ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)"

Transcript

1 ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;. Ποιοι είναι ακέραιοι;.3 Ποιοι είναι ρητοί και ποιοι άρρητοι;.4 Ποιοι είναι ρητοί αλλά όχι ακέραιοι;.5 Τοποθετήστε τους παραπάνω αριθμούς σε αύξουσα σειρά 3 Ποιοι αριθμοί ονομάζονται αντίθετοι και ποιοι αντίστροφοι; Δώστε παραδείγματα. 4 Υπολογίστε το άθροισμα Α κάνοντας απαλοιφή παρενθέσεων. Α= ( ) + ( + 4) ( 1) ( + ) + ( 5) 5 Υπολογίστε την τιμή των παραστάσεων 5.1 Α= ( a 3) ( b 3) + ( a+ b) 5. B= 3 ( 1+ a) ( a+ b) + ( 3+ b) 5.3 Γ= ( 3) ( 5) 4 ( 5) ( 3) ( 1) 6 Αν 3 x=, υπολογίστε την τιμή της παράστασης Α= ( χ+ 1) ( χ 1) x. 7 Αν οι αριθμοί ab, είναι αντίθετοι και οι xy, είναι αντίστροφοι, υπολογίστε την τιμή της παράστασης = ( 5 b) 3 ( x y) + 3x Α α. 8 Υπολογίστε την τιμή των παραστάσεων A= Β= Γ= Γράψτε τις ιδιότητες των δυνάμεων. 13 Ποιο είναι το πρόσημο των παρακάτω αριθμών; ( 1 ), ( 1 ), ( 1 ), 1, ( 1 ),, ( ),, ( ) Να γράψετε υπό μορφή μιας δύναμης τις παρακάτω παραστάσεις: (i) 8 α α (ii) α α α 5 (iii) 8 8 α β (iv) x 5 5 (v) : 5 (vi) 1 11 : 1 15 Να υπολογίσετε την τιμή των παρακάτω αριθμητικών παραστάσεων: 1

2 11 4 (i) A=( 7 3) (ii) Β= ( 1 3 ) 16 v Εξηγείστε το νόημα του συμβολισμού α για α και ν φυσικό αριθμό. 17 Να υπολογίσετε την τιμή των παρακάτω αριθμητικών παραστάσεων: Α= Β= 3 : 3 Γ= ( ) 6 ( ) 4 1 Δ= 3 ( 3) 18 Να υπολογίσετε την τιμή των παρακάτω αριθμητικών παραστάσεων: x x A= + αν (α) x= 1 (β) x= Β= 3 x x+ x x, αν x= ΚΕΦΑΛΑΙΟ 1 Ο Τι ονομάζεται αριθμητική παράσταση και τι αλγεβρική παράσταση; Δώστε ένα παράδειγμα από κάθε είδος. Γράψτε την επιμεριστική ιδιότητα. 1 Με τη βοήθεια της επιμεριστικής ιδιότητας να γράψετε με απλούστερο τρόπο τις αλγεβρικές παραστάσεις: A = x + x, B = x x, Γ = ( x + 1 ) + 3x. Να λύσετε τις ασκήσεις σελ.14 3, 4, 5, Διατυπώστε με λόγια : Αν α=β τότε α+γ=β+γ 4 Διατυπώστε με λόγια : Αν α=β τότε α γ = β γ 5 Διατυπώστε με λόγια : Αν α=β τότε α γ = β γ 6 Διατυπώστε με λόγια : Αν α=β τότε α/γ = β/γ με γ 7 Τι ονομάζουμε εξίσωση και τι λύση (ή ρίζα) της εξίσωσης; 8 Πότε μια εξίσωση λέγεται αδύνατη και πότε αδύνατη; 9 Να λύσετε τις ασκήσεις σελ. 1,, 3, 4 Να λύσετε τις εξισώσεις 3 α) x+ = 1 β) x = 1 γ) 9 x= δ) 5= 3 x 31 α) x= 4 β) 1x= 1 γ) 1 3 x= δ) 3 x= α) x+ 1= 6 β) 3x+ 5= 1 γ) = 7x α) 3x 5= x+ 3 β) 6 4x= x+ 3 γ) x+ 7= x α) 3( x 1) = 18+ x β) 3x+ 1= 3( x+ 1) γ) ( x) 1 = 1 x

