθε τρίγωνο ΑΒΓ ισχύει η σχέση δ. Η πλευρά ενός κανονικού εξαγώνου εγγεγραμμένου σε κύκλο (O,R) είναι ε. Το εμβαδόν Ε ενός τριγώνου ΑΒΓ με μήκη πλευρών α, β, γ είναι, όπου R η ακτίνα του περιγεγραμμένου κύκλου του τριγώνου. Μονάδες 10
11 ΘΕΜΑ Β Δίνεται τρίγωνο ΑΒΓ με πλευρές α = 7, β = 3 και γ = 6. Β1. Να βρείτε το είδος του τριγώνου ως προς τις γωνίες του. Μονάδες 8 Β. Να υπολογίσετε το μήκος της διαμέσου ΑΜ. Μονάδες 9 Β3. Να υπολογίσετε το μήκος ΔΜ της προβολής της ΑΜ στην ΒΓ. Μονάδες 8 ΘΕΜΑ Γ Δίνεται τετράγωνο ΑΒΓΔ πλευράς ΑΒ = 6 και Ε σημείο της πλευράς ΑΒ τέτοιο ώστε: (ΑΒΓΔ) = 3 (ΔΑΕ). Γ1. Να αποδείξετε ότι ΑΕ = 4. Μονάδες 6 Γ. Να αποδείξετε ότι Μονάδες 6 Γ3. Να βρείτε το εμβαδόν του τριγώνου ΔΕΓ. Μονάδες 6 Γ4. Να βρείτε την απόσταση του σημείου Δ από την ΕΓ. Μονάδες 7 ΘΕΜΑ Δ Σε κύκλο ( Ο, R) δίνονται τα διαδοχικά σημεία Α,Β,Γ,Δ τέτοια ώστε: ΑΒ =, ΒΓ =, ΓΔ = R και ΔΑ = R. Οι προεκτάσεις των ΓΔ και ΒΑ τέμνονται στο σημείο Κ. Δ1. Να αποδείξετε ότι η ΒΔ είναι διάμετρος του κύκλου. Μονάδες 6 Δ. Να υπολογίσετε, ως συνάρτηση του R: α. Το εμβαδόν του τετραπλεύρου ΑΒΓΔ. Μονάδες 6 β. Το μήκος του τμήματος ΓΚ. Μονάδες 8 γ. Το εμβαδόν του τριγώνου ΒΓΚ. Μονάδες 5 Να απαντήσετε στην κόλλα σας σε όλα τα θέματα. Τα σχήματα που θα γίνουν στην κόλλα σας μπορείτε να τα κάνετε και με μολύβι. Ο ΔΙΕΥΘΥΝΤΗΣ Ο ΕΙΣΗΓΗΤΗΣ
12 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ B ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΜΦΙΛΩΝ ΤΕΤΑΡΤΗ 0 ΙΟΥΝΙΟΥ 01 EΞETΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι το άθροισμα των τετραγώνων δύο πλευρών ενός τριγώνου ΑΒΓ ισούται με το διπλάσιο του τετραγώνου της διαμέσου που περιέχεται μεταξύ των πλευρών αυτών, αυξημένο κατά το μισό του τετραγώνου της τρίτης πλευράς. ΜΟΝΑΔΕΣ 7 Α. Να συμπληρώσετε τον παρακάτω πίνακα: Κανονικό πολύγωνο Τετράγωνο Εξάγωνο Πλευρά λ ν Απόστημα α ν Κεντρική γωνία ω ν Γωνία φ ν ΜΟΝΑΔΕΣ 8 Α3. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ) i. Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην υποτείνουσα. ii. Αν από ένα εξωτερικό σημείο Ρ κύκλου (Ο,R) φέρουμε το εφαπτόμενο τμήμα ΡΕ και μια ευθεία που τέμνει τον κύκλο στα σημεία Α, Β τότε ισχύει: ΡΕ = ΡΑ ΑΒ. iii. iv. Αν δύο τρίγωνα είναι όμοια τότε ο λόγος των εμβαδών τους ισούται με το λόγο ομοιότητας τους. Ένα πολύγωνο λέγεται κανονικό αν έχει όλες τις πλευρές του ίσες. v. Σε κάθε τρίγωνο ΑΒΓ ισχύει η σχέση: α = β +γ βγ.συνα. ΜΟΝΑΔΕΣ 10
13 ΘΕΜΑ Β Δίνεται τρίγωνο ΑΒΓ με α = 5, β = 7 και γ = 3 Β1. Να δείξετε ότι το τρίγωνο ΑΒΓ είναι αμβλυγώνιο. ΜΟΝΑΔΕΣ 4 Β. Αν από το Γ φέρουμε την ΓΔ κάθετη στην ΑΒ, να δείξετε ότι ΒΔ = 5/. ΜΟΝΑΔΕΣ 5 Β3. Να δείξετε ότι η γωνία = ΜΟΝΑΔΕΣ 6 Β4. Να υπολογίσετε το μήκος της διαμέσου μ α. ΜΟΝΑΔΕΣ 5 Β5. Να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ. ΜΟΝΑΔΕΣ 5 ΘΕΜΑ Γ Δίνεται το τραπέζιο ΑΒΓΔ για το οποίο ισχύουν: = = 90 0 και ΔΓ = ΑΒ = ΑΔ = 8. Γ1. Να βρείτε το εμβαδόν του τραπεζίου ΑΒΓΔ. ΜΟΝΑΔΕΣ 5 Γ. Με κέντρο το Α και ακτίνα ΑΒ γράφουμε κύκλο. Να βρείτε το εμβαδόν της γραμμοσκιασμένης επιφάνειας. ΜΟΝΑΔΕΣ 8 Γ3. Αν Κ είναι το μέσον της ΒΓ να δείξετε ότι (ΒΔΚ) = (ΑΒΓ). ΜΟΝΑΔΕΣ 1