3 35 α) 36 α) x 3 x = 1 3 x x β) = 1 + x γ) + 1 = ( x ) 3 x x = 1 β) x 3 = x γ) 3 3 ( x ) x 4= 4 5x 3 1 5x+ 1 x 7x α) = x 6 β) = Δίνονται οι παραστάσεις A= 5x 1 και B= 9 4x. Να λύσετε τις εξισώσεις: α) A= 6 β) B= 3 γ) A= B 39 Δίνονται οι παραστάσεις A= ( x 1) + 3 και B 5 3( x) 1.4 α) A= B β) A+ B= 15 4x 3 5 =. Να λύσετε τις εξισώσεις: 4 Δυο φίλοι, ο Α και ο Β, θέλουν να μοιραστούν 3. Ο Β πρέπει να πάρει 4 περισσότερα από τον Α. Πόσα χρήματα θα πάρει καθένας; 41 Δυο φίλοι, ο Α και ο Β, θέλουν να μοιραστούν 3. Ο Β πρέπει να πάρει τετραπλάσιο ποσό από Α. Πόσα χρήματα θα πάρει καθένας; 4 Δυο φίλοι, ο Α και ο Β, θέλουν να μοιραστούν 3. Ο Β πρέπει να πάρει το μισό ποσό από αυτό που θα πάρει ο Α. Πόσα χρήματα θα πάρει καθένας; 43 Δυο φίλοι, ο Α και ο Β, θέλουν να μοιραστούν 3. Ο Β πρέπει να πάρει το 5% του ποσού που θα πάρει ο Α. Πόσα χρήματα θα πάρει καθένας; 44 Να λύσετε τις ασκήσεις σελ.3, 4, 6, Να διατυπώσετε τις ιδιότητες των ανισοτήτων. Τι ονομάζουμε ανίσωση; Σελ.31 και 3 τα «γαλάζια κουτάκια», σελ.33 έως 35 τις Εφαρμογές, σελ.36 την Ερώτηση Κατανόησης 1, σελ.37 τις Ασκήσεις 1,, 3α, 4α, 4β,4γ, 5 Να λύσετε τις ανισώσεις και να παραστήσετε τις λύσεις στον άξονα των αριθμών 46 α) x> 6 β) x> 6 γ) x> 6 δ) x> 6 47 α) 5x< β) 3x< γ) x> δ) x 48 α) 4x 16< β) x 4 γ) 5 5x δ) 4+ x 4 x 1+ 3 x 1 β) 4 3 ( 1 x ) ( x 1) α) ( ) ( ) 5 α) x 1 x 4 5x x 8 x 5 x 4 > 1 β) 7 < Να βρεθούν οι κοινές λύσεις των ανισώσεων και να τις παραστήσετε στον άξονα των πραγματικών αριθμών: α) 3x 1 x 4 < 5 3 και ( x 3) 5x< 3 β) x 5 1 3x 3 και 3 ( x 1) 1> 4 ( + 3x) + 6 3

4 5 Δίνονται οι ανισώσεις: ( 1 3x ) + 3 ( x 4) < και x x 1< 3 α) Να τις λύσετε β) Να παραστήσετε στην ευθεία των πραγματικών αριθμών τις λύσεις τους και να προσδιορίσετε τη μεγαλύτερη από τις κοινές ακέραιες λύσεις τους. 53 Να βρεθούν οι κοινές λύσεις των ανισώσεων: x x 4 x x 1 x και 1 < Αφού τις παραστήσετε στον ίδιο άξονα των πραγματικών αριθμών, να γράψετε τους φυσικούς αριθμούς που είναι κοινές λύσεις των ανισώσεων. ΚΕΦΑΛΑΙΟ Ο Τι ονομάζεται τετραγωνική ρίζα ενός θετικού αριθμού α; Ποιες είναι οι ιδιότητες των ριζών; 55. σελ. 4 Εφαρμογές 1,,3,4. Ασκήσεις 1,, 3, 4, 5, 6, 7, 8, 1,13, Ποιοι αριθμοί ονομάζονται ρητοί και ποιοι πραγματικοί αριθμοί; 57. Τι ονομάζεται άρρητος αριθμός; 58. Ασκήσεις 1, (Συνεχίζουμε στη σελ.18 με το Πυθαγόρειο Θεώρημα) 1.4(Β Μέρος) 59. Διατυπώστε το Πυθαγόρειο θεώρημα 6. Διατυπώστε το αντίστροφο του Πυθαγόρειου θεωρήματος. 61. σελ.18 Εφαρμογές 1,, 3, 4 6. σελ.13 Ερώτηση Κατανόησης 63. Ασκήσεις 1,, 3, 4, 5, 8, Να υπολογίσετε τις τετραγωνικές ρίζες Α) 4, 9, 16, 5, 36, 49, 64, 81, 1 Β) 11, 144, 169, 196, 5, 56, 89 Γ) 34, 361, Να βρείτε τους θετικούς αριθμούς x όπως στα παραδείγματα: Αν x = τότε x= Αν x = 11 τότε x= 11= 11 4

5 Α) x = 1, x = 5, x = Β) x =, x =, x = Υπολογίστε το x όπως στο παράδειγμα: Αν 1. x= 3, x= 3, x= 5,. x= 3, x = 3, x= 67. Υπολογίστε τις παραστάσεις 3 3 Α) ( ),( 3 ),( 4 ),( 134 ) x = =. x=, τότε ( ) Β), 3, 4, Αν ΑΒΓ είναι ορθογώνιο τρίγωνο με κάθετες πλευρές β, γ και υποτείνουσα α, να συμπληρώσετε τον παρακάτω πίνακα: 69. Όπως παραπάνω α β γ 3 4 1, α β γ ,5 1, Στο τετράγωνο ΑΒΓΔ Α) Αν ΑΒ=1, υπολογίστε το ΑΓ Β) Αν ΑΓ=3, υπολογίστε το ΑΒ Γ) Αν ΑΓ=5, υπολογίστε το ΑΒ. Δ) Αν το εμβαδόν είναι 5τ.μ, υπολογίστε το ΑΒ και το ΑΓ 71. Στο ισόπλευρο τρίγωνο ΑΒΓ το ΓΔ είναι το ύψος. Α) Αν ΑΒ=, να υπολογίσετε το ΓΔ και το εμβαδόν του ΑΒΓ. Β) Αν η περίμετρος του ΑΒΓ είναι 1, να υπολογίσετε το ΓΔ και το εμβαδόν του ΑΒΓ. Γ) ΑνΓ = 3, να υπολογίστε το ΑΓ. 5

6 7. Στο ισοσκελές τρίγωνο ΑΒΓ το ΓΔ είναι το ύψος. Α) Αν ΑΓ=5 και ΑΔ=4, υπολογίστε το ΓΔ. Β) Αν ΓΔ= και ΑΔ=3, υπολογίστε το ΑΓ. Γ) Αν ΓΔ=x, ΑΒ=x και ΑΓ= τότε x=; Δ) Αν το εμβαδόν του ΑΒΓ είναι 16τμ. και το ΑΒ είναι διπλάσιο του ΓΔ, υπολογίστε το ύψος ΓΔ και την περίμετρο του ΑΒΓ. 73. Στο ορθογώνιο τρίγωνο ΑΒΓ, Β=9 ο, ΒΔ ύψος. Α) Αν ΑΒ=6 και ΑΓ=1, υπολογίστε το ΒΓ, το εμβαδόν του ΑΒΓ και το ύψος ΒΔ. Β) Αν ΑΒ= 5x, ΒΓ= x και ΑΓ=5, υπολογίστε την τιμή του x. Γ) Αν ΑΒ=15, ΒΓ= και ΑΔ=9, υπολογίστε την περίμετρο και το εμβαδόν του ΑΒΓ. Δ) Αν ΒΔ=, ΑΔ=1 και ΔΓ=4, υπολογίστε τα ΑΒ, ΒΓ, το εμβαδόν του ΑΒΓ και την περίμετρο του ΑΒΓ με ακρίβεια χιλιοστού. 74. Στο τρίγωνο ΑΒΓ, ΑΔ είναι το ύψος του. Αν ΑΒ=13 και ΒΔ=5, υπολογίστε το ΑΔ. Αν επιπλέον το εμβαδόν του ΑΒΓ είναι 84, υπολογίστε το ΒΓ και το ΑΓ. 75. Στο τρίγωνο ΑΒΓ, ΑΔ είναι το ύψος του Αν ΑΒ=, ΑΓ=15 και ΔΓ=1, υπολογίστε το ΑΔ, την περίμετρο και το εμβαδόν του ΑΒΓ. ΚΕΦΑΛΑΙΟ 4 Ο 76. Τι ονομάζουμε πληθυσμός και τη μεταβλητή; 77. Τι ονομάζουμε δείγμα και τη μέγεθος δείγματος; 78. Πώς γίνεται η συλλογή στατιστικών δεδομένων; 79. Πώς γίνεται η παρουσίαση των στατιστικών δεδομένων; 6

7 8. Ποια είδη διαγραμμάτων υπάρχουν; 81. Τι ονομάζουμε συχνότητα μιας τιμής της μεταβλητής; 8. Τι ονομάζεται σχετική συχνότητα μιας τιμής της μεταβλητής και πώς εκφράζεται συνήθως; 83. Τι ονομάζεται μέση τιμή μιας μεταβλητής; 84. Πώς υπολογίζουμε τη διάμεσο ανάλογα με το πλήθος των παρατηρήσεων; Σελ 93-94: Κατανόησης 1, και Ασκήσεις 1, 3, 4 Σελ 98-99: Ασκήσεις 1, 4, 5, 6, 7 Σελ 17: Εφαρμογή, 3, 4 και Ασκήσεις 3,4, Δίνεται ο διπλανός πίνακας Α) Να συμπληρώσετε τον πίνακα Β) Να κατασκευάσετε το κυκλικό διάγραμμα Γ) Να βρείτε το ποσοστό των παρατηρήσεων που έχουν τιμή το πολύ 5 Τιμές Συχνότητα Σχετική συχνότητα % Σύνολο Στον παρακάτω πίνακα έχουμε τις θερμοκρασίες που επικράτησαν στην πόλη της Δράμας για συνεχείς μέρες κατά τον μήνα Φεβρουάριο του 1 Θερμοκρασία σε C Συχνότητα Σχετική συχνότητα % Σύνολο Α) Να συμπληρωθεί ο παραπάνω πίνακας Β) Να βρείτε το πλήθος των ημερών που η θερμοκρασία ήταν τουλάχιστον 6 C και το ποσοστό των ημερών που η θερμοκρασία ήταν το πολύ 8 C Γ) Να βρεθεί η μέση θερμοκρασία καθώς και η διάμεσος. 7

8 87. Ρωτήσαμε ένα δείγμα μαθητών πόσες ώρες ακούνε ραδιόφωνο την εβδομάδα. Οι απαντήσεις είναι οι εξής: 8, 7, 5, 9, 6, 7, 5, 6, 6, 7, 5, 8, 7, 5, 9, 7, 6, 8, 7, 6. Α) Να κάνετε πίνακα κατανομής συχνοτήτων και σχετικών συχνοτήτων. Β) Να βρείτε το ποσοστό των μαθητών που ακούνε ραδιόφωνο τουλάχιστον 8 ώρες. Γ) Να βρείτε την επίκεντρη γωνία του κυκλικού διαγράμματος που αντιστοιχεί στην τιμή 6. Δ) Να βρείτε την μέση τιμή της κατανομής. 88. Τα διαμερίσματα μιας οικοδομής έχουν τον παρακάτω αριθμό κατοικίδιων ανά διαμέρισμα:, 1,,, 1, 1,,, 1, 3,,, 1, 1, 3,,, 1, 1,. Α) Να κάνετε τον πίνακα συχνοτήτων και σχετικών συχνοτήτων. Β) Να υπολογίσετε τη μέση τιμή των παρατηρήσεων. Γ) Να υπολογίσετε τη διάμεσο των παρατηρήσεων. ΓΕΩΜΕΤΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο 1.3 Με τι ισούται το εμβαδό τετραγώνου, ορθογωνίου παραλληλογράμμου, παραλληλογράμμου, τριγώνου, ορθογωνίου τριγώνου και τραπεζίου. ΚΕΦΑΛΑΙΟ Ο.1 και. και.4 (Β Μέρος) 1. Με τη βοήθεια του ορθογωνίου τριγώνου ΑΒΓ Εξηγείστε τι ονομάζουμε: ημίτονο, συνημίτονο και εφαπτομένη της οξείας γωνίας ω. 8

9 . Εξηγείστε γιατί για κάθε οξεία γωνία ω ενός ορθογωνίου τριγώνου ισχύουν οι σχέσεις <ημω<1 και <συνω<1. 3. Στο ορθογώνιο τρίγωνο ΑΒΓ του παρακάτω σχήματος Α) αν ημω=3/5 και γ=6, υπολογίστε την πλευρά α, την πλευρά γ, το συνω, την εφω, το ημφ, το συνφ και τέλος, την εφφ. Β) αν συνω=1/13 και α=6, υπολογίστε την πλευρά β, την γ, το ημω, την εφω, το ημφ, το συνφ και τέλος, την εφφ. Γ) αν εφω= 3 και β=3, υπολογίστε την πλευρά γ, την πλευρά α, το ημω, το συνω, το ημφ, το συνφ και τέλος, την εφφ. 4. Πώς υπολογίζουμε τους τριγωνομετρικούς αριθμούς των γωνιών 3, 45 και Σε ένα ορθογώνιο τρίγωνο ΑΒΓ( Α = 9 ) δίνεται ΑΓ=8cm και ΑΒ=6cm.Να υπολογιστούν: Α) η πλευρά ΑΒ και Β) οι τριγωνομετρικοί αριθμοί της γωνίας Β 6. Αν α=17 και β=15 να υπολογιστούν: Α) η πλευρά ΑΒ Β) οι τριγωνομετρικοί αριθμοί ημβ, συνβ και εφβ και Γ) η παράσταση 17ηµ Β 8εφΒ Κ = 17συνΒ Α 7. Στο διπλανό σχήμα το ΑΔ είναι το ύψος του τριγώνου ΑΒΓ και ΑΔ=1cm. Αν Β = 45 και Γ = 3 να βρείτε τις πλευρές ΑΒ, ΒΓ και ΑΓ. (Δίνεται = 1, 4 και 3 = 1,7 Β Δ Γ 8. Στο διπλανό τετράπλευρο έχουμε Α = = 9, ΑΒ=16cm, ΒΓ=15cm και ΑΔ=1cm. Να υπολογιστούν: Α) Η πλευρά ΔΒ 1 Α 16 Β 9 Δ Γ

10 Β) Το εμβαδό του τριγώνου ΑΒΔ Γ) Το ημγ Δ) Να εξετάσετε αν το τρίγωνο ΔΒΓ είναι ορθογώνιο. 9. Σε ένα ορθογώνιο τρίγωνο ΑΒΓ ( Α 1 = 9 ) είναι ημβ= Αν η υποτείνουσα ΒΓ=1cm να 3 υπολογίσετε τα μήκη των δύο κάθετων πλευρών. 1. Σε ένα ορθογώνιο τρίγωνο ΑΒΓ ( Α = 9 ) το ύψος ΑΔ σχηματίζει με την κάθετη πλευρά ΑΒ=6cm, γωνία 3. Να βρείτε: Α) Το ύψος ΑΔ Β) Το εμβαδόν του τριγώνου ΑΒΓ. 11. Να υπολογιστούν οι τιμές των παραστάσεων: ηµ 6 + συν 45 εφ 3 Α = και Β = ( ηµ 3 ηµ 6 ) ( συν 6 + συν 3 ) εφ 45 + συν 6 1. Στο διπλανό σχήμα το ΑΔ είναι ύψος.να βρεθούν: Α) Τα χ και ψ με προσέγγιση δεκάτου Β) Τα ημβ, εφγ και συνβ Γ) Το εμβαδον του τριγώνου ΑΒΓ Β 1cm x Α 8cm Δ 16cm ψ Γ 13. Στο διπλανό σχήμα δίνεται τρίγωνο ΑΒΓ, το ύψος του ΑΔ και ΔΕ κάθετη στην ΑΓ. Επίσης ΒΔ= 3cm και ΒΑ = 3. Να αποδείξετε ότι: Α) Το ύψος του τριγώνου ΑΒΓ είναι ΑΔ=3cm B) Η πλευρά ΑΓ=5cm. Γ) Το εμβαδόν του τριγώνου ΑΔΓ είναι 6 cm. Δ) Το τμήμα ΔΕ=,4 cm A Ε B Δ Γ 14. Στο διπλανό τραπέζιο ΑΒΓΔ με βάσεις ΑΒ, ΓΔ και ύψος ΑΖ, δίνονται ΑΒ=1 cm, ΑΖ=1 cm και ΑΔ=15 cm. Αν το εμβαδόν του τραπεζίου είναι 3 cm να αποδείξετε ότι: Α) Το τμήμα ΔΖ=9 cm 15 A 1 B 1 1 Δ Ζ Γ

11 Β) Η βάση ΔΓ=4 cm 1 Γ) Η εφγ= 5 Κεφάλαιο 3 ο (Β Μέρος) 15. Τι ονομάζεται εγγεγραμμένη γωνία σε κύκλο (ο,ρ); 16. Ποια είναι η σχέση εγγεγραμμένης επίκεντρης γωνίας; 17. Μια εγγεγραμμένη γωνία σε ημικύκλιο είναι 18. Ποια είναι η σχέση εγγεγραμμένης γωνίας αντίστοιχου τόξου; 19. σελ.176 εφαρμογή 1.. σελ. 178 ασκ. 1, 6, Πότε ένα πολύγωνο λέγεται κανονικό;. Ποια είναι η κεντρική γωνία ενός κανονικού πολυγώνου και με τι ισούται; 3. Ποια σχέση συνδέει τη γωνία φ και την κεντρική γωνία ω ενός κανονικού πολυγώνου; 4. Ποιοι είναι οι τύποι που μας δίνουν το μήκος L του κύκλου (Ο,ρ); 5. Ποιος είναι ο τύπος για το εμβαδόν ενός κυκλικού δίσκου; 6. Αν διπλασιάσουμε την ακτίνα ενός κύκλου, τότε το μήκος του.. 7. Αν διπλασιάσουμε την ακτίνα ενός κύκλου, τότε το εμβαδόν του.. 8. σελ. 188 Ασκήσεις, 5, σελ. 195 Ασκήσεις 3. Α 3. Στο διπλανό σχήμα η ΒΓ είναι διάμετρος, Αβ=8 cm και ΑΓ=6 cm. Να αποδείξετε ότι: Α) Η γωνία Α = 9 Β) Η διάμετρος ΒΓ=1 cm και να βρεθεί το εμβαδόν του τριγώνου ΑΒΓ. Γ) Να βρείτε τα ημβ, συνβ και εφγ. Δ) Να βρείτε το μήκος του κύκλου και το εμβαδό του κυκλικού δίσκου. Β Ο Γ 31. Δίνεται κύκλος ακτίνας ρ=5 cm και τρίγωνο ΑΒΓ με ΑΓ=6 cm. A) Να εξεταστεί το είδος του τριγώνου ΑΒΓ. Β) Να βρεθεί η πλευρά ΑΒ. Γ) Να βρεθεί το εμβαδό του τριγώνου ΑΒΓ. Δ) Το εμβαδό του κυκλικού δίσκου. Β Ο Α Γ 11

12 3. Στο διπλανό σχήμα η ΑΒ είναι διάμετρος του κύκλου. Να βρεθούν οι γωνίες x, φ και ω, όταν το τόξο ΓΔ=4 και το τόξο ΒΔ=8. Α Γ x 4 Δ 8 φ ω Β Ο ΔΕΙΓΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 1 Ο ΔΕΙΓΜΑ ΘΕΩΡΙΑ 1 α) Να διατυπώσετε το Πυθαγόρειο Θεώρημα. β) Ποια γωνία ονομάζουμε εγγεγραμμένη; Να σχεδιάσετε μια εγγεγραμμένη γωνία που βαίνει σε ημικύκλιο. γ) Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό ή Λάθος: ι) Ισχύει συν3 < συν3 ιι) Ισχύει ότι εφ6 =ημ3 ιιι) Μια εγγεγραμμένη γωνία είναι το διπλάσιο της επίκεντρης γωνίας που βαίνει στο ίδιο τόξο. ΘΕΩΡΙΑ α) Τι ονομάζουμε τετραγωνική ρίζα ενός θετικού αριθμού α; β) Ποιοι από τους επόμενους αριθμούς είναι ρητοί και ποιοι άρρητοι; 9, 5, π, ( 5 ) 5 γ) Να συμπληρώσετε τα παρακάτω κενά: ι),49 =... ιι) 5 =... ιιι) = 5 ιv) (...) = 1 1

13 ΑΣΚΗΣΗ 1 Να βρεθούν και να παρασταθούν στον άξονα οι κοινές λύσεις των ανισώσεων : x x 1 x 3 1 < και 3 4 x 4 ( x ) 1 (x+ 1) ΑΣΚΗΣΗ 1 Τεστ Μαθηµατικών 8 Η βαθμολογία σε ένα τεστ Μαθηματικών φαίνεται στο διπλανό διάγραμμα: α) Να συμπληρώσετε τον παρακάτω πίνακα: Μαθητές Βαθµολογία Βαθµολογία Μαθητές Σχετ. Συχνότητα % Σύνολο β) Να βρείτε το πλήθος των μαθητών που πήραν μέρος στο τεστ. γ) Ποιο είναι το ποσοστό των μαθητών πήραν βαθμό πάνω από 15; ΑΣΚΗΣΗ 3 Στο διπλανό σχήμα δίνεται ΒΑΓ= 9, ΑΓ = 9, και ΒΓ=15cm. = 3,ΑΒ=1cm Γ Δ Να υπολογίσετε: α) το μήκος της πλευράς ΑΓ β) τα ημβ, συνβ και την κλίση του δρόμου ΒΓ. γ) το μήκος της πλευράς ΑΔ. Β Α 13

14 ο ΔΕΙΓΜΑ ΘΕΩΡΙΑ 1 α) Να δώσετε τον ορισμό της τετραγωνικής ρίζας ενός θετικού αριθμού α β) Να συμπληρώσετε την ισότητα : αν α, ( α ) =... γ) Υπάρχει τετραγωνική ρίζα αρνητικού αριθμού ; Δικαιολογήστε την απάντησή σας. ΘΕΩΡΙΑ α) Να δώσετε τους ορισμούς των τριγωνομετρικών αριθμών ηµω, συνω, εφω οξείας γωνίας ω ενός ορθογωνίου τριγώνου. β) Αν ω είναι οξεία γωνία, να συμπληρώσετε τα κενά : < ηµω <...,... < συνω <..., εφω =... γ) Αν 3 ηµω=, να συμπληρώσετε τα κενά : ˆω=..., εφω=..., συνω=... ΑΣΚΗΣΗ 1 Στον παρακάτω πίνακα έχουμε τις θερμοκρασίες που επικράτησαν στην πόλη των Σερρών για είκοσι συνεχείς μέρες κατά τον μήνα Φεβρουάριο του 1. Θερμοκρασία σε ο C τιμές x i Μέρες Συχνότητες ν i Ποσοστά ημερών Σχετ. συχνότητες f % Σύνολα 14

15 Α. Να συμπληρωθεί ο παραπάνω πίνακας. Β. Να βρείτε το πλήθος των ημερών που η θερμοκρασία ήταν τουλάχιστον 6 ο C καθώς και το ποσοστό των ημερών που η θερμοκρασία ήταν το πολύ 8 ο C Γ. Να βρεθεί η μέση θερμοκρασία καθώς και η διάμεσος θερμοκρασία. ΑΣΚΗΣΗ x x 4 x x 1 x Να βρεθούν οι κοινές λύσεις των ανισώσεων και 1 <. Αφού τις παραστήσετε στον ίδιο άξονα των πραγματικών αριθμών να γράψετε τους φυσικούς αριθμούς που είναι κοινές λύσεις των ανισώσεων. ΑΣΚΗΣΗ 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με βάση ΒΓ = 1 cm. Αν η περίμετρος του είναι 36 cm να βρεθούν : α) Το ύψος ΑΔ του τριγώνου ΑΒΓ β) Το εμβαδόν του τριγώνου ΑΒΓ γ) Το ημβ, το συνβ και η εφβ 4 ο ΔΕΙΓΜΑ ΘΕΩΡΙΑ 1 Α) Τι ονομάζεται τετραγωνική ρίζα ενός θετικού αριθμού α και πως συμβολίζεται; Β) Να συμπληρώσετε τα κενά στις παρακάτω προτάσεις. Αν a = χ, όπου α, τότε χ και χ = Αν α τότε ( a ) = = Γ) Ορίζεται η τετραγωνική ρίζα αρνητικού αριθμού; Να αιτιολογήσετε την απάντησή σας. ΘΕΩΡΙΑ Α) Ποια γωνία λέγεται εγγεγραμμένη; Ποια η σχέση που τη συνδέει με το αντίστοιχο τόξο της; Β) Πότε ένα πολύγωνο λέγεται κανονικό; Να γράψετε τη σχέση που μας δίνει την κεντρική γωνία ω ενός κανονικού ν- γώνου καθώς και τη σχέση που συνδέει την κεντρική γωνία ω με τη γωνία φ ενός κανονικού ν- γώνου. 15

16 Γ) Να γράψετε τις σχέσεις από τις οποίες υπολογίζουμε το μήκος του κύκλου, το εμβαδόν κυκλικού δίσκου ακτίνας ρ και το εμβαδόν κυκλικού τομέα γωνίας μ ο (σε μοίρες) κύκλου κέντρου Ο και ακτίνας ρ. ΑΣΚΗΣΗ 1 Σε ορθογώνιο τρίγωνο ΑΒΓ (Α=9 ), δίνονται ΑΒ=1, ΑΓ=16. Να βρεθούν α) η πλευρά ΒΓ β) Οι τριγωνομετρικοί αριθμοί των γωνιών Β και Γ. γ) Η τιμή της παράστασης: Α = ηµb 3συνΓ 4εφΒ ΑΣΚΗΣΗ Έστω τρίγωνο ΚΛΜ με ΛΜ=16cm και το ύψος ΚΖ=1 cm. α) Να υπολογίσετε το εμβαδό Ε 1 του τριγώνου ΚΛΜ. β) Να εκφράσετε το εμβαδό Ε του τριγώνου ΚΛΖ σε σχέση με το μήκος x του τμήματος ΛΖ. γ) Αν γνωρίζετε ότι Ε 1 =4 Ε, να βρείτε την εφαπτομένη της γωνίας Μ ΑΣΚΗΣΗ 3 Α) Να λυθεί η εξίσωση x 8 x 5 x 4 7 = 3 4 Β) Να λυθεί η ανίσωση 3(x ) 4x+ 3(4 x) Γ) Η λύση της εξίσωσης είναι και λύση της ανίσωσης 16

17 4 Ο ΔΕΙΓΜΑ ΘΕΩΡΙΑ 1 Α) Τι ονομάζετε ημίτονο,συνημίτονο, εφαπτομένη μιας οξείας γωνίας ενός ορθογωνίου τριγώνου ΑΒΓ με πλευρές α, β, γ και ποια είναι τα όρια μεταβολής του ημιτόνου και του συνημιτόνου (σχήμα). Β) Να συμπληρώσετε τον πίνακα: γωνία ω ημω συνω εφω ΘΕΩΡΙΑ α) Να γραφεί το πυθαγόρειο θεώρημα (θεώρημα, σχήμα, τύπος) β) Να γραφεί το αντίστροφο του πυθαγορείου θεωρήματος ΑΣΚΗΣΗ 1 Δίνονται οι ανισώσεις: (1 3x) + 3(x 4) < και x 1 < x 3 Α. Να τις λύσετε. Β. Να παραστήσετε στην ίδια ευθεία τις λύσεις τους και να προσδιορίσετε τη μεγαλύτερη από τις κοινές ακέραιες λύσεις τους. ΑΣΚΗΣΗ Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με βάση ΒΓ = 6 cm και ΑΒ = 5cm. Να βρεθούν : α) Η ύψος ΑΔ του τριγώνου ΑΒΓ β) Η εμβαδόν του τετραγώνου ΑΔΕΖ γ) Το ημβ, το συνβ και η εφβ 17

18 ΑΣΚΗΣΗ 3 Να λύσετε την εξίσωση: x 8 x 4 7 x = 5 και να υπολογίσετε την παράσταση x, όπου χ η ρίζα της εξίσωσης. 18

19 19

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ 008 65 ΥΜΝΑΣΙΟ 008 66 α. Πότε μια γωνία λέγεται εγγεγραμμένη και πότε επίκεντρη; β. Ποια είναι η σχέση μεταξύ επίκεντρης και εγγεγραμμένης γωνίας, που βαίνουν στο ίδιο τόξο; γ. Πότε δύο τόξα μ

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 ΑΣΚΗΣΕΙΣ. Θέμα 1 ο. Θέμα 2 ο : Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

ΓΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 ΑΣΚΗΣΕΙΣ. Θέμα 1 ο. Θέμα 2 ο : Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η ΥΜΝΑΣΙΟ ΤΑΞΗ ΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 α. Να διατυπώσετε το Πυθαγόρειο Θεώρημα. β. Να διατυπώσετε το αντίστροφο του Πυθαγορείου Θεωρήματος. γ. Στο διπλανό σχήμα, το τρίγωνο ΔΕΖ είναι ορθογώνιο ( Δ = 90º) και ΔΑ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά B Γυμνασίου Μαθηματικά A Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Φυσικοί & Δεκαδικοί Αριθμοί Η θεωρία με Ερωτήσεις Ασκήσεις & Προβλήματα ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 )

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 ) Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1 1) Στο διπλανό ορθογώνιο ΑΒΓΔ, να υπολογίσετε το εμβαδόν του σκιασμένου χωρίου ΕΒΓΔΗΖ, όταν ΓΔ = 10 cm, ΒΓ = 6 cm, ΗΔ = 2 cm, ενώ ΗΖ

Διαβάστε περισσότερα

Κεφ 3 ο. Μέτρηση κύκλου.

Κεφ 3 ο. Μέτρηση κύκλου. Μαθηματικά Β Γυμνασίου Κεφ 3 ο. Μέτρηση κύκλου. Μέρος Α Θεωρία. 1. Ποια γωνία λέγετε εγγεγραμμένη σε κύκλο; 2. Ποιο είναι το αντίστοιχο τόξο εγγεγραμμένης γωνίας; 3. Με τι είναι ίση κάθε εγγεγραμμένη γωνία

Διαβάστε περισσότερα

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ ΕΩΜΕΤΡΙΑ ΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 ΤΑΞΗ ΦΥΛΛΟ ΕΡΑΣΙΑΣ Κ 1.1 ΕΝΟΤΗΤΑ : Εμβαδόν επίπεδης επιφάνειας Τάξη : υμνασίου. Καθ. Χρήστος Μουρατίδης Όνομα Μαθητή :.. Ημ/νία :. 1. Να βρείτε το εμβαδόν

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Β Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Β Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Μέρος Α Κεφάλαιο 1ο Εξισώσεις 1.1. Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1. Τι ονομάζουμε εφαπτομένη μια οξείας γωνίας ενός ορθογωνίου τριγώνου; Να κάνετε σχήμα.

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1. Τι ονομάζουμε εφαπτομένη μια οξείας γωνίας ενός ορθογωνίου τριγώνου; Να κάνετε σχήμα. ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Τι ονομάζουμε εφαπτομένη μια οξείας γωνίας ενός ορθογωνίου τριγώνου; Να κάνετε σχήμα. 2. Τι ονομάζουμε ημίτονο μια οξείας γωνίας ενός ορθογωνίου τριγώνου;

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΔΥΟ ΛΟΓΙΑ ΓΙΑ ΤΟ ΔΙΔΑΣΚΟΝΤΑ

ΔΥΟ ΛΟΓΙΑ ΓΙΑ ΤΟ ΔΙΔΑΣΚΟΝΤΑ ΔΥΟ ΛΟΓΙΑ ΓΙΑ ΤΟ ΔΙΔΑΣΚΟΝΤΑ Η διαγνωστική δοκιμασία θα είναι επώνυμη όχι ανώνυμη. Ο μαθητής αναλαμβάνει την ευθύνη του τι γράφει. Επίσης είναι χωρίς προειδοποίηση, ωστόσο οι μαθητές είναι ενήμεροι του

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

2.7 ΑΝΑΛΥΣΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ

2.7 ΑΝΑΛΥΣΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ ΜΕΡΟΣ Β.7 ΑΝΑ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ 33.7 ΑΝΑ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ Ανάλυση διανύσματος σε δυο κάθετες συνιστώσες y x Α Γ x Δ Β y Όπως φαίνεται στο παραπάνω σχήμα κατασκευάζουμε

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε ΘΕΜΑ 4 Στο διπλανό τραπέζιο ΑΒΓΔ η ευθεία ΜΛ είναι παράλληλη στις βάσεις ΑΒ και ΔΓ του τραπεζίου και ισχύει ότι = α) Να αποδείξετε ότι = και = (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του ΕΠΑΝΑΗΠΤΙΚΕ ΑΚΗΕΙ Γ ΓΥΜΝΑΙΟΥ ΕΝΟΤΗΤΑ : Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: 1) 3 ) 3) 5 3 3 5 3 5) 5 4) 3 5 6) ( α 3 + 3β ) 7) (7 + )(7 ) 8) (β 4 + 1)(β + 1)(β + 1)(β 1). Να κάνετε τις

Διαβάστε περισσότερα

Καθηγήτρια : Ιωάννα Ερωτοκρίτου τηλ:

Καθηγήτρια : Ιωάννα Ερωτοκρίτου τηλ: ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13 5. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...25

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

1.0 Βασικές Έννοιες στην Τριγωνομετρία

1.0 Βασικές Έννοιες στην Τριγωνομετρία .0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

Οι πέντε καλύτεροι φίλοι σας είναι το Τι, Γιατί, Πού, Πότε και Πώς. Όταν χρειάζεστε συμβουλές, ρωτείστε Τι; ρωτείστε Γιατί; ρωτείστε Πού; Πότε και

Οι πέντε καλύτεροι φίλοι σας είναι το Τι, Γιατί, Πού, Πότε και Πώς. Όταν χρειάζεστε συμβουλές, ρωτείστε Τι; ρωτείστε Γιατί; ρωτείστε Πού; Πότε και ΕΡΩΤΗΣΕΙΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ Οι πέντε καλύτεροι φίλοι σας είναι το Τι, Γιατί, Πού, Πότε και Πώς. Όταν χρειάζεστε συμβουλές, ρωτείστε Τι; ρωτείστε Γιατί; ρωτείστε Πού; Πότε και Πώς και μην ρωτάτε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια στους

Διαβάστε περισσότερα

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά ΜΕΡΟΣ. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ 61 Ορισμοί. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ Ημίτονο γωνίας Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά μιας οξείας γωνίας ω ενός ορθογωνίου

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η. Άσκηση 1η Αν η εξίσωση είναι αόριστη, τότε: α) Να δειχθεί ότι η εξίσωση είναι αδύνατη β) Να λυθεί η ανίσωση γ) Αν ισχύει ότι να βρεθεί ο αριθμός Α Άσκηση 2η Αν η εξίσωση έχει λύση μεγαλύτερη του και η

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Α ΘΕΩΡΙΑ ΘΕΜΑ 1 Ο : α) Ποια μονώνυμα λέγονται αντίθετα; Γράψτε ένα παράδειγμα δύο αντίθετων μονωνύμων. β) Ποια αλγεβρική

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου 1. Στο ορθογώνιο τρίγωνο ΑΒΓ του διπλανού σχήματος η πλευρά ΒΓ που βρίσκεται απέναντι από την ορθή

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΗ. 1 Να υπολογίσετε την περίμετρο και το εμβαδόν του παρακάτω τρίγωνο ΑΒΓ που έχει ΑΒ = 17cm, ΑΓ = 25cm και ΑΔ = 15cm. ΑΣΚΗΣΗ. 2 Στο ορθογώνιο τραπέζιο είναι ΑΒ= 9cm,

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ 1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΣΙΡΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ Σχολική χρονιά : 01-013 Βαθμός:... Υπογραφή:... ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 013 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία : 10-06-013 Σελίδες : 1 Τάξη : Γ Διάρκεια : ώρες Ώρα: 08:00-10:00

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014 ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/014 ΤΑΞΗ: Β ΧΡΟΝΟΣ: ώρες (10:15 1:15) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:..

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ.

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ. ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ. ΚΩΝΣΤΑΝΤΟΠΟΥΛΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-13 1 η ΦΑΣΗ Η συλλογή αυτή των θεμάτων

Διαβάστε περισσότερα