14 ΘΕΜΑ Δ Δίνεται το διπλανό ημικύκλιο κέντρου Ο και ακτίνας R=10 στο οποίο το μήκος του τόξου ΑΒ είναι 0 3. Δ1. Να δείξετε ότι η γωνία = ΜΟΝΑΔΕΣ 8 Δ. Να υπολογίσετε τις χορδές ΑΒ και ΒΓ. ΜΟΝΑΔΕΣ 8 Δ3. Αν με κέντρο το Α και ακτίνα ΑΒ γράψουμε κύκλο που τέμνει την ΑΓ στο σημείο Ε, να υπολογίσετε το εμβαδόν του γραμμοσκιασμένου χωρίου ΒΕΓ. ΜΟΝΑΔΕΣ 9 ΚΑΛΗ ΕΠΙΤΥΧΙΑ Ο ΔΙΕΥΘΥΝΤΗΣ ΟΙ ΕΙΣΗΓΗΤΕΣ Ν. ΚΕΦΑΛΑΣ Ν. ΒΑΡΟΥΤΙΔΟΥ
Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα
α <β +γ τότε είναι οξυγώνιο.
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις
ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά
ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) Α1. Να αποδείξετε ότι,
Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε
1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται
Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
2ηέκδοση 20Ιανουαρίου2015
ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην
1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688
1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του
Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην
Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015
Τράπεζα Θεμάτων 8 -//0 ο Θέμα Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης Θεωρήματα διχοτόμων..8.δίνεται τρίγωνο ΑΒΓ με ΑΔ διχοτόμο της γωνίας και Φέρουμε τις διχοτόμους
µ =. µονάδες 12+13=25
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β 1 ΓΕΝΙΚΗ ΑΣΚΗΣΗ 1. ίνεται τρίγωνο ΑΒΓ µε α=7, β=5, γ=4. Να βρείτε: 1. το είδος του τριγώνου. την προβολή της β πάνω στη γ 3. το µήκος της διαµέσου ΒΜ 4. την προβολή
ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα
Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
A >1. ΘΕΜΑ 1ο. α 2 <β 2 +γ 2, αν και µόνον αν
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 13 ΣΕΠΤΕΜΒΡΙΟΥ 004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Να αποδείξετε ότι
ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ
ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι
ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο
1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.
Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας
Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα
Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ
Τάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις
Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας και αντίστροφα.
ΘΕΜΑΤΑ. Μονάδες 8. Δίνεται κύκλος (Ο, R) και σημείο Ρ εκτός αυτού. Φέρουμε την εφαπτομένη ΡΑ ώστε
ΕΛ ΕΩΜΕΤΡΙΑ Β 1 ΕΛ ΕΩΜΕΤΡΙΑ Β 93 Α. Να αποδείξετε ότι: Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην
Ασκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην
Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ
ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ
1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 06-7 Επειδή το ζητήσατε κορίτσια μου: Α. ΘΕΩΡΙΑ Τα κεφάλαια: ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου 9 ο Μετρικές σχέσεις, 0 ο Εμβαδά, ο Μέτρηση Κύκλου, την διδαχθείσα ύλη Β.
Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ
ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί
ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ
Επαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :
ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2018 2019 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ 2019 ΜΑΘΗΜΑ : Μαθηματικά ΤΑΞΗ : Γ ΗΜΕΡΟΜΗΝΙΑ : 5 / 6 / 2019 ΧΡΟΝΟΣ : 2 Ώρες Βαθμός : Ολογράφως
β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε
ΘΕΜΑ 4 Στο διπλανό τραπέζιο ΑΒΓΔ η ευθεία ΜΛ είναι παράλληλη στις βάσεις ΑΒ και ΔΓ του τραπεζίου και ισχύει ότι = α) Να αποδείξετε ότι = και = (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 34 1ο ΣΧΕ ΙΟ ιδακτική ενότητα: Πυθαγόρειο Θεώρηµα ΘΕΜΑ 1ο Α. (1,5 µονάδες) Αν στο διπλανό σχήµα το Α είναι ύψος του τυχαίου τριγώνου ΑΒΓ και Ε ΑΒ,
ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην
Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)
Αναλογίες 2_20863. Στο παρακάτω σχήμα είναι 12 και 8. α) Να υπολογίσετε τους λόγους και. (Μονάδες 6) β) Να υπολογίσετε το ΑΓ συναρτήσει του κ. (Μονάδες 5) γ) Να υπολογίσετε τον λόγο. Σε τι λόγο λ διαιρείται
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο
ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ
ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ Θέμα 1o Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το άθροισμα των τετραγώνων των καθέτων πλευρών του είναι
ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι
ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..
ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»
1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.
2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των προαγωγικών εξετάσεων
ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ (Τελευταία ενηµέρωση: Νοέµβριος 2016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Αναλογίες 2 1.1 Το ϑεώρηµα του Θαλή.......................... 2 1.2 Τα ϑεωρήµατα των διχοτόµων......................
ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν
2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ Μαθηματικό Περιηγητή 56 ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ 1. Τα θέματα και στι 3 τάξει του Γυμνασίου χωρίζονται σε δύο κατηγορίε. Στα θέματα τη θεωρία
Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
ΑΣΚΗΣΗ 3 η : H βαθµολογία των µαθητών σε ένα διαγώνισµα στα Μαθηµατικά φαίνεται στο παραπάνω ραβδόγραµµα.
6 ο ΓΥΜΝΑΣΙΟ ΚΑΡ ΙΤΣΑΣ ΓΡΑΠΤΕΣ ΑΝΑΚΕΦΑΙΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:Β 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΕΜΠΤΗ 20 ΜΑΪΟΥ 2010 ΘΕΜΑΤΑ ΘΕΩΡΙΑ (Να γράψετε το ένα από τα
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β
1 11.6 11.8 σκήσεις σχολικού βιβλίου σελίδας 50 51 Ερωτήσεις Κατανόησης 1. ντιστοιχίστε κάθε µέγεθος της στήλης µε την τιµή του στην στήλη Στήλη Στήλη Εµβαδόν κυκλικού δίσκου ακτίνας Εµβαδόν κυκλικού τοµέα
Κεφ 3 ο. Μέτρηση κύκλου.
Μαθηματικά Β Γυμνασίου Κεφ 3 ο. Μέτρηση κύκλου. Μέρος Α Θεωρία. 1. Ποια γωνία λέγετε εγγεγραμμένη σε κύκλο; 2. Ποιο είναι το αντίστοιχο τόξο εγγεγραμμένης γωνίας; 3. Με τι είναι ίση κάθε εγγεγραμμένη γωνία
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες
Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14) -- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος -- Τράπεζα θεμάτων Μαθηματικών
Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε
Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε
και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 )
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1 1) Στο διπλανό ορθογώνιο ΑΒΓΔ, να υπολογίσετε το εμβαδόν του σκιασμένου χωρίου ΕΒΓΔΗΖ, όταν ΓΔ = 10 cm, ΒΓ = 6 cm, ΗΔ = 2 cm, ενώ ΗΖ
ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Γεωμετρία. Κεφ 1 ο : Γεωμετρια.
Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε